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Neurodegenerative diseases are closely related to inflammatory and autoimmune events,

suggesting that the dysregulation of the immune system is a key pathological factor.

Both multiple sclerosis (MS) and Alzheimer’s disease (AD) are characterized by infiltrating

immune cells, activated microglia, astrocyte proliferation, and neuronal damage.

Moreover, MS and AD share a common pro-inflammatory signature, characterized

by peripheral leukocyte activation and transmigration to the central nervous system

(CNS). MS and AD are both characterized by the accumulation of activated neutrophils

in the blood, leading to progressive impairment of the blood–brain barrier. Having

migrated to the CNS during the early phases of MS and AD, neutrophils promote

local inflammation that contributes to pathogenesis and clinical progression. The role of

circulating T cells inMS is well-established, whereas the contribution of adaptive immunity

to AD pathogenesis and progression is a more recent discovery. Even so, blocking the

transmigration of T cells to the CNS can benefit bothMS and AD patients, suggesting that

common adaptive immunity mechanisms play a detrimental role in each disease. There is

also growing evidence that regulatory T cells are beneficial during the initial stages of MS

and AD, supporting the link between the modulatory immune compartments and these

neurodegenerative disorders. The number of resting regulatory T cells declines in both

diseases, indicating a common pathogenic mechanism involving the dysregulation of

these cells, although their precise role in the control of neuroinflammation remains unclear.

The modulation of leukocyte functions can benefit MS patients, so more insight into the

role of peripheral immune cells may reveal new targets for pharmacological intervention

in other neuroinflammatory and neurodegenerative diseases, including AD.
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INTRODUCTION

Multiple sclerosis (MS) and Alzheimer’s disease (AD) are two of the most widely studied central
nervous system (CNS) pathologies. MS is the most common inflammatory neurological disease
in young adults, whereas AD is a neurodegenerative disorder that occurs more frequently in the
elderly population and is themost common type of dementia. The number ofMS andADpatients is
growing continuously, highlighting the need to find new disease mechanisms and new therapeutic
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approaches (1, 2). MS and AD are both multifactorial diseases
and the identification of their etiopathogenetic mechanisms is
challenging. Genetic risk factors and environmental triggers are
the principal risk factors for both MS and AD (3, 4).

From the neuropathological perspective, the early phases of
MS, defined as relapsing-remittingMS (RRMS), are characterized
by primary demyelination areas known as plaques, which are
located in the white and gray matter. In contrast, the final phases
(secondary progressive MS) are associated with axonopathy,
neuronal death, and synaptic loss, correlating with the permanent
motor disability classically shown by MS patients (5). AD
neuropathology is characterized by two main hallmarks: amyloid
β plaques and tau tangles. Both structures are formed from
aggregated proteins, in one case due to the incorrect processing
of amyloid precursor protein (APP), and in the other due to the
hyperphosphorylation of tau, a microtubule-associated protein
required to maintain neuronal architecture and function.

The involvement of immune and inflammatory reactions in
the pathogenesis of MS has been understood for decades, but
the same association was only recently identified in AD. The
concept of CNS exclusion from surveillance and inflammatory
responses mediated by peripheral immune cells was reconsidered
more than 15 years ago describing how circulating immune cells
enter into the brain for protective tissue immunosurveillance
and has been recently reviewed following the discovery of
the cerebral lymphatic system and its role in CNS physiology
(6–8). Furthermore, strong evidence of peripheral immune
cell trafficking into the CNS has been provided during the
immune responses that occur during MS and its animal model,
experimental autoimmune encephalomyelitis (EAE), confirming
that the CNS is not an immune-privileged environment (9). More
recently, immune cell trafficking has also been documented in
AD andwas shown to be detrimental in transgenicmice with AD-
like disease (10, 11). Neuroinflammation in both MS and AD is
also characterized by the activation of microglia and astrocytes,
leading to the secretion of pro-inflammatory cytokines and
chemokines that recruit more immune cells from the periphery
to the CNS (12, 13). Interestingly, the specialized pro-resolving
lipid mediators, which mediate inflammation resolution and
reduce neutrophil and monocytes infiltration into the brain, are
impaired in MS and AD patients and their levels correlate with
disease severity (14–16). These defects in the resolution pathways
further emphasize the common detrimental role of peripheral
immune cells in the maintenance of neuroinflammatory process
in MS and AD.

Inflammation during neurodegenerative disorders is not
restricted to the CNS. Indeed, systemic inflammation has been
confirmed in MS and AD, including the secretion of pro-
inflammatory cytokines in peripheral domains such as the
blood, cerebrospinal fluid (CSF), liver, and gut (12, 17–20).
The involvement of peripheral inflammation mechanisms and
immune cells inMS and AD provides strong evidence of immune
dysregulation, but it is unclear whether this is a causal link in each
disease or a secondary phenomenon triggered by brain injury.

Whereas, the role of humoral response has been reviewed
elsewhere, here we discuss the common immune mechanisms in
MS and AD and describe how neutrophils, monocytes and T cell

subpopulations use similarmechanisms inMS andAD tomigrate
into the CNS and induce neuroinflammation and tissue damage
(21). These insights suggest that interfering with shared cellular
and molecular mechanisms may lead to common therapeutic
approaches for MS and AD.

NEUTROPHILS: THE EMERGING PLAYERS
IN MS AND AD

Neutrophils are highly reactive leukocytes with a frontline role
in the maintenance of tissue homeostasis during pathological
conditions, including infections and tissue damage (22).
Neutrophils are highly adaptable cells due to their remarkable
plasticity, and can therefore adjust their phenotype and functions
in response to various environmental stimuli, triggering acute
inflammatory responses (23). However, when prolonged tissue
stress and damage induce sterile inflammation, neutrophils play
a more subtle detrimental role, leading to chronic tissue damage
that can promote pathological conditions such as autoimmunity
and neurodegenerative diseases if left uncontrolled (24). These
heterogeneous cells have attracted significant interest given their
ability to facilitate sterile and chronic inflammation (24, 25).

Infiltrating neutrophils have been detected in the brains of
MS and AD patients (10, 26). Evidence for the early involvement
of neutrophils in MS includes their correlation with hyperacute
lesions and altered blood-brain barrier (BBB) permeability in
humans, and their involvement in the preclinical phase of EAE
and acute relapses in these animal models (26, 27). Studies in
AD models also suggest that neutrophils may contribute to the
initial disease stages, which are characterized by increased BBB
permeability, neutrophil intravascular adhesion, and invasion of
the CNS (10, 11). Indeed, in animal models of both MS and AD,
neutrophils accumulate in the brain before clinical manifestation,
representing a major source of inflammatory mediators during
early disease stages (10, 28, 29). We and others have shown that
blocking neutrophil recruitment at early disease stages reduces
the disease burden and tissue damage in animal models of both
MS and AD (10, 30, 31). However, neutrophils continue to
accumulate in the CNS throughout the disease course, suggesting
these cells also play a role in disease progression and chronicity
(10, 28, 29).

In MS and AD patients, the neutrophil to lymphocyte ratio
(NLR) is a classical blood marker of inflammation. In MS, the
NLR increases during progression and relapses, whereas in AD
it correlates with cognitive impairment (32–35). In both diseases,
a large proportion of circulating neutrophils is primed, as shown
by the induction of activationmarkers such as CD11b and CD177
(36–39). Interestingly, high levels of CD11b also coincide with
relapses in MS patients and correlate with the severity of the
cognitive deficit in AD, suggesting that circulating neutrophils
with a primed phenotype may cross the cerebral vasculature to
the CNS more readily (36, 37). A similar mechanism has been
proposed for CD11a/CD18 (LFA-1 or αLβ2) in the recruitment
of neutrophils in AD models (10). Furthermore, peripheral
hyper-activated neutrophils secrete inflammatory mediators
and intravascular neutrophil extracellular traps (NETs), thus
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contributing to BBB damage and disease development (10, 24, 40)
(Figure 1, Table 1).

During inflammation, the constitutive expression of CXCR2
(a chemokine receptor for the ELR+ chemokines CXCL1-3
and CXCL5-8) on mature neutrophils is strongly associated
with neutrophil mobilization from the bone marrow to the
bloodstream and their migration from the bloodstream to the
site of injury (71). CXCL8, a CXCR2-dependent neutrophil
chemoattractant, is more abundant in the plasma and CSF of
MS and AD patients, and is linked to disease activity, suggesting
that neutrophil migration is relevant in both diseases (44–48).
Moreover, activated astrocytes produce CXCL1 (another CXCR2
ligand) at the lesion edges in EAEmice, and high levels of CXCL1,
CXCL5, and CXCL8 are detected in the serum of MS patients,
supporting a role for CXCR2 in the infiltration of neutrophils
into the CNS in this disease (36, 44). CXCL1 is also produced
by oligodendrocytes in EAE mice, attracting neutrophils into
the CNS, exacerbating clinical impairment and enhancing BBB
leakage (49). Interestingly, in the CNS of EAE mice, infiltrating
T helper (Th) 17 cells stimulate the local release of CXCL1
and CXCL2, which leads to neutrophil recruitment (72). On the
other hand, microglia in murine models of AD express CXCL1,
and the levels of this chemokine in the CSF of AD patients
correlate with cognitive impairment, suggesting that CXCL1 is
also important in AD (50, 51) (Figure 1, Table 1). Restricting the
infiltration of neutrophils using inhibitors of CXCR1 and CXCR2
has shown therapeutic efficacy in several experimental models of
neuroinflammation including EAE, suggesting this may also be
the case in animals with AD-like disease (73–75).

Amyloid β may also play a role in both AD and
MS (76, 77). In AD brains, infiltrating neutrophils are
closely associated with amyloid β deposits, and amyloid β

peptides trigger the rapid integrin-dependent adhesion of
neutrophils via G protein coupled receptors (10, 78). The non-
random distribution of myeloperoxidase (MPO)-producing cells,
presumably neutrophils, in the brain parenchyma of AD patients
underlines the potential role of amyloid β as a chemoattractant
that establishes a pro-inflammatory microenvironment to recruit
circulating neutrophils (10). We speculate that the presence of
amyloid β deposits in MS could also help to recruit neutrophils
into the brain. The abundance of MPO and elastase in the
blood and CNS of MS patients suggests that neutrophils may
contribute to these pathological findings (56, 57). Moreover,
neutrophil elastase is associated with the spread of MS lesions
and clinical progression, whereas peripheral MPO activity is
considered a predictor for executive function decline in AD
patients (29, 46).

Neutrophil migration into the CNS during early or late
phases of neuroinflammation plays a crucial role in BBB
impairment. During migration, “outside-in” signaling generated
following selectin and integrin engagement can induce ROS
production by direct NADPH oxidase complex activation and
release of other inflammation mediators such as cytokines (79–
83). Moreover, it has been previously shown that intravascular
neutrophil adhesion per se induces alterations in vascular
permeability supporting a role for these cells in BBB breakdown
(84–86). The inhibition of MPO and elastase in EAE mice

reduced the number of infiltrating neutrophils, restored the
integrity of the BBB, and attenuated the clinical symptoms
(58, 59). MPO-producing cells were also identified in the
brain parenchyma of AD patients and corresponding animal
models (10). MPO and elastase are involved in the production
of NETs, whose release in the CNS correlates with neuronal
damage and BBB breakdown (57, 87). Indeed, the formation
of NETs occurs in both MS and AD, strongly suggesting a
role for neutrophils in the brain damage associated with both
diseases (10, 40). Moreover, circulating neutrophils from MS
and AD patients display a stronger oxidative burst, which may
contribute to the formation of NETs, the activation of matrix
metalloproteinases (MMPs), and therefore to BBB breakdown
(40–42) (Figure 1, Table 1).

Taken together, these data suggest that activated circulating
neutrophils mediate BBB damage and neurotoxicity in MS and
AD by producing inflammatory mediators such as MPO and
ROS, and by releasing NETs (88, 89). The blocking or inhibition
of neutrophil activity could therefore achieve therapeutic benefits
for both MS and AD patients (Figure 1).

THE ROLE OF HETEROGENEOUS
MONOCYTES IN MS AND AD

Circulating monocytes are heterogeneous and plastic innate
immune cells that can promptly respond to changes in their
environment. Traditionally, human monocytes are divided into
three subsets: (i) classical (CD14+/CD16−), (ii) intermediate
(CD14+/CD16+), and (iii) non-classical (CD14lo/CD16+). In
mice, only two subclasses of monocytes have been identified:
(i) classical (CCR2+/CX3CR1−/Ly6Chi), and (ii) non-classical
(CCR2−/CX3CR1+/Ly6Clo) (90). In addition to the differential
expression of surface markers, these subsets show transcriptional
and functional differences: classical monocytes are the main
subset recruited to sites of infection and injury (91), whereas
non-classical monocytes circulate in the blood, patrolling the
vasculature (92).

Systemic alterations in monocyte subsets have been reported
in humans with neurodegenerative disorders. The dysregulation
of monocyte subsets in patients with RRMS involves the
expansion of non-classical and intermediate monocytes and
the depletion of classical monocytes (61, 62). Similarly, AD
patients with symptoms ranging from very mild to severe
dementia accumulate non-classical and intermediate monocytes
at the expense of classical monocytes (63) (Figure 1, Table 1).
Although changes in circulating monocyte subsets have been
confirmed across diverse CNS diseases, the meaning, causes
and consequences of these alterations are still unclear. Whether
different monocyte subsets correspond to developmental stages
or whether each monocyte subset has a different developmental
pathway remains to be determined. Given the plasticity of
monocytes and their ability to respond rapidly to a wide
variety of stimuli, the analysis of monocyte activation, and
cytokine profiles should indicate their function and contribution
to peripheral inflammation during neurodegeneration. Indeed,
circulating monocytes in MS and AD patients shift toward
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FIGURE 1 | Schematic representation of innate immune mechanisms in MS and AD. Non-classical monocytes and neutrophils are expanded in peripheral blood and

the higher neutrophil-lymphocyte ratio (NLR) correlates with the clinical symptoms of each disease. In addition, these cells express canonical activation markers

(HLA-DR and CD11b) and release inflammatory mediators, such as pro-inflammatory cytokines (IL-1β, IL-6, TNF-α), myeloperoxidase (MPO), and neutrophil

extracellular traps (NETs). Chemokine binding stimulates monocytes and neutrophils to infiltrate the CNS by chemotaxis (mediated by CCR2 and CXCR2,

respectively). Within the CNS, monocytes show impaired phagocytosis and secrete the pro-inflammatory cytokines IL-1β, TNF-α, IL-6, and IL-8, thus fueling the

inflammatory response. Similarly, infiltrating neutrophils contribute to neuroinflammation and tissue damage by releasing NETs, reactive oxygen species (ROS), MPO,

and matrix metal proteinases (MMPs).

a pro-inflammatory phenotype (63, 64) (Figure 1, Table 1).
Particularly, in MS patients, isolated monocytes were shown
to produce more IL-1β, TNF-α, IL-6, and IL-8 under basal
conditions (61). Similarly, unstimulatedmonocytes from patients
with dementia express higher levels of IL-6, IL-1β, and
TNF-α mRNA (63) (Figure 1), suggesting a pro-inflammatory
phenotype in AD. Interestingly, IL-8, and TNF-α mRNA levels
also increase when human monocyte-like cell line THP-1 is
incubated with plasma from AD patients or transgenic mice
with AD-like disease, compared to plasma from healthy human
controls or wild-type mice, respectively (65). This provides
evidence that systemic inflammatory conditions affect the
function of circulating monocytes.

Monocytes can migrate into tissues and differentiate
into macrophages, making them important players in brain

homeostasis. However, the correct identification of these cells in
the CNS has proved challenging due to the similarities between
microglia and monocyte-derived macrophages, especially during
inflammation when the surface markers change. This has been
addressed by advances in genome editing and cell tracing
technology, leading to the identification of CCR2 and CX3CR1
as markers of murine classical monocytes and microglia,
respectively (93). In this context, establishing how circulating
monocytes are recruited to the inflamed brain can contribute
significantly to the understanding of pathophysiology in MS
and AD. Studies in murine models revealed the essential role of
CCR2, a chemokine receptor involved inmononuclear trafficking
at inflammation sites (94). In the EAE model of MS, classical
monocytes were found to infiltrate the inflamed brain and the
ablation of CCR2 blocked this process, suggesting a key role for
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TABLE 1 | Summary of common pathways in the innate immune system during

the development of MS and AD.

Common mechanisms MS AD

CNS neutrophil infiltration is related to disease

progression

(26) (human)

(27) (human)

(28) (mouse)

(29) (mouse)

(10) (mouse)

High NLR correlates with disease progression (33) (human)

(34) (human)

(32) (human)

(35) (human)

Circulating neutrophils display a

primed-activated phenotype

(36) (human)

(38) (human)

(40) (human)

(37) (human)

(39) (human)

(41) (human)

(42) (human)

(43) (mouse)

CD11b expression on circulating neutrophils

correlates with disease progression

(36) (human) (37) (human)

CXCL8 is elevated in the plasma and CSF and

is related to disease activity

(44) (human)

(45) (human)

(46) (human)

(47) (human)

(48) (human)

Elevated CXCL1 expression in the CNS is

related to clinical impairment

(36) (human)

(44) (human)

(49) (mouse)

(50) (human)

(51) (mouse)

Elevated IL-1 expression in the CNS (52) (human)

(53) (mouse)

(54) (human)

(55) (mouse)

Increased levels of MPO in the blood and CNS

correlates with neuropathology

(56) (human)

(57) (human)

(58) (mouse)

(59) (mouse)

(46) (human)

(60) (human)

(10) (human

and mouse)

Circulating neutrophils show a more intense

oxidative burst

(40) (human) (41) (human)

(42) (human)

Systemic phenotype alteration in circulating

monocytes (increased frequency of

non-classical monocytes at the expense of

classical ones)

(61) (human)

(62) (human)

(63) (human)

Circulating monocytes display a

pro-inflammatory state

(64) (human) (63) (human)

(65) (human

and mouse)

CCR2 is involved in monocyte CNS invasion (66) (mouse) (67) (mouse)

(68) (mouse)

Monocytes display impaired phagocytosis and

an enhanced pro-inflammatory phenotype

(69) (human) (70) (human)

this receptor in the recruitment of monocytes to the CNS during
EAE (66). The same phenomenon has been observed in AD
mice, where the loss of CCR2 reduces the number of monocytic
phagocytes in the brain (67, 68) (Figure 1, Table 2). Together,
these findings suggest that classical monocytes are the main
subset that invades the CNS in neuroinflammatory conditions
such as MS and AD and that CCR2 plays a fundamental role in
the recruitment of these cells into the CNS. Interestingly, while
CCR2 blockade in EAE has a beneficial effect, inhibition of this
receptor in AD models increases Aβ deposition and worsens
memory deficits, suggesting a decreased expression of CCR2
could play a potential role in the etiology of AD. Accordingly,
the number of monocytes is lower in AD mouse models than
controls, mostly due to the depletion of CCR2+ monocytes,
suggesting these cells are severely impaired in AD (140). Also,
in AD patients, CCR2 expression decreases in circulating

monocytes whereas the levels of plasma CCL2 were increased,
suggesting systemic immunologic dysfunction CCR2-CCL2 axis
(141, 142) (Figure 1). Although mouse models of MS confirm
the close involvement of monocytes in disease pathogenesis,
clinical trials using CCR2 antagonists did not demonstrate
efficacy (EU Clinical Trials: https://www.clinicaltrialsregister.
eu/ctr-search/search?query=2004-000073-64). Indeed, CCR2+

monocytes can be immunosuppressive, they replenish important
macrophage populations, and they play pivotal roles during
infection, potentially explaining the lack of positive results
following a CCR2 therapeutic blockade in MS (68, 143, 144).

Infiltrating monocytes and resident microglial cells can
both react to inflammatory stimuli and mount an immune
response in the CNS during neurodegenerative diseases (144).
Indeed, monocytes not only infiltrate the CNS parenchyma but
also colonize the meninges in EAE mice (145). Furthermore,
monocyte infiltration begins at the onset of the disease and
continues to increase until the disease peak, suggesting a role for
these cells in disease induction and progression (145). Moreover,
monocyte-derived cells infiltrating the CNS are major players in
antigen presentation during EAE and recent studies identified
several subtypes of infiltrating monocytes/myeloid cells in the
CNS with different transcriptional landscapes during the acute
and chronic stages of EAE (146). Similarly, single-cell studies
revealed disease-specific transformations across several types of
brain-associated phagocytes in murine models of AD, but the
existence of common signatures between EAE/MS and AD is
unclear (147). In AD mice, circulating monocytes have been
shown to invade the brain and reduce amyloid β burden,
suggesting a beneficial role for these cells in AD (148). Also,
patrolling monocytes have been described to crawl onto the
luminal walls of amyloid β-positive veins, suggesting their
ability to target and clear amyloid β (149). The same applies
to perivascular macrophages in another mouse model of AD,
in which their depletion led to an increased accumulation of
amyloid β deposits in blood vessels (150). Brain macrophages
are not only involved in the clearance of CNS debris or amyloid
β, but also play an important role in regulating iron levels.
Extracellular accumulation of iron during neurodegeneration can
be attributed to an array of processes including oligodendrocyte
and myelin degeneration (151, 152). Indeed, increased iron
deposits in white matter lesions have been shown in both MS
and AD, and iron accumulation correlates with cognitive deficits
(153, 154). Interestingly, the deposition of iron observed in
MS was often co-localized with microglia/macrophages, which
express the transferrin receptor, a main iron influx protein. By
capturing iron and, therefore, preventing Fenton reactions and
the creation of oxygen radicals, macrophages play an important
regulatory function in the inflamed brain during MS (155, 156).
In AD, however, there is limited information on iron uptake by
macrophages, although recent evidence suggests that stimulation
of microglia with Aβ increases the uptake of non-bound iron by
these cells (157).

However, although monocytes infiltrate the brain and, to
some degree, remove debris, iron and amyloid β, these cells in
mice with AD-like disease are ineffective in clearing amyloid β

in the diseased brain and their peripheral phenotype changes
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TABLE 2 | Summary of common pathways in the adaptive immune system during

the development of MS and AD.

Common mechanisms MS AD

CD4+ cells infiltrate CNS (95) (human)

(96) (human)

(97) (human)

(98) (human)

(99) (human)

(100) (human)

Increased frequency of circulating Th17 cells

and serum level of IL-17

(101) (human)

(102) (human)

(103) (human)

(104) (human)

α4-integrin is involved in CNS invasion by

CD4+ T cells

(105) (mouse)

(106) (human)

(31) (mouse)

(107) (mouse)

CD4+ T cells interact with microglia expressing

MHC-II at high levels

(108) (human)

(109) (rat)

(110) (human)

(111) (mouse)

CD4+ T cells work along the gut–brain axis to

modify cognitive functions

(112) (mouse) (113) (mouse)

(114) (mouse

and human)

CD8+ T cells infiltrate the CNS and trigger

detrimental effects

(115) (human)

(116) (human)

(100) (human)

(117) (human)

(98) (human)

(118) (mouse)

Increased proportion of circulating CD8+ T cells (119) (human)

(120) (human)

(121) (human)

Circulating CD8+ T cells show a

primed-activated phenotype

(122) (human)

(123) (human)

(124) (human)

(117) (human)

(125) (human)

Clonally expanded CD 8+ TEMRA cells (126) (human) (117) (human)

CD 8+ T cells clonally respond against EBV (127) (human) (117) (human)

Lower number of circulating CD4+ CD25+

FoxP3+ cells

(128) (human)

(129) (human)

(130) (human)

Treg cells with impaired regulatory activity (131) (human)

(132) (human)

(133) (human)

(134) (human)

Depletion of Treg cells associated with worst

outcomes

(135) (mouse)

(136) (mouse)

(137) (mouse)

(138) (mouse)

(139) (mouse)

to a pro-inflammatory profile with limited phagocytic ability.
Indeed, peripheral blood monocytes from AD patients cannot
differentiate normally in vitro and have a lower capacity
for the uptake of amyloid β uptake, eventually leading to
apoptosis (70). Similarly, circulating monocytes in MS patients
also adopt a pro-inflammatory profile with limited phagocytic
ability, thus failing to promote remyelination and repair through
the removal of myelin debris by phagocytosis (69) (Figure 1,
Table 1). Collectively, these data suggest that chronic systemic
inflammation in MS and AD leads to common pathological
changes among the population of circulating monocytes.
Understanding the role of these cells may provide insight into
the disease mechanisms and lead to new therapeutic targets in
neurodegenerative disorders.

THE ROLE OF T CELLS IN THE
DEVELOPMENT OF MS AND AD

T lymphocytes are cells of the adaptive immune system that
provide specific responses to eradicate pathogens or antigens
that act as elicitors (158). Depending on their function, T
lymphocytes can be subdivided into three main classes: (i) CD8+

cytotoxic T (Tc) lymphocytes responsible for the elimination
of infected somatic cells, (ii) CD4+ T helper (Th) lymphocytes
that assist and guide other immune cells, and (iii) regulatory
T (Treg) lymphocytes associated with the attenuation and
resolution of inflammation. The pathological dysregulation of
the adaptive immune system promotes chronic and uncontrolled
inflammatory reactions that may eventually lead to tissue
damage. MS and AD are both characterized by a chronic
neuroinflammatory pathology (159, 160). In MS, T cells are
known to play an essential role in disease pathogenesis but
the extent to which T cells contribute to the pathology of AD
is less clear. In MS, T cells react against myelin autoantigens,
migrate across a damaged BBB, accumulate in active lesions, and
trigger damage to myelin and underlying axons, thus promoting
all classical MS symptoms (161). Similarly, the post-mortem
analysis of brains from AD patients revealed the accumulation of
brain-infiltrating T cells, and recent experimental evidence from
animal models of AD suggest a pathological role for these cells
(100, 117). In support of this, the sequestration of T lymphocytes
in lymphoid organs induced by fingolimod treatment decreases
the number of circulating T cells and ameliorates disease in MS
patients and animal models of AD (162–166).

CD4+ T Lymphocytes in MS and AD
CD4+ T cells infiltrate both the white and gray matter of MS
patients, and similar observations have been reported in AD
brains (95–100) (Table 2). Pathogenic CD4+ T cells in MS and
EAE have been subtyped by cytokine profiling, revealing Th1
cells that produce IFN-γ and Th17 cells that produce IL-17. Both
Th1 and Th17 cells are key components of the autoimmune
inflammatory process during the development of MS, and they
may fulfill analogous roles in AD. Following CNS invasion, Th1
and Th17 cells produce inflammatory mediators and cytokines
to establish and/or maintain an inflammatory environment that
promotes neuronal loss, a common feature of MS and AD
that positively correlates with the disease course (167, 168). In
particular, the infiltration of Th17 cells into the CNS of MS
patients increases the concentration of IL-17 in the blood and
CSF and the number of Th17 cells found in these compartments
(101, 102, 169). Similarly, IL-17 also accumulates to higher
levels in the serum of AD patients compared to healthy controls
and has been proposed as part of a blood-based signature to
distinguish individuals with AD from healthy subjects (104, 170).
The population of circulating Th17 cells has also been shown
to increase in MCI patients compared to both age-matched
controls and AD patients, suggesting that Th17 cells may be
involved in the early stages of AD (103) (Table 2). Intriguingly,
EAE mice modified to abolish IL-17 production, as well as AD
models treated with neutralizing antibodies against IL-17, show
delayed clinical progression, confirming the harmful effects of IL-
17 in EAE and suggesting that Th17 cells also contribute to the
progression of AD (171).

CD4+ T cells appear to invade the CNS of AD andMS patients
using common molecular pathways, emphasizing the common
leukocyte recruitment mechanisms in these two diseases. For
example, several studies inMS/EAE have shown that α4-integrins
play a key role in the trafficking of Th cells (105, 106). EAE
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progression is delayed following the selective deletion of α4-
integrin genes in T cells and MS progression is delayed by
treatment with the α4-integrin-blocking humanized antibody
natalizumab (172, 173). We and others recently demonstrated
a similar molecular mechanism controlling the infiltration of
Th cells in AD models (31, 107). We observed the stronger
expression of α4-integrins on circulating CD4+ T cells in an AD
mouse model compared to age-matched controls, along with an
increase in the abundance of CD4+ cells in the brains of AD
mice (31) (Figure 2, Table 2). Importantly, blocking α4-integrins
inhibited the adhesion of circulating leukocytes in the brain
microcirculation and reduced the neuropathological hallmarks
of AD, highlighting the potential for a therapeutic approach that
is similar in efficacy to the use of natalizumab in MS patients
(172, 173).

In EAE models, lymphocytes are presented with antigens in
the periphery before CNS invasion. Indeed, T-cell priming begins
in secondary lymphoid organs and leads to the activation and
expansion of neuroantigen-reactive T cells that later infiltrate
the CNS, where they re-encounter their cognate antigen (174).
Within the CNS, microglial cells may promote the proliferation
and activation of CNS-reactive T lymphocytes (174, 175). In
both MS and AD, activated microglia express the main major
histocompatibility complex class II molecule (MHC-II) as well as
co-stimulatory molecules such as CD40, CD80, and CD86, which
equip themicroglia for antigen presentation to infiltrating T cells,
creating a vicious cycle that promotes neuroinflammation and
potentially antigen presentation (108–111) (Figure 2, Table 2).
As a result, the pro-inflammatory environment that can activate
CD4+ T cells is continuously boosted, and may promote
neuronal damage in both MS and AD (Figure 2).

Although CD4+ T cells are considered pathogenic in several
CNS disorders, they may also provide beneficial functions in
AD, ranging from tissue protection to regeneration (176). In
AD models, amyloid β-reactive T cells effectively target amyloid
β plaques in the brain, enhancing phagocytosis by microglia
and leading to neuronal repair (177). Furthermore, Th1 cells
injected into the ventricles of AD mice were able to induce
the differentiation of microglia (protective MHC-II+ subtype),
boosting the capacity for amyloid β clearance (111). Despite these
tantalizing results, a protective role for CD4+ T cells has yet to be
confirmed in AD, and immunotherapeutic approaches based on
amyloid β have not achieved efficacy in clinical trials (178).

Treg Cells and Their Failure to Control
Inflammation in MS and AD
Treg cells fulfill an active regulatory role in peripheral tolerance
mechanisms, preventing the onset of autoimmunity and limiting
chronic inflammation. They downregulate the activities of
various immune cells, including effector T cell functions and
proliferation, by the secretion of immunosuppressive cytokines
(including TGF-β, IL-10 and IL-35) and/or by direct cytotoxicity
and the induction of apoptosis (through the release of granzyme
B and perforin 1) (179–181). Treg cells also cause indirect
immunosuppression via cytotoxic T lymphocyte antigen 4
(CTLA4), CD39, and CD73, and disrupt the metabolism of the

effector T cells by modulating the maturation and/or function of
the dendritic cells (DCs) required for their activation (182).

Dysfunctional Treg cells have been linked to
neuroinflammatory conditions, and the analysis of peripheral
blood demonstrates how Treg cells can contribute during
neurodegenerative diseases. Treg cells have recently been shown
to infiltrate the brain and suppress astrogliosis by producing
amphiregulin in a model of ischemic stroke, but their role
during AD and MS is unclear (183). Several studies have
shown that the number of circulating Treg cells declines in
both MS and AD patients compared to matched controls,
suggesting that their dysregulation in the periphery reduces
their immunosuppressive capacity and promotes uncontrolled
inflammation (128–130). Indeed, Treg cells isolated from the
peripheral blood of MS patients show an impaired ability to
modulate CD4+ T cell proliferation and IFN-γ production (131).
Compared to healthy controls, RRMS patients also produce
more Th1-like Foxp3+ T cells that secrete IFN-γ and show a
limited reduced immunosuppressive capacity (132). Similarly,
the immunosuppressive functions of Treg cells in AD patients are
compromised compared to both healthy controls and subjects
with MCI (133, 134) (Table 2). These data are supported by
animal models discussed below, where Treg cells appear to be
important in both EAE and AD, especially during the early
phases of both diseases, but at later stages they are depleted
and/or dysfunctional and are therefore unable to control the
inflammatory response.

The depletion of Treg cells by anti-CD25 antibodies in
EAE mice increased the severity of the disease, boosting the
production of IL-17 and T cell infiltration (135). In line with
the protective role of Treg cells, the transplantation of neural
stem cells in EAE mice induces remyelination by expanding
the Treg cell population (136, 137). Similarly, the depletion of
Treg cells in mice with AD-like disease is associated with the
premature loss of cognitive functions and a worse outcome
(138). Furthermore, low doses of IL-2 increased the number
of Treg cells in the peripheral blood and lymphoid organs of
these mice, restoring their cognitive ability (138). Similar results
were reported by others, showing that Treg cell depletion for 4
months during the early stages of AD-like disease aggravated
the cognitive deficits and increased the deposition of amyloid
β plaques (139). In these studies, the adoptive transfer of
purified Treg cells improved cognitive functions and reduced
the amyloid β burden (139) (Table 2). Curiously, Treg cell
depletion during the late disease stage in an aggressive model
of amyloidosis also conferred a beneficial effect, presumably by
boosting the immune response, suggesting that the effect of
Treg cells on AD-like disease is stage-dependent (184). Taken
together, these results suggest that Treg cells play a key role in
controlling the development of neuroinflammation in both MS
and AD (Figure 2). Therapeutic strategies aiming to exploit the
immunosuppressive properties of Treg cells may therefore help to
address both pathologies.

CD8+ T Lymphocytes in AD and MS
CD8+ T cells appear less heterogeneous than CD4+ T cells, but
the functional classification of this population is not completely
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FIGURE 2 | Schematic representation of adaptive immune mechanisms in MS and AD. In CNS, CD4+ T cells producing the pro-inflammatory mediators IFN-γ-and

IL-17 promote microglial activation, upregulating the expression of CD40, MHC-II, CD80, and CD86 on the surface and favoring neuroinflammation. CD8+ T cells

producing IFN-γ bind neurons expressing MHC-I, triggering neuronal damage and boosting neuroinflammation. Dysregulated Treg cells fail to suppress effector T cell

functions (red crosses), thus sustaining the neuroinflammatory environment. In the intestine, the microbiome and its metabolites influence the polarization and

activation of T cells. Bacteroides fragilis promotes the expansion of Treg cells, the amino acids phenylalanine and isoleucine induce the differentiation of Th1 cells, and

segmented filamentous bacteria trigger Th17 cell polarization. Vascular endothelial cells express the LFA-1 and VLA-4 counter-ligands (ICAM-1 and VCAM-1) guiding

the transmigration of peripherally activated T cells from the circulation to the CNS.

clear. Nevertheless, cytotoxic lymphocytes play a prominent role
in the development of many viral and non-viral diseases by the
direct killing of infected or otherwise modified cells. Following
antigen recognition, cytotoxic T cells classically induce apoptosis
in target cells via two alternative mechanisms: (i) FasL-CD95

(FasR) binding to activate caspase, and (ii) the release of
granzyme B and perforin. CD8+ effector T cells may also cause
cellular damage indirectly by secreting the pro-inflammatory
cytokines TNF-α and IFN-γ (185). During immune responses,
CD8+ T cells interact with CD4+ T cells to optimize the precision
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of CD8+ T cell effector functions after priming by enhancing
their cytotoxicity and capacity for migration (186).

CD8+ T cells have received less attention than CD4+ T cells
in MS and EAE, but it is now well-established that CD8+ T
cells are more activated in the periphery and can infiltrate active
lesions, contributing to the increasing severity of MS symptoms
(115, 116, 187). Furthermore, clonally expanded cytotoxic T cells
exacerbate brain inflammation in EAE initiated by CD4+ T cells,
suggesting that CD8+ T cells may be primarily responsible for the
observed cerebral alterations (187) (Table 2).

The role of CD8+ T cells in AD is less clear, although these
cells were first detected in the brains of AD patients almost 20
years ago (100). The infiltration of CD8+ T cells into the brains
of AD patients and corresponding mouse models also correlates
with disease worsening, suggesting these cells may be involved
in disease development (98, 100, 118). CD8+ T cells were shown
to accumulate in an active state in the peripheral blood of MS
patients and in AD patients with dementia (119–121) (Table 2).
The comparison of blood samples from AD patients and healthy
controls revealed the production of more pro-inflammatory
cytokines by cytotoxic T cells in the AD patients and a greater
proportion of activated HLA-DR+ CD8+ T cells (117, 125).
Similarly, circulating CD8+ T cells from patients in the acute
phase of RRMS showed increased adhesion to brain venules
compared to control cells, further highlighting their activated
phenotype (122). In line with this, the characterization of CD8+

T cells from the CSF and brain tissue of MS patients showed
their activated/memory phenotype (123, 124) (Table 2). Notably,
a higher frequency of CD8+ effector memory T cells was detected
in the CSF of AD patients with dementia compared to controls,
suggesting CD8+ T cells contribute to brain damage in both AD
and MS with similar underlying mechanisms (117, 121).

The extravasation of cytotoxic T cells in the brain promotes
the brain damage caused by CD8+ T cells and appears to be
mediated by LFA-1 integrin (CD11a/CD18) in both MS and AD
(Figure 2). LFA-1 is a marker of leukocyte activation that binds
ICAM-1, which is overexpressed by endothelial cells in several
neuroinflammatory conditions (10, 188). CD11a expression was
shown to increase on clonally expanded CD8+ T cells in MS
patients, promoting their transmigration into the brain (116).
Without referring to specific T cell populations, previous studies
have shown that the transfer of encephalitogenic CD11a−/− T
cells to wild-type mice reduces the severity of EAE, suggesting
that LFA-1 also facilitates the migration of CD8+ T cells in this
disease (189). The presence of LFA-1+ T cells infiltrating the
hippocampus of AD patients suggests a role for LFA-1 also in
AD (100). This is consistent with the increase in Itgb2 (LFA-1)
mRNA levels in the hippocampus of a mouse model of tauopathy
(190). Finally, the strong upregulation of ICAM-1 was observed
in cortical and hippocampal brain regions invaded by CD3+ T
cells inmousemodels of AD, suggesting that LFA-1 also promotes
T cell migration into the AD brain (10, 191). Further studies are
needed to confirm that LFA-1 is required for the trafficking of
CD8+ T cells in AD, but given that LFA-1 is required for cytotoxic
T cell activation, maturation, immuno-synapse stabilization and
functioning, this integrin is likely to play a key role in driving
CD8+ responses in AD (192).

Another important topic in the context of MS and AD is
the antigenic specificity and clonal origin of CNS-infiltrating
CD8+ T cells. The analysis of lymphocytes collected from the
blood, CSF and brain lesions of many MS patients has shown
that CD8+ T cells undergo clonal expansion, suggesting that
they are activated by specific antigens (115, 123). Other studies
in MS patients have identified a population of CD8+ T cells
specific for myelin proteins, presenting an activated/memory
phenotype due to in situ antigen presentation (96, 119, 120, 193).
Tau protein may fulfill a similar role in AD, representing the
potential link between cytotoxic T cells and disease development.
Indeed, CD8+ T cells accumulate in the hippocampal regions
of a mouse model of tau pathology, apparently via a tau-driven
transmigration mechanism (190). A correlation between tau
pathology and the infiltration of CD3+ T cells was revealed by
the immunohistochemical analysis of post-mortem AD brains,
further supporting the potential association between tau and
CD8+ T cell-dependent pathology in AD (194).

Clonally expanded CD8+ TEMRA cells were recently identified
in the CSF of AD patients, suggesting that antigen-experienced
cytotoxic cells patrol the intrathecal space of AD patients.
Interestingly, as already shown in MS patients, CD8+ T cells
in the CSF were expanded predominantly against Epstein-Barr
viral antigens, suggesting a new link between EBV, CD8+ T
cells and AD (117, 127). CD8+ TEMRA cells accumulated not
only in the CSF of AD patients, but also in the blood of
RRMS and SPMS patients, suggesting these cells contribute to
the progression of both AD and MS by promoting chronic
inflammation (126) (Table 2). More detailed studies are required
to determine precisely how this cell population fits into the
complex pathogenesis of neurodegenerative disorders.

The pro-inflammatory nature of CD8+ TEMRA cells is strictly
associated with IFN-γ secretion, which occurs mainly during
active proliferation (195). One of the harmful functions of IFN-
γ is the ability to favor neuronal killing by CD8+ T cells
via the FasR-FasL pathway (185). Accordingly, previous studies
have shown that the overexpression of MHC-I on neurons
exposed to IFN-γ promotes neuronal damage by CD8+ T cells
via TCR-MHC-I binding (196). Interestingly, MHC-I has been
detected on neurons in both hippocampal and cortical brain
regions, which are heavily damaged in AD (196). Similarly,
CD8+ T cells in chronic and active MS plaques were found
marginally in contact with oligodendrocytes, astrocytes and
neurons expressing MHC-I at high levels (96, 96, 193). These
results indicate that CD8+ T cells producing IFN-γ enhance
the expression of MHC-I on neurons in MS and AD, and
could therefore promote the brain alterations associated with the
progression of both diseases (Figure 2). In conclusion, CD8+

T cells appear to drive the development of both MS and
AD by sustaining chronic inflammation and directly causing
CNS injury.

The Gut–Lymphocyte–Brain Axis in AD and
MS
Several clinical and preclinical studies have shown that the
course of MS and AD is influenced by the commensal gut
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microbiome, highlighting the interplay between the brain,
gut microbes, intestinal barrier and immune system (197,
198). Indeed, fecal and mucosa-associated gastrointestinal tract
microbes differ between AD patients and healthy controls, and
recent studies comparing germ-free animals and those exposed
to pathogenic bacteria, probiotics or antibiotics suggested a
role for gut microbes in host cognitive functions and the
development of AD-like neuropathological features (113, 199–
202). Many studies have also focused on the role of gut
microbes in MS and EAE (112, 203–208). These studies
suggest that altering the gut microbiome with antibiotic
cocktails or probiotics can attenuate the disease course by
modulating regulatory immune responses (198). Although many
of the microbes and metabolites in the gut–CNS axis have
been identified, little is known about the underlying cellular
and molecular immune mechanisms. In MS, the balance
between pro-inflammatory myelin-reactive effector cells and
anti-inflammatory immune elements controlling the formation
of CNS lesions is continuously influenced by the gut. Indeed,
both monocytes and gut-resident macrophages influence the
gut-dependent activation of CD4+ T cells, which promotes
Th1 polarization and IFN-γ secretion (209). Gut microbes
and their metabolites also regulate T cell-mediated adaptive
immune responses. For example, specific bacteria such as
Akkermansia muciniphila and Acinetobacter calcoaceticus are
associated with MS, inducing a pro-inflammatory T cell
phenotype that perpetuates autoimmune responses, whereas
segmented filamentous bacteria, symbiotic colonizers of the
small intestine, induce Th17 differentiation and activation to
promote the development of EAE (210, 211) (Figure 2). In
contrast, CNS demyelination and inflammation during EAE
is inhibited by gut flora rich in the commensal bacterium
Bacteroides fragilis, which promotes the expansion of Treg cells
expressing the ectonucleotidase CD39 and their migration into
the CNS (212) (Figure 2). A recent innovative study in SPMS
patients confirmed a role for the gut–brain axis in MS patients,
showing the depletion of a subset of circulating memory CD4+

T cells expressing the gut-homing chemokine receptor CCR9
and the α4β7 adhesion molecule and a tendency to switch from
a regulatory to a pro-inflammatory phenotype that produces
more IFN-γ and IL-17 (213). Recently, gut dysbiosis in MCI
patients was shown to increase phenylalanine and isoleucine
levels, correlating with an increase in the number of circulating
Th1 cells (114) (Figure 2). Interestingly, naive CD4+ T cells
exposed to phenylalanine or isoleucine acquire an activated Th1
phenotype, and the oral treatment of mouse models of AD
with the prebiotic oligosaccharide GV-971 (which suppresses
gut dysbiosis) reduced the concentration of phenylalanine and
isoleucine, resulting in the amelioration of neuroinflammation
and cognitive impairment (114).

Collectively, these data show that gut dysbiosis contributes to
peripheral immune cell dysregulation and triggers an enhanced
inflammatory immune response. The gut–brain axis may
therefore provide an appropriate target for immunomodulatory
therapy in both diseases.

CONCLUSIONS

Neurodegenerative diseases are increasing in prevalence and
socioeconomic impact. The identification of common cellular
and molecular mechanisms involving the immune system may
provide more insight into pathogenesis, leading to potential
common therapeutic strategies. Several genome-wide association
studies (GWAS) in both MS and AD patients have revealed
associations between these diseases and gene expression in
peripheral adaptive and innate immune cells, suggesting
common immune mechanisms controlling neuroinflammation
and neurodegeneration (214–216). Moreover, functional studies
in vitro and in vivo have revealed shared detrimental molecular
mechanisms in peripheral leukocytes, representing potential
common therapeutic targets for the control of immune responses
in MS and AD (217–219). One clear example of such a shared
molecular mechanism is represented by α4 integrins, which can
be targeted in both MS and AD. Indeed, the therapeutic effect
of α4 integrins in EAE and MS has been corroborated by recent
studies showing that targeting these adhesion molecules reduces
neuroinflammation and the neuropathological hallmarks of AD
(31). Moreover, reducing BBB breakdown that characterizes
several neurodegenerative disorders, including MS and AD,
could be considered as another common possible therapeutic
strategy in reducing not only the influx of various neurotoxic
agents, but also the recruitment of immune cells into the
CNS (220, 221). By using animal models of both MS and
AD, it was indeed demonstrated that targeting BBB pathways
to preserve vascular integrity, ameliorates the course of brain
pathology (222, 223). Therefore, a deeper understanding of the
activation status of peripheral innate and adaptive immune cells
in the blood, their trafficking mechanisms, CNS pathogenic
signatures, and neurotoxic effects, may lead to the discovery
of new common biomarkers of MS and AD that could
facilitate the identification of common therapeutic strategies for
both diseases.
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