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Kidney transplantation is currently the first choice of treatment for various types of end-stage
renal failure, but there are major limitations in the application of immunosuppressive
protocols after kidney transplantation. When the dose of immunosuppressant is too low,
graft rejection occurs easily, while a dose that is too high can lead to graft loss. Therefore, it
is very important to explore the immune status of patients receiving immunosuppressive
agents after kidney transplantation. To compare the immune status of the recipient’s whole
peripheral blood before and after receipt of immunosuppressive agents, we used single-cell
cytometry by time-of-flight (CyTOF) to detect the peripheral blood immune cells in five
kidney transplant recipients (KTRs) from the Department of Organ Transplantation of
Zhujiang Hospital of Southern Medical University before and after receiving
immunosuppressive agents. Based on CyTOF analysis, we detected 363,342 live single
immune cells. We found that the immune cell types of the KTRs before and after receipt of
immunosuppressive agents were mainly divided into CD4+ T cells, CD8+ T cells, B cells, NK
cells/gd T cells, monocytes/macrophages, granulocytes, and dendritic cells (DCs). After
further reclustering of the above cell types, it was found that the immune cell subclusters in
the peripheral blood of patients underwent major changes after receipt of
immunosuppressants. After receiving immunosuppressive therapy, the peripheral blood
of KTRs had significantly increased levels of CD57+NK cells and significantly decreased
levels of central memory CD4+ T cells, follicular helper CD4+ T cells, effector CD8+ T cells,
effector memory CD8+ T cells and naive CD8+ T cells. This study used CyTOF to classify
immune cells in the peripheral blood of KTRs before and after immunosuppressive
treatment, further compared differences in the proportions of the main immune cell types
and immune cell subgroups before and after receipt of immunosuppressants, and provided
relatively accurate information for assessment and treatment strategies for KTRs.

Keywords: kidney transplant recipients, CyTOF, single-cell profi l ing, immune characteristics,
immunosuppressive treatment
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INTRODUCTION

Kidney transplantation is currently recognized by the
international medical community as the first choice of
treatment for various types of end-stage renal failure (1, 2).
Optimized immunosuppressive regimens and new immune
detection technologies have significantly improved the short-
term outcomes of transplant recipients after surgery, but effective
methods for immune system function monitoring in patients
after kidney transplantation are still lacking, leading to many
blind spots in the clinical application of immunosuppressive
agents. When the dose of immunosuppressant is too low, graft
rejection can easily occur, and improper handling can lead to loss
of the graft. In contrast, too high a dose of immunosuppressant
can impair the patient’s immune system, making them prone to
bacterial infection. Furthermore, infections with fungi, viruses,
and protozoa have become the most important causes of death in
transplant patients (1–3). Therefore, it is important to explore
the immune status of patients receiving immunosuppressive
agents after kidney transplantation.

The most critical role of the human immune system is to
effectively recognize and eliminate foreign antigens while
protecting the normal tissue structure from damage. The
immune system has a protective effect on self-antigens; that
is, there is a mechanism of self-tolerance. A healthy immune
system has a variety of central and peripheral tolerance
mechanisms, such as clonal loss, clonal function inhibition,
immune escape, and immune exemption, which play vital roles
in inhibiting the activation of autoreactive immune cells (4, 5).
When infection, inflammation, or immune rejection occurs,
the proportion and distribution of immune cells also change.
Therefore, detecting changes in the immune microenvironment
in the peripheral blood of KTRs after the application of
immunosuppressive agents can aid in evaluating immune
status (4). For example, the proportion of regulatory T cells
(Tregs) in the peripheral blood of immune-tolerant KTRs was
found to be increased (6, 7). When comparing KTRs with stable
renal function and KTRs with chronic rejection, the numbers of
CD19+CD24highCD27+ B10 (Breg) cells and CD19+
CD24highCD38high transitional B cells producing IL-10 in
the peripheral blood were significantly increased in the tolerant
KTRs (8). Therefore, exploring immune cell profiles in the
peripheral blood of KTRs before and after receipt of
immunosuppressive therapy is helpful to assess their immune
status and guide clinical diagnosis and treatment.

As a representative application of single-cell analysis, CyTOF
uses metal isotope-labeled antibodies to overcome the
limitations of emission spectrum signal overlaps among
traditional flow channels and can simultaneously detect as
many as 40 parameters in a single cell to achieve accurate
analysis of cell subpopulations (9). CyTOF has played an
important role in the immune profiling of various diseases,
such as ischemic stroke (10) and lacrimal glands (11). Therefore,
this study used CyTOF to explore differences in the
immunological profiles before and after immunosuppressive
treatment in KTRs to further provide accurate assessment and
treatment strategies.
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METHODS

Clinical Samples
We collected KTRs at Zhujiang Hospital of Southern Medical
University between July 2020 and August 2020 and collected
matched peripheral blood samples before and after
immunosuppressive therapy after kidney transplantation. In
total, 5 patients were included in this study, and the clinical
data are included in Table S1. The immunosuppressive protocols
of the recipients were described in a previous study and are
detailed in the supplementary methods (12). These patients were
followed up for one month after receiving immunosuppressive
therapy, and none of them showed any progress. This study was
approved by the Ethics Committee of Zhujiang Hospital of
Southern Medical University, and all patients provided
informed consent.

CyTOF Analysis
CyTOF analysis was performed according to a previously
described protocol (13). CyTOF analysis was used to detect
immune cells in peripheral blood samples, and 40 immune
cell-related markers were included in this analysis (Table S2).

Raw Data Preprocessing and Cluster
Analysis
MATLAB was used to normalize the preprocessing of.fcs files
(14), remove the influence of noise from batches, and obtain the
effective data of live single immune cells for the next analysis.
Cytobank (15) (https://www.cytobank.org/) was used to
analyze.fcs file data. vi-SNE plots were generated by the t-
distribution random neighborhood embedding (t-SNE)
algorithm, and CD45+ cells were clustered to analyze the
differences in phenotype and relative content of different cell
subpopulations. In addition, the SPADE algorithm (16) was used
to analyze the expression patterns of immune cells in different
groups and classify these cells by hierarchical clustering.

Statistical Method
According to the characteristics of the data distribution, a paired
Mann–Whitney U test was applied to compare differences
between various immune cell subgroups in the peripheral
blood of KTRs before and after immunosuppressive treatment,
and the data were analyzed using R software. A two-sided
P <0.05 was considered statistically significant.
RESULTS

Immune Cells in the Peripheral Blood
of KTRs
According to the immune cell markers, CD45+ cells were divided
using the manual gated circle function of the Cytobank platform
(Figure S1). vi-SNE is a bioinformatic analysis method based on
t-SNE. This method can convert multidimensional data into
single-cell two-dimensional visualization data and is widely used
in mass spectrometry flow data analysis. vi-SNE analysis of
April 2021 | Volume 12 | Article 639942
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CD45+ cells was performed with various markers, such as those
for CD4+ T cells (marker: CD4), CD8+ T cells (marker: CD8a), B
cells (marker: CD19), NK cells/gd T cells (markers: CD56 and
gdTCR), monocytes/macrophages (markers: CD33 and CD14),
granulocytes (marker: CD66b), and dendritic cells (DCs;
markers: CD11c and CD123) (Figure 1A). We visualized the
expression of the above markers in the pretreatment and
posttreatment groups (Figure 1B). The proportions of the 7
immune cell types in each sample were different (Figure 1C).
Next, we compared the relative abundances of immune cells in
the peripheral blood of KTRs between the pretreatment and
posttreatment groups (Figure 1D) and found that, compared
with the pretreatment group, the relative abundance of CD4+ T
cells in the posttreatment group was significantly downregulated
(P <0.05). In contrast, the relative content of monocytes/
macrophages in the posttreatment group was significantly
higher than that in the pretreatment group (P <0.05).
Additionally, the expression of immune cell markers in the
peripheral blood of patients was different between the
pretreatment and posttreatment groups (Figure 1E and Table
S1). ROC analysis showed that the application of CD4+ T cells,
monocytes/macrophages or NK cells/gd T cells was the strongest
for predicting the efficacy of immunosuppressive agents in the
pretreatment and posttreatment groups (AUC = 0.96, 1 and 1,
respectively; Figure 1F).

Differences in CD4+ T Cells Between
Pretreatment and Posttreatment
To explore the differences in CD4+ T cells between pretreatment
and posttreatment in the KTRs, we further reclustered the CD4+
T cells. Based on previous studies and the differences in the
expression of markers on CD4+ T cells (17–20), we used vi-SNE
to recluster CD4+ T cells and further divided them cells into 8
immune cell subgroups (Figure 2A), including central memory
CD4+ T cells (marker: CD38), follicular helper CD4+ T cells (Tfh
cells; marker: CD185), naive CD4+ T cells (marker: CD45RA),
CD4+ Tregs (marker: CD25), Th1 CD4+ T cells (marker: CD183),
Th17 CD4+ T cells (marker: CD161), memory CD4+ T cells
(marker: CD45RO) and other CD4+ T cells. We used the SPADE
algorithm to perform hierarchical clustering of CD4+ T cells based
on marker expression (Figure 2B). Next, we visualized the
expression levels of the above markers in the pretreatment and
posttreatment groups (Figure 2C). The relative content of CD4+ T
cell subsets in each sample was diverse (Figure 2D). Next, we
compared the difference in the content of CD4+ T cell subsets in
the peripheral blood of patients between the pretreatment and
posttreatment groups (Figure 2E) and found that, compared with
the pretreatment group, the central memory CD4+ T cell and
follicular helper CD4+ T cell levels in the posttreatment group
were significantly downregulated (P <0.05). In addition, we found
that the expression patterns of CD4+ T cell subsets in the
peripheral blood of patients greatly differed between pretreatment
and posttreatment (Figure 2F and Table S2). ROC analysis
indicated that central memory CD4+ T cells best predicted the
pretreatment and posttreatment groups (AUC = 0.96; Figure 2G).
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Differences in CD8+ T Cells Between
Pretreatment and Posttreatment
To illustrate the differences in CD8+ T cells before and after
treatment with immunosuppressive agents in the KTRs, we
further re-clustered CD8+ T cells. CD8+ T cells were further
divided into 7 immune cell subgroups (Figure 3A), including
CD8+ gd T cells (marker: gdTCR), central memory CD8+ T cells
1 (markers: CD27high and CCR7low), central memory CD8+ T
cells 2 (marker: CD28), naive CD8+ T cells (markers: CCR7high
and CD45RA), effector CD8+ T cells (markers: CCR7low,
CD27low, and CD45RA), effector memory CD8+ T cells
(marker: CD45RO) and other CD8+ T cells. The SPADE
algorithm was used to perform hierarchical clustering of CD8+
T cells according to the expression of each marker (Figure 3B).
Figure 3C shows the expression of markers in the pretreatment
and posttreatment groups. The proportion of CD8+ T cell
subsets between KTRs was different (Figure 3D). Additionally,
we found that, compared with those in the pretreatment group,
the level of effector CD8+ T cells and the relative abundances of
effector memory CD8+ T cells and naive CD8+ T cells in the
posttreatment group were significantly downregulated (P <0.05;
Figure 3E). We discovered that the expression patterns of CD8+
T cell subsets in the peripheral blood of patients before and after
treatment were significantly different, including PD-L1, CTLA-4,
CCR7, CCR6, CXCR5, IL-7Ra and IL-2R (Figure 3F and Table
S3). ROC analysis showed that central memory CD8+ T cells 1
and effector memory CD8+ T cells were best able to predict the
immunosuppressive agents before and after treatment (AUC =
0.96 and 0.8, respectively; Figure 3G).

Differences in NK Cells/gd T Cells Between
Pretreatment and Posttreatment
vi-SNE analysis showed that NK cells/gd T cells were divided into
CD38+ NK cells (markers: CD38bright and CD56dim), CD57+
NK cells (marker: CD57), cytotoxic NK cells (markers:
CD11bbright and CD56dim), tolerant NK cells (marker:
CD56bright) and gd T cells (marker: gdTCR) according to
specific markers (Figure 4A) (21–25). Figure 4B shows the
hierarchical clustering of NK cells/gd T cells according to the
expression of each marker using the SPADE algorithm. We
visualized the expression levels of the above unique markers in
the pretreatment and posttreatment groups (Figure 4C). The
relative content of NK cells/gd T subsets in each sample was
different (Figure 4D). We found that CD57+ NK cells were
significantly downregulated in the posttreatment group
compared with the pretreatment group (P <0.05). In contrast,
the content of tolerant NK cells was significantly increased after
treatment (P <0.05; Figure 4E). In addition, the heat map shows
that the expression patterns of NK cell/gd T cell subsets in the
peripheral blood of patients before and after treatment were
different, such as CCR6, CXCR5, CCR7, CXCR3, CCR4, IL-2R
and IL-4R (Figure 4F; Table S4). ROC analysis showed that
CD57+ NK ce l l s b e s t p r ed i c t e d th e e ffi c a c y o f
immunosuppressive agents before and after treatment (AUC =
0.88, Figure 4G).
April 2021 | Volume 12 | Article 639942
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Differences in DCs Between Pretreatment
and Posttreatment
To analyze the differences in DCs before and after treatment with
immunosuppressive agents in the KTRs, DCs were re-clustered
into 2 cell subgroups (Figure 5A), including conventional
Frontiers in Immunology | www.frontiersin.org 4
dendritic cells (cDCs; marker: CD11c) and plasmacytoid
dendritic cells (pDCs; marker: CD123) using vi-SNE (Figure
5B). The content of DC subpopulations in each sample was
different (Figure 5C). Next, we compared the relative
abundances of DC subgroups in the peripheral blood of
A
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C

FIGURE 1 | The immune landscape of the kidney. (A) t-SNE plots of CD4+ T cells, CD8+ T cells, B cells, NK cells/gd T cells, monocytes/macrophages,
granulocytes, and dendritic cells. (B) t-SNE plots of CD19, CD3, CD4, CD8a, CD56, gdTCR, CD33, CD14, CD66b, CD11c, and CD123 expression in the pre- and
posttreatment groups. (C) The proportions of main cell types in all samples. (D) Comparison of the proportions of main cell types between the pre- and
posttreatment groups. (E) Heatmap of the marker expression for all samples. (F) ROC curve of the main cell types predicting the pre- and posttreatment groups.
*P<0.05; ns, not significant.
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patients before and after treatment (Figure 5D) and found that
there were no significant changes in DC subgroups in the
peripheral blood of patients before and after treatment. The
expression patterns of DC subgroups in the peripheral blood of
Frontiers in Immunology | www.frontiersin.org 5
patients before and after treatment were also different (Figure
5E; Table S5). ROC analysis showed that pDCs strongly
predicted the efficacy of immunosuppressive agents before and
after treatment (AUC = 0.72, Figure 5F).
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FIGURE 2 | CD4+ T cell subclusters in the kidney. (A) t-SNE plots of central memory CD4+ T cells, follicular helper CD4+ T cells, naive CD4+ Tregs, Th1 cells and
Th17 cells. (B) In SPADE trees, node color is scaled to the fold change in CD38 content, and node size is scaled to the number of cells. (C) t-SNE plots of CD38,
CD185, CD45RA, CD25, CD183 and CD161 expression in the pre- and posttreatment groups. (D) The proportions of CD4+ T cell subclusters in all samples.
(E) Comparison of the proportions of CD4+ T cell subclusters between the pre- and posttreatment groups. (F) Heatmap of the marker expression of CD4+ T cells
for all samples. (G) ROC curve of CD4+ T cell subclusters predicting the pre- and posttreatment groups. *P < 0.05; ns, not significant.
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Differences in B Cells Between
Pretreatment and Posttreatment
According to differences in the expression of B cell markers, we
used vi-SNE to recluster B cells and further manually divided
Frontiers in Immunology | www.frontiersin.org 6
them into 5 cell subgroups (Figure 6A), including follicular B
cells (markers: CD20 and HLA-DR), memory B cells (marker:
CD27), naive B cells (marker: CD185), plasma B cells (markers:
CD38) and regulatory B cells (marker: CD24) according to
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FIGURE 3 | CD8+ T cell subclusters in the kidney. (A) t-SNE plots of CD8+ gd T cells, central memory CD8+ T cells 1, central memory CD8+ T cells 2, naive CD8+
T cells, effector CD8+ T cells, effector memory CD8+ T cells and other CD8+ T cells. (B) In SPADE trees, node color is scaled to the fold change in CD197 (CCR7)
content, and node size is scaled to the number of cells. (C) t-SNE plots of gdTCR, CD27, CCR7, CD28, CD45RA and CD45RO expression in the pre- and
posttreatment groups. (D) The proportions of CD8+ T cell subclusters in all samples. (E) Comparison of the proportions of CD8+ T cell subclusters between the pre-
and posttreatment groups. (F) Heatmap of the marker expression of CD8+ T cells for all samples. (G) ROC curve of CD8+ T cell subclusters predicting the pre- and
posttreatment groups. *P < 0.05; ns, not significant.
April 2021 | Volume 12 | Article 639942
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specific markers. The SPADE algorithm was applied to perform
hierarchical clustering of B cells based on the expression of
markers (Figure 6B). Then, we visualized the expression of the
above immune cell markers in the pretreatment and
posttreatment groups (Figure 6C). The bar plot shows that
Frontiers in Immunology | www.frontiersin.org 7
KTRs harbored relatively different proportions of B cell
subgroups (Figure 6D). Next, we compared the relative
abundances of B cell subpopulations in the peripheral blood
of patients between the pretreatment and posttreatment groups
(Figure 6E) and found that, compared with the posttreatment
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FIGURE 4 | NK cell/gd T cell subclusters in the kidney. (A) t-SNE plots of CD38+ NK cells, CD57+ NK cells, cytotoxic NK cells, tolerant NK cells and gd T cells.
(B) In SPADE trees, node color is scaled to the fold change in gdTCR content, and node size is scaled to the number of cells. (C) t-SNE plots of gdTCR, CD38,
CD57, CD56 and CD11b expression in the pre- and posttreatment groups. (D) The proportions of NK cell/gd T cell subclusters in all samples. (E) Comparison of the
proportion of NK cell/gd T cell subclusters between the pre- and posttreatment groups. (F) Heatmap of the marker expression of NK cells/gd T cells for all samples.
(G) ROC curve of NK cell/gd T cell subclusters predicting the pre- and posttreatment groups. *P < 0.05; ns, not significant.
April 2021 | Volume 12 | Article 639942
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group, the peripheral blood of the pretreatment group had an
increased level of memory B cells (P <0.05). The expression
patterns of B cell subsets in the peripheral blood of patients
before and after treatment are shown in Figure 6F (Table S6).
Frontiers in Immunology | www.frontiersin.org 8
ROC analysis showed that memory B cells and regulatory B
cells best predicted the efficacy of immunosuppressive agents
before and after treatment (AUC = 0.783 and 0.721,
Figure 6G).
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FIGURE 5 | Dendritic cell (DC) subclusters in the kidney. (A) t-SNE plots of conventional dendritic cells (cDCs) and plasmacytoid dendritic cells (pDCs). (B) t-SNE
plots of CD11c and CD123 expression in the pre- and posttreatment groups. (C) The proportions of DC subclusters in all samples. (D) Comparison of the
proportion of DC subclusters between the pre- and posttreatment groups. (E) Heatmap of the marker expression of DCs for all samples. (F) ROC curve of DC
subclusters predicting the pre- and posttreatment groups. ns, not significant.
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DISCUSSION

Related to the long-term functional and stable survival of grafts
after kidney transplantation, reducing or removing
immunosuppressive agents as much as possible and inducing
Frontiers in Immunology | www.frontiersin.org 9
transplant tolerance are research hotspots in the field of kidney
transplantation, and they are also the goals of transplant doctors.
Although the short-term survival rate after kidney
transplantation has improved significantly in recent years,
long-term survival remains a problem in the transplant
A B
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C

FIGURE 6 | B cells subclusters in the kidney. (A) t-SNE plots of follicular B cells, memory B cells, naive B cells, plasma B cells and regulatory B cells. (B) In SPADE
trees, node color is scaled to the fold change in CD185 (CCR5) content, and node size is scaled to the number of cells. (C) t-SNE plots of CD20, CD27, CD185 and
CD38 expression in the pre- and posttreatment groups. (D) The proportions of B cell subclusters in all samples. (E) Comparison of the proportion of B cell
subclusters between the pre- and posttreatment groups. (F) Heatmap of the marker expression of B cells for all samples. (G) ROC curve of B cell subclusters
predicting the pre- and posttreatment groups. *P < 0.05; ns, not significant.
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community. Studies have reported that one of the main factors of
kidney graft loss is the body’s chronic rejection of allogeneic
ant igens (26 , 27) . However , a l though the use of
immunosuppressive agents has largely suppressed the
occurrence of rejection, immunosuppressants may also
contribute to subsequent renal rejection (28, 29). Additionally,
some recipients in solid organ transplantation (non-kidney)
e xpe r i e n c e r ena l f a i l u r e due t o th e t ox i c i t y o f
immunosuppressive agents (30). Therefore, evaluating the
immune status of recipients after renal transplantation before
and after receipt of immunosuppressive therapy is of guiding
significance for evaluating whether a KTR needs to tolerate or
completely discontinue the immunosuppressive agent or in
determining if there is rejection that requires further clinical
treatment. In this study, CyTOF analysis was used to further
explore the immune atlas before and after immunotherapy after
kidney transplantation at single-cell resolution.

T cells can be divided into CD4+ T cells, CD8+ T cells and
Treg cells according to their function (2, 31). Th cells and
cytotoxic T lymphocytes (CTLs) play important roles in the
immune responses involved in human infection, inflammation,
elimination of pathogens, and rejection of transplanted organs.
Increasing evidence indicates that multiple effector CD4+ T cell
subsets play roles in xenograft rejection (2, 32). In addition to
directly reducing activity through CTLs, xenograft rejection can
be achieved through T cell-mediated mechanisms, including
the production of cytokines, the aggregation and activation of
cytotoxic cells, and the production of xenograft antibodies from
B cells (2, 33). Follicular helper T cells (Tfh) are a recently
discovered CD4+ helper T lymphocyte subset that is different
from previously defined Th cell subsets, such as Th1/Th2, Th17,
Treg and Th9 cells (31). These cells express the chemokine
receptor CXCR5, PD1 and inducible costimulatory molecules
(ICOS); are mainly active in secondary lymphoid organs; and
can also be present in tertiary lymphatic structures of the
transplanted kidney (34). A study found that the number of
Tfhs in KTRs remained stable after transplantation, while the
ability to express IL-21 decreased under immunosuppression
(35). Other studies in renal transplant recipients have
demonstrated increased Tfh cell numbers before the
development of donor-specific antibodies (DSA), in
association with antibody-mediated rejection (ABMR) or with
the development of anti-HLA antibodies (36–38). Furthermore,
anti-rejection therapy with alemtuzumab significantly lowers
the number of Tfh cells in kidney transplant recipients and
contributes to the stable status of the kidney transplant (39). A
study compared the proportion and function of follicular helper
T cells in the blood between patients with operative tolerance
and patients with stable graft function. It was found that the
proportion of follicular helper T cells in patients with tolerance
was decreased, and their function was impaired upon coculture
with B cells (36). CD8+ T lymphocytes can directly attack
inhibitors and eliminate target cells through cytotoxicity. In
this study, the proportion of CD4+ T cells in the peripheral
blood of the posttreatment group was significantly lower than
that of the pretreatment group. Subgroup analysis showed that
Frontiers in Immunology | www.frontiersin.org 10
the proportions of central memory CD4+ T cells and follicular
helper CD4+ T cells in the peripheral blood of the
posttreatment group were reduced compared with those in
the pretreatment group.

CD8+ T lymphocytes can specifically recognize the
transplanted kidney. They can pass through the basement
membrane of the renal tubules, proliferate and induce
apoptosis in renal tubular cells (2). We found that patients
receiving immunosuppress ive therapy after kidney
transplantation had relatively few effector CD8+ T cells and
effector memory CD8+ T cells in their peripheral blood.
Therefore, the relative proportions of some CD8+ T cell
subgroups (such as effector CD8+ T cells and effector
memory CD8+ T cel ls ) decreased af ter rece ipt of
immunosuppressive agents, maintaining the recipient’s
immune tolerance. Additionally, NK cells have antitumor,
antiviral, and anti-transplanted organ activities and
participate in the regulation of T and B lymphocytes and
their immunoregulatory functions. NK cells maintain balance
and exert killing effects through their receptors (40–42).
Vacher-Coponat et al. (43) reported that the combined
application of multiple immunosuppressants had a significant
inhibitory effect on NK cells and that the main effect of
tacrolimus on the immune system is to inhibit the activation
and proliferation of T cells. Studies have shown that tacrolimus
can also affect the proliferation and function of NK and NKT
cells (44). Recently, many studies have shown that tolerant NK
cell populations (45) are related to graft immune tolerance (42,
46, 47). We found that the proportion of tolerant NK cells in
the peripheral blood in the posttreatment group was
significantly higher than that in the pretreatment group,
while the content of CD57+ NK cells in the peripheral blood
in the posttreatment group was higher than that in the
pretreatment group.

B cells are important immune cells in the human immune
response. In addition to secreting specific antibodies, B cells
can participate in immune responses through antigen
presentation, costimulation, and cytokine secretion (48).
Addi t ional ly , there i s a c lass of B ce l l s that has
immunosuppressive effects, called Bregs (49). Bregs can
secrete inhibitory cytokines, such as IL-35 and IL-10, and
express membrane surface molecules, such as FasL and
CD1d, to exert immunosuppressive effects. They can also
inhibit Th cells, CTLs, DCs, macrophages and other immune
cells involved in the development of various immune
conditions, such as autoimmune diseases and responses to
infection, tumors, and organ transplantation (50–52).
Additionally, MHC molecules from the donor can activate
Bregs, further inhibit T cell-mediated rejection, and exert an
immunosuppressive effect in the MHC mismatch area, thereby
prolonging the survival time of MHC mismatched cells during
the allogeneic suppression of the immune response to promote
Treg expansion (53, 54). Several studies have shown that,
compared with those in the peripheral blood of chronic
rejection recipients, Breg levels in the peripheral blood of
tolerant KTRs are significantly increased (55, 56). Given the
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immunosuppressive function of Bregs, studies have shown that
targeting Bregs may become a new immunosuppressive
treatment in the field of transplantation (57, 58). Coquet
reported that the adoptive transfer of Bregs to chronic
collagen arthritis mice inhibited Th1 differentiation, reduced
the severity of arthritis, and promoted the resolution of the
disease (59). In the transplant tolerance model, splenic B cells
of long-term survival animals after transplantation were
purified and then adoptively transferred to the recipient
animal. It was found that the Tregs in the recipient’s spleen
rapidly expanded; at the same time, the CD4+CD25-T cells in
the body interacted with the Bregs (60). This study found that
the abundance of Bregs in the peripheral blood in the
post t reatment group was higher than that in the
pretreatment group. However, due to the limited sample size,
this difference was not statistically significant.

This study had the following limitations: 1) The sample size
was small, and a larger independent cohort could enable future
analysis of more cell subpopulations in KTRs to clarify the
immune status and treatment strategies after kidney
transplantation; 2) This study lacked immunohistochemical
verification of kidney tissue samples from KTRs; 3) There was
strong heterogeneity in the immune status of the peripheral
blood among different KTRs. We hope that more peripheral
blood samples collected from KTRs before and after
immunosuppressive therapy can be included in the future to
explore the effect of heterogeneity among individuals on
immune status.
CONCLUSIONS

In this study, CyTOF was used to classify immune cells in the
peripheral blood of KTRs before and after receipt of
immunosuppressive agents, and differences in the proportions
of the main immune cells and immune cell subgroups were
further compared between pretreatment and posttreatment
groups. We found that the abundances of activated immune
cell subsets (such as central memory CD4+ T cells, follicular
helper CD4+ T cells, effector CD8+ T cells and effector memory
CD8+ T cells) in the peripheral blood of patients after receipt of
immunosuppressive therapy and the proportion of tolerant
immune cells (such as tolerant NK cells) were increased in the
posttreatment group. We hope that we can analyze more
immune cell subsets in KTRs through analysis of a larger
independent cohort in the future and that the data from these
additional KTRs can help produce more accurate assessment and
treatment strategies.
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