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COVID-19 (SARS-CoV-2) disease severity and stages varies from asymptomatic, mild

flu-like symptoms, moderate, severe, critical, and chronic disease. COVID-19 disease

progression include lymphopenia, elevated proinflammatory cytokines and chemokines,

accumulation of macrophages and neutrophils in lungs, immune dysregulation,

cytokine storms, acute respiratory distress syndrome (ARDS), etc. Development of

vaccines to severe acute respiratory syndrome (SARS), Middle East Respiratory

Syndrome coronavirus (MERS-CoV), and other coronavirus has been difficult to create

due to vaccine induced enhanced disease responses in animal models. Multiple

betacoronaviruses including SARS-CoV-2 and SARS-CoV-1 expand cellular tropism

by infecting some phagocytic cells (immature macrophages and dendritic cells) via

antibody bound Fc receptor uptake of virus. Antibody-dependent enhancement (ADE)

may be involved in the clinical observation of increased severity of symptoms associated

with early high levels of SARS-CoV-2 antibodies in patients. Infants with multisystem

inflammatory syndrome in children (MIS-C) associated with COVID-19 may also have

ADE caused by maternally acquired SARS-CoV-2 antibodies bound to mast cells. ADE

risks associated with SARS-CoV-2 has implications for COVID-19 andMIS-C treatments,

B-cell vaccines, SARS-CoV-2 antibody therapy, and convalescent plasma therapy for

patients. SARS-CoV-2 antibodies bound to mast cells may be involved in MIS-C and

multisystem inflammatory syndrome in adults (MIS-A) following initial COVID-19 infection.

SARS-CoV-2 antibodies bound to Fc receptors on macrophages and mast cells may

represent two different mechanisms for ADE in patients. These two different ADE risks

have possible implications for SARS-CoV-2 B-cell vaccines for subsets of populations

based on age, cross-reactive antibodies, variabilities in antibody levels over time, and

pregnancy. These models place increased emphasis on the importance of developing

safe SARS-CoV-2 T cell vaccines that are not dependent upon antibodies.

Keywords: antibody dependent enhancement, ADE, COVID-19, SARS-CoV-2,multisystem inflammatory syndrome,
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INTRODUCTION

The SARS-CoV-2 virus is a unclassified betacoronavirus
with sequenced genomes ranging from 29.8 to 29.9 k RNA
bases. The SARS-CoV-2 genome encodes replicase proteins,
structural proteins, and accessory proteins (1). The ORF1a and
ORF1ab polyproteins are proteolytically cleaved into 16 non-
structural proteins designated nsp1-16 (1). Like SARS, COVID-
19 manifests as a virulent zoonotic virus in humans with
currently 101,211,750 global cases and 2,183,169 deaths as of
Jan. 28, 2021 (2). The details of SARS-CoV-2 infections and
disease progression are still being worked out. One proposed
step in COVID-19 disease progression involves the nucleocapsid
protein binding to the prostaglandin-endoperoxide synthase 2
(PTGS2)/cyclooxygenase-2 (COX-2) promoter and upregulating
expression resulting in elevated levels of prostaglandin E2 (PGE2)
and other inflammatory molecules (3–5). Elevated PGE2 may
be driving hyper-activation of mast cells associated with excess
release of histamine and additional inflammatory molecules (5).
COVID-19 is predicted to be a mast cell disease (6).

Zoonotic MERS-CoV, SARS-CoV-1, and SARS-CoV-2 are
evolutionarily related with similarities in disease progression
in humans. The mild variant first phase of viral progression
generally presents with mild flu-like symptoms. For some
individuals, infection progresses to a second moderate-severe
variant phase. Progression to this phase coincidently coincides
with timing of anticipated humoral immunity antibody response
from memory B-cells for cross reactive antibodies. Coronavirus
infection of phagocytic cells has been previously observed.
MERS-CoV can infect monocyte-derived macrophages (MDMs),
monocyte-derived dendric cells (MoDCs), and T cells (7, 8).
In a mouse animal model, phagocytic cells contribute to the
antibody-mediate elimination of SARS-CoV-1 (9). This process
is expected for patients with mild symptoms who do not progress
to moderate or severe disease. For patients with moderate and
severe symptoms, pathophysiology is consistent with infection
of phagocytic immune cells (immature MDMs and MoDCs).
Chemokines attract additional dendritic cells and immature
macrophages that are susceptible to infection leading to a possible
infection amplifying cascade of phagocytic immune cells. For
some patients with severe symptoms, excessive accumulation
of macrophages contributes toward a storm of cytokines (10–
12) and chemokines. These viruses also perturb the adaptive
immune responses within infected individuals. Individuals with
SARS have pronounced peripheral T cell lymphocytopenia with
reduced CD4+ and CD8+ T cells (13, 14). MERS-CoV and SARS-
CoV are associated with T cell apoptosis (15, 16). Infection of
macrophages (17) and some T cells along with viral dysregulation
of cellular pathways result in compromised innate and humoral
immunity in patients in phase II (18). The possibility ofmigration
throughput the body of infected immune cells and later high virus
titer in blood can account for additional disease pathophysiology
clinical observations observed for these viruses. Other disease
differences may simply be the different population of cells
with target host receptors angiotensin I converting enzyme
2 (ACE2) for SARS-CoV-1 and SARS-CoV-2 and dipeptidyl
peptidase IV (DPP4) for MERS-CoV. The increased affinity of

the SARS-CoV-2 Spike protein receptor-binding-domain (RBD)
compared to SARS may account for the significant airborne
transmission of SARS-CoV-2 (19). Also, neuropilin-1 facilitates
SARS-CoV-2 cell entry and infectivity (20).

Characterizing variability of viral proteins can inform
designing medical countermeasures (MCMs). For viral progeny,
deleterious mutations are selected against (21). Neutral
mutations (22) provide a framework for antigenic drift to
facilitate escape from immune responses; these residues will
continue to mutate over time. The critical-spacer model
proposes that proteins have either amino acid residue side-
chains critical for function or have variable side-chains while
possibly function for positioning/folding of critical residues
(23). The divergence model of protein evolution proposes
that number of critical residues for a protein is consistent for
evolutionarily closely related proteins (24). These concepts are
applied to SARS-CoV-2 Spike (S) protein leveraging closely
related coronavirus protein sequences to provide insights into
viral vulnerabilities that can be leveraged in designing MCMs.
The exposed domain of the Spike protein exhibits exposed
surface areas with high variability. Increased risk for antibody-
dependent enhancement (ADE) from antibodies targeting
SARS-CoV-2, SARS-CoV-1, and MERS-CoV exposed residues is
indicated by observed ADE in animal models and the antibody
facilitated infection of phagocytic immune cells by coronaviruses
(9, 25). In addition, SARS-CoV-2 antibodies bound to mast
cells may also be involved in ADE for some MIS-C and MIS-A
patients (26).

METHODS

SARS-CoV-2 spike protein sequence from GenBank entry
MN908947.3 was searched against the non-redundant (nr) and
PDB database using the NCBI BLASTP web interface. Hit
protein sequences were downloaded. Protein multiple sequence
alignments were created with the Dawn program (27). The Spike
structure 6CRZ (28) was downloaded from RCSB PDB database
(29). Dawn variation results were visualized with the Chimera
program (30).

RESULTS

Dawn variation (V<n>) results for SARS-CoV-2 amino acid
residues were classified as 650 V1 residues—dark green,
263 V2 residues—light green, 123 V3 residues—yellow, 107
V4 residues—light blue, and 152 V5+ residues—dark blue
(Figure 1). The dark green residues represent candidate critical
residues and the dark blue residues represent candidate spacer
residues (Figure 1). Amino acid residues with conservative
substitutions are also consider critical residues, and are colored
light green in Figure 1; positions with > 95% of a single
residue were included in this category to accommodate potential
sequencing errors and possibly adaptative mutations. The
V1+V2 residues represent 71% of the 1,295 Spike residues. The
Spike protein exhibits regions of extensive variability of exposed
surface residues (Figure 1).
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FIGURE 1 | SARS-CoV-2 Spike protein variation results. Amino acid residue

color code: dark green (critical residues—V1), light green (critical residues with

conservative substitutions or variant in <10 sequences—V2, yellow (three

variants—V3), light blue (four variants—V4; likely spacer residues), and blue

(5+ variants—V5+; spacer residues).

DISCUSSION

Variation Results
The observed amino acid variations in SARS-CoV-2 proteins
are consistent with expected natural variations in the context
of random mutations and selection in the context of host
immune responses. The Spike protein S1 extended domain
shows the highest number of exposed surface highly variable
residues (Figure 1). These spacer residues may function as
exposed antigens for antibody responses with the possibility
of suppressing immune responses to less immunogenic surface
antigens. Many of these Spike protein antigens may lead to
non-neutralizing antibodies. Mutations at these residues may
provide antigenic drift to escape immune responses. As the
COVID-19 pandemic continues, Spike mutation variants are
accumulating resulting in the design of vaccine booster shots
prior to initial population vaccinations (31). The Spike protein
represents an evolving vaccine target with parallels to the annual
influenza vaccine hemagglutinin and neuraminidase targets
while the COVID-19 pandemic persists enabling rapid virus
evolution in humans.

Multiple Coronaviruses Approaches for
Cell Infection
Coronaviruses have multiple approaches for infecting cells by
direct receptor binding and by indirect antibody Fc uptake. The
SARS-CoV-2 Spike protein contains receptor-binding domains
(RBD) targeting human angiotensin I converting enzyme 2
(ACE2) (32, 33); this is the initial route for infecting host
cells. To take advantage of antibody responses, coronaviruses
also leverage antibody Fc uptake to infect some phagocytic
immune cells (34). Coronaviruses use the Spike protein subunit 2
fusion peptide (FP), heptad repeat 1 (HR1), and heptad repeat
2 (HR2) to infect immune cells upon proteolytic cleavage of

Spike within endosomes. HR1 and HR2 form a canonical 6-
helix bundle involved in membrane fusion (35). Jaume et al.
(34) found that antibody-mediated infection was dependent
on Fc receptor II and not the endosomal/lysosomal pathway
utilized by ACE2 targeting. Viral infection of complement
receptor (CR) cells is an additional possible route of infecting
cells expanding cellular tropism (36). This expanded cellular
tropism mechanism provides coronaviruses like SARS-CoV-
1, MERS-CoV, and SARS-CoV-2 with more than one cellular
trophism for infecting host cells. This leads to the prediction that
antibody mediated uptake of virus is the potential mechanism
that induces ADE to cross-reactivity antibodies, maternally
transferred antibodies (matAbs), and vaccines (37–40).

Macrophages and Immune Dysregulation
Macrophages play an important role in disease progression
and possibly immune dysregulation for SARS and COVID-19.
Lymphopenia is a common feature in patients with SARS (13, 41)
and COVID-19 (42, 43). Direct infection of subpopulations of
immune cells is possible if they express virus target receptors.
Two receptors have been identified for SARS-CoV-1 including
ACE2 (44) and C-type lectin domain family 4 member M
(CLEC4M, CD209L, CD299, DC-SIGN2, DC-SIGNR, HP10347,
and LSIGN) (45) with CLEC4M expressed in human lymph
nodes (46). In a mouse model, depletion of CD4+ T cells resulted
in an enhanced immune-mediated interstitial pneumonitis when
challenged with SARS-CoV-1 (47). But, depletion of CD4+
and CD8+ T cells and antibodies enabled the innate defense
mechanisms to control the SARS-CoV-1 virus without immune
dysregulation (47). Similar results were also observed in mice
with SARS-CoV-1 challenge, but treatment with liposomes
containing clodronate, which deplete alveolar macrophages
(AM), prevented immune deficient virus-specific T cell response
(48). These studies point to an interplay between antibodies
and macrophages in ADE responses in animal models. In
a macaque model, anti-spike IgG causes acute lung injury
by skewing macrophage response toward proinflammatory
monocyte/macrophage recruitment and accumulation during
acute SARS-CoV-1 infection (49). Blockade of in vitro human
activated macrophages FcγR reduced proinflammatory cytokine
production (49). CD169+ macrophages have ACE2 and are
susceptible to SARS-CoV-2 infection (50). Both M1- and M2-
type macrophages are susceptible to SARS-CoV-2 infection (51).
These observations are likely linked by antibody-dependent
enhancement of coronavirus infection of macrophages (34,
52). The pathophysiology of moderate and severe SARS
and COVID-19 diseases fits a proposed model of antibody-
dependent infection of macrophages as the key gate step
in disease progression from mild to moderate and severe
symptoms contributing to dysregulated immune responses (53)
including apoptosis for some T cells/T cell lymphopenia,
proinflammatory cascade with macrophage accumulation, and
cytokine and chemokine accumulations in lungs with a cytokine
storm in some patients. Infected phagocytic immune cells
may enable the virus to spread to additional organs prior to
viral sepsis (Figure 2).

Frontiers in Immunology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 640093

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Ricke Two ADE Risks for SARS-CoV-2

FIGURE 2 | Disease progression model with normal immune responses during the initial mild symptoms phase (see 1–3). Antigen presenting cells migrate to the

lymph nodes to activate T cells (2a). The progression gate to moderate and server disease is the infection of phagocytic immune cells (3a) leading to immune

dysregulation (4b). In the lungs, chemokines attract additional dendritic cells and immature macrophages that are subsequently infected in an positive feedback-loop

infection cascade (4b). Infected phagocytic immune cells disseminate throughout the body infecting additional organs (5 & 6). Levels of chemokine and cytokines in

the lungs from infected cells can create a cytokine storm (6).

Antibody-Dependent Enhancement (ADE)
of Coronaviruses
Antibody-dependent enhancement (ADE) may develop via more
than one molecular mechanism. One model suggestions that
antibody/Fc-receptor complex functionally mimics viral receptor
enabling expanded host cell trophism of some phagocytic cells
(54). Wan et al. (54) illustrate an antibody dosage effect for
enhancing disease or inhibiting the virus dependent upon the
antibody dosage. It is well-established that antibodies to one

strain of a virus may be subneutralizing or non-neutralizing
for viral infections of different strains (55–57). Infection of
cells expressing Fc-gamma was shown for SARS-CoV-1 (58).
A possible case of ADE was observed in a patient with
a second SARS-CoV-2 infection (59). Early vaccine results
show significant antibody responses by day 14 (60) which
represents memory B-cell responses (i.e., original antigenic sin)
with cross-reactivity antibodies from likely other coronavirus
strain(s). Early high antibody responses are correlated with
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increased disease severity for both SARS (61) and COVID-19
(62–67). Wu et al. demonstrated that antibodies from COVID-19
patients enabled SARS-CoV-2 infections of Raji cells (lymphoma
cells derived from B lymphocytes), K562 cells (derived from
monocytes), and primary B cells (68). SARS-CoV-2 infection of
some phagocytic cells (i.e., macrophages) may be a key gate step
in disease progression for some patients.

Mast Cells Risks for ADE and Multisystem
Inflammatory Syndromes (MIS-C & MIS-A)
Mast cells can degranulated by both IgE and IgG antibodies
bound to Fc receptors (69). Cardiac injury is a common condition
among hospitalized COVID-19 patients and is associated
with higher risk of mortality (70). However, pathological
manifestations of heart tissues found only scarce interstitial
mononuclear inflammatory infiltrates without substantial
myocardial damage (42). Myocardial injury significantly
correlates with fatal outcome for COVID-19 (71). Multisystem
inflammatory syndrome in children (MIS-C) and adults (MIS-A)
associated with COVID-19 has appeared in areas following
SARS-CoV-2 outbreaks. A model of MIS-C has been proposed
where activation and degranulation of mast cells with Fc
receptor-bound SARS-CoV-2 antibodies leads to increased
histamine levels (26). This model is consistent with MIS-C
in infants with maternally transferred antibodies (matAbs)
(37–40) to SARS-CoV-2. SARS-CoV-2 nucleocapsid binding
to PTGS2 prompter resulting in upregulated prostaglandin
E2 (PGE2) in COVID-19 patients (4). Elevated PGE2 may be
driving hyper-activated mast cells as an alternative mechanism
driving increased histamine levels in older children and adults.
These increased histamine levels are predicted to impede blood
flow through cardiac capillaries due to constricted pericytes
with increased risk for cardiac pathology due to cell death by
anoxia and coronary artery aneurysms due to increased blood
pressure (26). An instance of a 12 years old child with a previous
asymptomatic COVID-19 infection developing MIS-C on likely
second infection has been reported (72).

Vaccine Risks for Antibody-Dependent
Enhancement (ADE)
Virus vaccines can use live-attenuated virus strains, inactivated
(killed) virus, protein subunit, messenger ribonucleic acid
(mRNA), or deoxyribonucleic acid (DNA) vaccine. Antibodies
induced by vaccines can be neutralizing or non-neutralizing.
Non-neutralizing antibodies can contribute to anti-viral activities
with mechanisms including antibody-medicated complement-
dependent cytotoxicity (CDC), antibody-dependent cellular
cytotoxicity (ADCC), antibody-dependent cellular phagocytosis
(ADCP) [reviewed (73)]. The yearly influenza vaccine induces
both neutralizing and non-neutralizing antibodies that provide
projection against the strains in the vaccine and closely
related strains. Vaccine-associated enhanced disease (VAED) can
result when there are multiple circularizing serotypes of virus
[e.g., Dengue fever (55–57)] or when the virus uses antibodies
for expanded host cell trophism of phagocytic immune cells.

Many of the viruses associated with ADE have cell membrane
fusion mechanisms (38). For influenza A H1N1, vaccine-induced
cross-reactive anti-HA2 antibodies in a swine model promote
virus fusion causing vaccine-associated enhanced respiratory
disease (VAERD) (74). ADE was observed for the respiratory
syncytial virus (RSV) in the Bonnet monkey model (37).
Van Erp et al. (37) recommends avoidance of induction of
respiratory syncytial virus (RSV) non-neutralizing antibodies or
subneutralizing antibodies to avoid ADE. ADE has been observed
in multiple SARS-CoV-1 animal models. In a mouse model,
attempts to create vaccines for SARS-CoV-1 lead to pulmonary
immunopathology upon challenge with SARS-CoV-1 (75, 76);
these vaccines included inactivated whole viruses, inactivated
viruses with adjuvant, and a recombinant DNA spike (S) protein
vaccine in a virus-like particle (VLP) vaccine. Severe pneumonia
was observed in mice vaccinated with nucleocapsid protein
after challenge with SARS-CoV-1 (77). Enhanced hepatitis was
observed in a ferret model with a vaccine with recombinant
modified vaccinia virus Ankara (rMVA) expressing the SARS-
CoV-1 Spike protein (78). ADE was observed for rhesus
macaques with SARS-CoV-1 vaccine (79). SARS-CoV-1 ADE
is mediated by spike protein antibodies (80). Antibodies to
the SARS-CoV-1 spike protein can mediate viral entry via
Fc receptor-expressing cells in a dose-dependent manner (54).
Jaume et al. (34) point out the potential pitfalls associated with
immunizations against SARS-CoV-1 Spike protein due to Fc
mediate infection of immune cells. This leads to the prediction
that new attempts to create either SARS-CoV-1 vaccines, MERS-
CoV vaccines (81), or SARS-CoV-2 vaccines have potentially
higher risks for inducing ADE in humans facilitated by antibody
infection of phagocytic immune cells. This potential ADE risk
is independent of the vaccine technology (82) or targeting
strategy selected due to predicted phagocytic immune cell
infections upon antibody uptake. For MERS patients, the
seroconversion rate increased with disease severity (83). Severe
clinical worsening for SARS patients occurs concurrently with
timing of IgG seroconversion (84). Clinical evidence of early
high IgG responses in SARS patients is correlated with disease
progression (85) and severity (62–67). Antibody treatments
for critically ill COVID-19 patients have been halted due to
a potential safety signal and unfavorable risk-benefit profile
(86). Current SARS-CoV-2 vaccines appear to be providing
protection with high antibody titers; the possibility of ADE
risks associated with waning titers of antibodies over time
remains unknown.

Convalescent Plasma Therapy
Convalescent plasma therapy takes the antibodies from a
recovering patient and provides them to patients with active
infections. COVID-19 results for convalescent plasma therapy
appear to have mixed results with no statistically significant
improvement in randomized clinical trials (87, 88): in a trial, no
significant difference in 28-days mortality (15.7 vs 24.0% odds
ratio: 0.59, p= 0.30) was observed in a randomized trial (87); and,
in the PLACID trial, progression to severe disease or all-cause
mortality at 28 days occurred in 44 (19%) convalescent plasma
arm vs. 41 (18%) control arm (risk ratio 1.04) (88). Neither
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trial mentions antibody-dependent enhancement in context of
progression to severe disease or all-cause mortality. For SARS,
a higher discharge rate was observed amount patients who were
given convalescent plasma before day 14 of illness (58.3%) vs.
after 14 days (15.6%), p < 0.001; the mortality rate for the
second group was 21.9% which was higher than the all SARS-
related mortality rate in Hong Kong of 17% (89); while this looks
promising for most patients, the increased mortality above the
regional average observed for patients after 14 days of illness
should be noted.

Antibody Targets
Analyzing the Cryo-EM structures of MERS-CoV and SARS-
CoV-1 spike (S) glycoproteins, Yuan et al. (90) suggest that
the fusion peptide (FP) and the heptad repeat 1 region (HR1)
are potential targets for eliciting broadly neutralizing antibodies
based on exposure on the surface of the stem region, with
no N-linked glycosylation sites in this region, and sequence
conservation. Antibodies that interrupt virus-cell fusion will
likely block the infection of immune cells using Fc-mediated
uptake of virus (34). This has been demonstrated for SARS-CoV-
1 for antibodies to the HR2 region (91–93). Likewise, SARS-CoV-
2 antibodies that block cell fusion are likely to not share the same
ADE risk of other SARS-CoV-2 antibodies.

B Cell Vaccine Designs
B cell vaccines that target the Spike protein cell fusion
mechanisms have the highest chance of raising neutralizing
antibodies with minimal or no ADE risk due to antibody binding
sterically blocking cell fusion. Antibodies targeting other portions
of the Spike protein or other SARS-CoV-2 exposed proteins
may enable infection of phagocytic immune cells even if they
are neutralizing.

T Cell Vaccine Designs
T cell vaccines that target SARS-CoV-2 replicase proteins have
the highest change of avoiding viral escape by antigenic variation
and accumulation of mutations in variable residues. Lisziewicz
and Lori (94) described an approach for developing a T cell
COVID-19 vaccine. EpiVax EPV-CoV19 (95) is an example
COVID-19 T cell vaccine.

SUMMARY

Given past data on multiple SARS-CoV-1 and MERS-CoV
vaccine efforts have failed due to ADE in animal models
(75, 81), it is reasonable to hypothesize a similar ADE risk
for SARS-CoV-2 antibodies and vaccines. ADE risks may be

associated with antibody level (which can wane over time after
vaccination) and also if the antibodies are derived from prior
exposures to other coronaviruses. In addition, ADE with mast
cells likely plays a role in MIS-C for infants and possibly older
MIS-C and MIS-A patients. While expanded trophism of SARS-
CoV-2 represents a possible ADE risk in the subset of COVID-19
patients with disease progression beyond the mild disease stage.
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