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The tumor immune microenvironment (TIME), an immunosuppressive niche, plays a
pivotal role in contributing to the development, progression, and immune escape of
various types of cancer. Compelling evidence highlights the feasibility of cancer therapy
targeting the plasticity of TIME as a strategy to retrain the immunosuppressive immune
cells, including innate immune cells and T cells. Epigenetic alterations, such as DNA
methylation, histone post-translational modifications, and noncoding RNA-mediated
regulation, regulate the expression of many human genes and have been reported to
be accurate in the reprogramming of TIME according to vast majority of published results.
Recently, mounting evidence has shown that the gut microbiome can also influence the
colorectal cancer and even extraintestinal tumors via metabolites or microbiota-derived
molecules. A tumor is a kind of heterogeneous disease with specificity in time and space,
which is not only dependent on genetic regulation, but also regulated by epigenetics. This
review summarizes the reprogramming of immune cells by epigenetic modifications in
TIME and surveys the recent progress in epigenetic-based cancer clinical therapeutic
approaches. We also discuss the ongoing studies and future areas of research that
benefits to cancer eradication.
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INTRODUCTION

Cancer is the leading cause of death worldwide and in China and thus remains as the single biggest
stumbling block for extending life expectancy. According to GLOBCAN 2018, there are approximately
18.1 million new cancer cases and 9.6 million new cancer deaths worldwide, 24 and 30% of which occur
in China, respectively (1, 2). This suggests a large gap between China and other developed countries,
such as the United States, in terms of cancer mortality (1, 3). Thus, new insights into cancer therapy are
necessary for the development of novel strategies and efficacious drug combination therapies.

Tumors are not only a group of abnormally proliferative cells, but also a special environment
termed as the tumor microenvironment (TME) that contains different cell types, including tumor
and immune cells (4). Owing to the large number of immunosuppressive immune cells, the TME is
also called TIME. Thus, developing therapeutic approaches targeting the plasticity of TIME has
become one of the most attractive area in cancer therapy. Immune checkpoint inhibition (ICI) is a
promising strategy that involves the activation of the function of TIME T cells to combat tumor cells
org April 2021 | Volume 12 | Article 6403691
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(5, 6). However, the majority of cancer patients exhibited
minimal or no clinical response to ICI therapy (5).

Epigenetic changes in genes encoding tumor suppressors,
inhibitory cytokines, and immune checkpoint molecules, e.g.,
PD-L1 and CD47, can lead to impaired anti-cancer immunity,
uncontrollable tumor growth, immune escape, and drug resistance,
eventually resulting in tumor development, progression, and
metastasis (7, 8). Therefore, targeting the epigenetic alterations in
cancer cells with epigenetic-associated drugs (epi-drugs) could
convert a tumor from an immune suppressive (cold) to an
immune permissive (hot) state (9). This could improve the
therapeutic effects of other anti-tumor drugs, especially immune
checkpoint inhibitors (ICIs). Within the TIME, epigenetic
modifications can also be found in tumor-associated immune
cells, including myeloid cells, CD4+ T cells, and CD8+ T cells (9–
11). During the differentiation from naïve CD8+ T cells to CD8+

effector T cells, epigenetic changes, such as DNA methylation and
histone modifications, are involved in the chromatin accessibility
(12, 13). The immune checkpoint protein PD-1 expressed on the
surface of exhausted T cells is also regulated by DNA methylation
(14). Thus, disrupting the unusual epigenetic regulation in cancer
can completely shape the TIME by decreasing the populations of
immunosuppressive cells, such as tumor-associated macrophages
(TAMs) and myeloid-derived suppressor cells (MDSCs) (15),
increasing the numbers of CD8+ effector T cells and NK cells
(15, 16), elevating the levels of inflammatory cytokines and
chemokines (17–19), and upregulating the expression of tumor
antigens, such as cancer/testis antigens (CTAs) (20, 21).

Tumor heterogeneity, especially intratumor heterogeneity
(ITH), is one of the major hallmarks of cancer. Within TIME,
there is diversity in the phenotypes of tumor cells and the
infiltration and differentiation status of immune cells, and the
diversity is characterized by distinct microscopy fields of a single
biopsy. Tumor or TIME is formed from a single mutated cell that
abnormally proliferates and accumulates additional mutations
through Darwinian evolution (22). This may cause drug
resistance to cancer therapy, such as in patients with breast
cancer, due to pre-existing resistant subclones within the tumor
verified by single-cell sequencing technique (23). Aberrant
epigenetic changes occur more frequently than gene mutations
in human cancer. Thus, targeting the epigenetic changes in
cancer may reverse drug resistance to cancer therapies,
particularly immunotherapies, and increase the efficacy of
other therapeutic approaches that initially failed to achieve
durable responses, which is always attributed to ITH (24).

In this review, we summarize the recent knowledge on the
role of epigenetic modifications in TIME and ITH. In addition,
the latest clinical therapeutic approaches are discussed. These
epigenetic alterations may serve as potential targets for more
efficacious therapeutic intervention in cancer.
EPIGENETIC MODIFICATIONS

Epigenetics refers to a special cell events causing heritable
phenotypic changes but do not involve alterations in the DNA
sequence. Epigenetic modifications involve three different
Frontiers in Immunology | www.frontiersin.org 2
processes, namely DNA methylation, histone modifications,
and non-coding RNAs (ncRNAs). They are critical in the
regulation of the aberrant expression of tumor-associated genes
and encoding of immune checkpoint proteins, tumor
suppressors, or oncoproteins in cancer, that contribute to
tumor progression and immune invasion (Figure 1). Hence,
targeting the dysregulation and dynamic nature of epigenetic
alterations provides a new strategy for cancer therapy.

DNA Methylation
DNA methylation is a biological process in which methyl groups
(–CH3) from S-adenosylmethionine (SAM) are added to the 5’
position of the pyrimidine ring of cytosines in the CpG
dinucleotide called CpG island. Adenine methylation has been
recently observed in mammalian DNA (25), although it has
attracted less attention. Gene transcription is silenced when
CpG-rich promoters are hypermethylated as these methylated
CpGs can impair the binding of transcriptional factors and
recruit repressive complexes (26). DNA methylation always
represses the expression of tumor-suppressive genes in many
types of cancer (27). The process of DNA methylation is
mediated by DNA methyltransferases (DNMTs), which include
DNMT1, DNMT3a, and DNMT3b (28, 29). DNMT2, a homolog
of DNMTs, contains all 10 motifs common to all DNMTs.
However, DNMT2 can methylate cytosine-38 in the anticodon
loop of aspartic acid transfer RNA (tRNAAsp), instead of DNA
(30). In gene promoters, DNA methylation occurs in correlation
with gene silencing, whereas in other regions, it modulates
enhancer activity, gene activation, and splicing (31, 32). For
example, in the promoter region of the pdcd1 gene, more
methylated sites were observed in PD-1low A20 cells than in
PD1high EL4 cells, indicating that DNA methylation occurring in
the promoter region silences the expression of PD-1 in T
cells (14).

5-methylcytosine (5mC) can be removed via oxidation
catalyzed by ten-eleven translocation (TET) methylcytosine
dioxygenases (TET1, TET2, and TET3), resulting in generation
of 5-hydroxymethylcytosine (5hmC), 5-carboxycytosine (5caC),
5-formylcytosine (5fmC), and unmethylated cytosine (33, 34).
DNMTs and TETs regulate the gene activation and repression,
together maintaining the stability of gene transcription under
certain circumstances. Once this balance is interrupted, many
genes are abnormally silenced or activated, leading to various
pathological conditions, especially cancer (35). In patients with
primary breast cancer (PBC) and colorectal cancer (CRC),
immune checkpoint proteins PD-L1, CTLA-4, TIGIT and
TIM-3 are significantly upregulated with the hypomethylation
of promoters because of upregulated TET2 and TET3 (36). The
increased levels of immune checkpoint molecules may be one of
the causes of repressed activation and function of immune cells
in the TIME.

In a pan-cancer analysis result, researchers found that the
global loss of DNAmethylation is negatively correlated with host
immune pathways, including antigen processing and
presentation, cytokine–cytokine receptor interaction, and
major histocompatibility complex (MHC) (37). In the same
study, DNA demethylation has a positive correlation with
April 2021 | Volume 12 | Article 640369

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang and Wang Epigenetics in Tumor Immune Microenvironment
genomic mutation burden and aneuploidy level, which
contributes to tumor cell proliferation (37). Therefore, DNA
methylation-modifying agents can be potentially used for cancer
therapy or the improvement of the efficacy of cancer
immunotherapy. DNA methylation also acts as a modulator of
immune cells differentiation. Datasets from the BLUEPRINT
Epigenome Project (http://www.blueprint-epigenome,eu) reveal
that the global methylation level increases during macrophage
differentiation and activation, whereas it acts in an opposite way
in T and B cells (38).

Histone Modifications
There are two types of histones: core histones H2A, H2B, H3, H4
and linker histone H1. They can be modified by proteins called
“readers,” “writers,” and “erasers” at the histone tails. The
nucleosome core comprises two H2A–H2B dimers and an H3–
H4 tetramer. The most frequent histone modifications are
methylation, acetylation, and phosphorylation; however, there
exist other modificat ions , including ci trul l inat ion,
ubiquitination, ADP-ribosylation, deamination, formylation,
O-GlcNAcylation, propionylation, butyrylation, crotonylation,
proline isomerization, and lactylation (39–41). All of these
modifications not only activate or repress gene transcription,
but also influence several processes, such as DNA repair, DNA
replication, and recombination (40). Once histone modifications
are aberrantly regulated, the steady state of the cell is disrupted,
and diseases, such as cancer initiate, develop, and progress.

Histone Methylation
Unlike DNA methylation, histone methylation involves the
addition of methyl groups to mainly lysine (K) (mono-, di-, or
trimethylated) and arginine (R) residues (mono- or dimethylated)
Frontiers in Immunology | www.frontiersin.org 3
in the histone tails, which mediate gene transcription, including
those cancer progressive and immunosuppressive genes. The six
major families of histone lysine methyltransferase complexes
(KMT1-6) are responsible for the methylation of lysine
residues, mainly on histone H3, followed by H4 (42, 43). The
methyl groups added to lysine residues by KMTs can be removed
by lysine demethylases (KDMs), which contains six families
(KDM1-6) at least (8). The distinct sites or degrees of lysine
methylation on histones determine the activation or silencing of
many genes. For instance, methylation at lysine 4 on histone H3
(H3K4me1/2/3) and H3K36me2/3 are always involved in the
activation of gene transcription, whereas that on H3K9me3 and
H3K27me3 exert the opposite function (8, 44). The loss of
H3K79me2 in TIME contributes to tumor progression in a
mouse model (45). Many immune cell types, such as
macrophages, dendritic cells (DCs), and natural killer cells
(NKs), can also be regulated by histone methylation in cancer
(46–48).

Histone Acetylation
Histone acetylation is involved in the activation of gene
transcription by attenuating interactions between histones and
DNA via the addition of an acetyl group (–CH3CO) from the
acetyl coenzyme A (acetyl-CoA) to the a/ϵ-amino group of
lysine side chains, as it neutralizes the positive charge (40, 41,
49, 50). The reversible addition and removal of acetyl groups are
catalyzed by histone acetyltransferases (HATs) and histone
deacetylases (HDACs) (51). There are two types of HATs
(type-A and type-B) found in the human genome, of which,
type-B HATs can only acetylate newly synthesized histones, such
as H4 at K5 and K12, but not those deposited in the chromatin
(40, 52). The well-studied and major families of HATs in humans
FIGURE 1 | Schematic model of epigenetic regulation. The expression of most human genes is regulated by epigenetic modifications. There are three different
epigenetic processes that control gene transcription and expression: DNA methylation, histone modification and ncRNA. DNA methylation always exists in GC-rich
areas of the human genome called CpG islands, which can be methylated by DNMTs, resulting in failed transcription of genes, such as pdcd1. Histone modification,
in which amino acids on four different histone tails (H2A, H2B, H3, H4) can be modified by different enzymes (KMTs, HATs, phosphatases, KDMs, HDACs, among
others), results in the regulation of gene expression. In the human genome, many DNA sequences cannot be transcribed into mRNAs but are transcribed as
ncRNAs. According to the length, ncRNAs can be divided into small and long ncRNAs. The most investigated ncRNA is miRNA, which targets the 3’-UTR of mRNA,
thus contributing to gene silencing.
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include GNAT (HAT1, GCN5, and PCAF), MYST (Tip60, MOF,
MOZ, MORF, and HBO1), and p300/CBP (53). On the other
hand, the loose chromatin mediated by HATs can be restabilized
by HDACs, resulting in transcriptional silencing. HDAC1, a
component of the NuRD complex, mediates the histone
deacetylation of H3K27 in the promoter region of STAT1,
which downregulates STAT1 expression, resulting in type I
IFN suppression in TIME (54). HDACs can be classified into
four groups (I, II, II, and IV) (53). HDACs, as potential cancer
therapeutic targets, have attracted increasing attention due to
their role in cancer epigenetics and disease development.
Currently, there are four FDA-approved HDAC inhibitors:
Vorinostat (SAHA) and Istodax (romidepsin) have been
approved for the treatment of cutaneous T-cell lymphoma
(CTCL) in 2006 and 2009, respectively; Beleodap has been
approved for the treatment of peripheral T-cell lymphomas
(PTCL) in 2014; and Panobinostat has been approved for
the treatment of patients with multiple myeloma (MM) in
2015 (55). HDAC inhibitors have multiple functions in
immunomodulatory activities, including the promotion of the
expression of MHC I molecule, tumor antigens, PD-L1, and T
cell chemokines, induction of immunogenic cell death hallmarks
in tumor cells, and decreasing Treg cells (13, 56, 57). Metabolites,
such as butyrate and propionate, produced by the gut
microbiome can also inhibit the activity of HDACs (58).

Histone Phosphorylation
Histone phosphorylation, another post-transcriptional
modification (PTM) event, occurs mainly at the serine (S),
threonine (T), and tyrosine (Y) sites of histone tails and
regulates the transcription of genes that are involved in cell
cycle and proliferation (27, 59). Histone phosphorylation is
correlated with the proliferation and progression of many
types of cancer. For instance, decreased H3S10p levels were
observed in MDA-MB-231 cells treated with the microRNA-
941 inhibitor, which suggests that H3S10p has a potential role in
promoting the proliferation of MDA-MB-231 cells (60). The
tyrosine 39 of histone H2A.X can be phosphorylated by JMJD6,
which leads to triple-negative breast cancer (TNBC) cell growth
(61). In castration-resistant prostate cancer (CRPC), researchers
have found that histone phosphorylation is positively correlated
with cancer cells progression and drug resistance, and its
blockade inhibits tumor growth in a CRPC mouse model (62).

Non-Coding RNAs
RNAs that are not translated into proteins are termed as
ncRNAs, which represent about 90% of human genome-
derived RNAs and contain small ncRNAs, such as microRNAs
(miRNAs), small interfering RNAs (siRNAs), PIWI-interacting
RNAs (piRNAs), small nuclear RNAs (snRNAs), extracellular
RNAs (exRNAs), circular RNAs (circRNAs), and long non-
coding RNAs (lncRNAs), such as Xist (27, 63). Small ncRNAs
are less than 200 bp in length, whereas circRNAs and lncRNAs
are more than 200 bp in length (27). The aberrant expression of
ncRNAs is always associated with many diseases, including
cancer. One of the most widely studied ncRNAs is miRNAs,
which are nearly 20 bases long and mediate the cleavage and
Frontiers in Immunology | www.frontiersin.org 4
degradation of mRNAs by targeting the 3’-untranslated region
(3’-UTR), thereby leading to translation failure (64).

Thousands of miRNAs have been found to regulate >30% of
human genes engaged in the cell cycle, and cell proliferation,
differentiation, or apoptosis (65–67). Some miRNAs can act as
tumor suppressors by targeting immune checkpoint molecules,
such as PD-L1, PD-1, CTLA-4, and TIM-3, in tumor cells, such
as ovarian cancer, prostate cancer (PC), and non-small cell lung
carcinoma (NSCLC) or immune cells, such as T cells and DCs in
the TIME (8). In a glioma mouse model, miR-138 treatment is
positively associated with median survival time and negatively
correlated with tumor regression (68). While some other
miRNAs participate in tumor development. For example, the
elevated expression of miR-1269 promotes the formation and
progression of gastric cancer and suppresses cell apoptosis by
modifying the AKT and Bax/Bcl-2 signaling pathways (69). The
overexpression of miR-9 has been confirmed in glioma cells and
reported to significantly improve their migration and invasion by
targeting COL18A1, THBS2, PTCH1, and PHD3 (70). In cancer
immunity, the function of immune cells can also be suppressed
by miRNAs (71).

Moreover, emerging evidence has shown that lncRNAs have
multiple functions in regulation of cell proliferation, migration,
invasion, and apoptosis in cancer progression (72–74).
Additionally, lncRNAs may be pivotal regulators of TIME
remodeling via several mechanisms, including the induction of
Treg cells, inhibition of recruitment of macrophages, activation-
induced cell death (ACID) of T lymphocytes, and the activation
of Ca2+-triggered signaling (75–78).
REPROGRAMING OF IMMUNE CELLS
IN TIME

One of the biggest obstacles to cancer therapy is tumor escape
from the host immune system. Tumor cells tend to modify
the microenvironment around themselves by recruiting
and educat ing immune ce l l s , thereby forming an
immunosuppressive area termed as TIME. Immune cells,
including innate immune cells and T cells, support tumor
expansion via various mechanisms, and the critical role of the
epigenetic reprograming of these immune cells has been revealed
(Figure 2). A multi-platform genome-wide dataset of various
types of sarcoma demonstrated the correlation between
epigenomic alterations and the infiltration of immune cells
into the TIME (79).

Innate Immune Cells
Macrophages are a type of white blood cells of the innate
immune system that engulf and digest non-self substrates such
as cancer cells in a process called phagocytosis. They have also
been shown to contribute to tumor growth and progression after
epigenetic modification into TAMs, the major infiltrating
leukocytes in most malignant tumors. Research groups from
the MD Anderson Cancer Center have performed gain-of-
function screening of epigenetic regulators in an inducible
April 2021 | Volume 12 | Article 640369
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KrasG12D p53 null pancreatic ductal adenocarcinoma (PDAC)
mouse model and identified that HDAC5 mediates the
upregulated expression of chemokine CCL2 by repressing
Socs3, resulting in the recruitment of TAMs, which
subsequently enables KRAS*-independent tumor growth (80).
CCL2 expression is regulated by miR-126/126* in breast cancer
cells. Downregulated miR-126/126* by promoter methylation of
their host gene Egfl7 mediates CCL2 upregulation (81). Finally,
elevated CCL2 recruit macrophages to promote breast cancer
metastasis. MHC II molecules on the surface of macrophages
mediate antigen presentation, which is important for the
induction of adaptive immune responses. In patients with
pancreatic cancer, ERK and JNK induce histone deacetylation
at the promoter region of the class II transactivator (CIITA),
leading to decoy receptor (DcR3)-mediated downregulation of
MHC II expression (82). The loss of MHC II expression impairs
the antigen presentation, resulting in TAM-induced
immunosuppression (82). The differentiation and polarization
of macrophages can also be modulated by the enhancer of zeste
Frontiers in Immunology | www.frontiersin.org 5
homolog 2 (EZH2) (83), a histone methyltransferase and the
catalytic subunit of polycomb repressive complex 2 (PRC2),
indicating that EZH2 is involved in the reshaping of TIME.

MDSCs (CD11b+Gr1+) are a heterogeneous group of immune
cel ls from the myeloid l ineage and possess strong
immunosuppressive activities in cancer. In breast cancer
patients, MDSC levels in the blood are approximately 10-fold
higher than healthy individuals (84). Their expansion into the
TIME is negatively correlated with poor survival rates due to
inhibited CD8+ T cell proliferation in hepatocellular carcinoma
(HCC) (85). In the same study, upregulated EZH2 interacts with
the phosphorylated NF-kB subunit p65, and the EZH2-NF-kB
complex binds to the IL-6 promoter to enhance the expression of
IL-6, thereby subsequently inducing MDSC recruitment to the
TIME (85). In another study, the Akt-mTOR signaling pathway
has been shown to trigger the recruitment of MDSCs to promote
tumor initiation (86). And Akt phosphorylation can be mediated
by cell cycle-related kinase (CCRK), whose expression can be
regulated by EZH2 (87). These findings suggest that MDSCs can
FIGURE 2 | Epigenetic mechanisms in the TIME that contributes to cancer development. Within the TIME, epigenetic regulation plays an important role in generating
immunosuppressive environment and facilitating tumor differentiation. In tumor cells, epigenetic regulation is involved in the upregulation of IL-6 and G-CSF and the
downregulation of CXCL9 and CXCL10 via EZH2, as well as the elevated expression of CXCL1 secreted by tumor cells via H3K4me3, leading to improved MDSC
recruitment and repressed T cell or DC infiltration, respectively. The expression of CCL2 (responsible for the recruitment of TAM and Treg cells) and CCL20
(responsible for Th17 recruitment) is enhanced by miR-126/126* or miR-34a and lncRNA-u50535, respectively. Furthermore, tumor cells can suppress the function
of macrophage-, NK cell-, DC- and T cell-mediated immunity through other epigenetic mechanisms. In the TIME, high TGF-b levels can be produced by not only
tumor cells, but also other cell types. TGF-b can regulate the expression of miRNAs in tumor cells and NK cells, suppressing NK migration and function and Treg
recruitment. What’s more, the gut microbiota releases SCFA that inhibits the activity of HDACs, further improving the recruitment of Treg cells.
April 2021 | Volume 12 | Article 640369
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be recruited through distinct mechanisms associated with
epigenetic modifications, especially those mediated by EZH2.

DCs are professional antigen-presenting cells (APCs) and act as
messengers between the innate and adaptive immune systems.
However, their antigen-presenting capacity is abolished in many
solid tumors owing to their immature state and low levels of IL-12
production. Mechanistically, forkhead box M1 (FOXM1)
expression is enhanced by H3K79me2 that is present in both
tumor cells and DCs, which causes abnormal maturation
phenotypes of DCs and decreased production of IL-12 in tumor-
bearing mice with pancreatic and colon cancers (47). Furthermore,
H3K79 is methylated by DOT1-like histone lysine
methyltransferase (DOT1L) and the inhibition of DOT1L not
only decreased H3K79me2, but also downregulated FOXM1
expression and reversed the immunosuppressive state (47).
FOXM1 is reported to be associated with cancer proliferation,
angiogenesis, EMT, migration, metastasis, and stemness in many
types of cancer (88). A recent study has revealed that the RNA N6-
methyladenosine (m6A) modification is correlated with TIME
infiltration in gastric cancer (89). In DCs, the m6A modification
mediated by RNA methyltransferase Mettl3 in the transcripts of
CD40, CD80, and TLR4 signaling adaptor Tirap promotes the
activation and function of DCs and DC-based T cell response (90).
Han et al. have reported that the binding of YTH N6-
methyladenosine RNA binding protein 1 (YTHDF1) to the
transcripts encoding lysosomal proteases modified by m6A
methylation improved the translational efficiency of lysosomal
cathepsins in DCs, whereas the suppression of cathepsins in DCs
significantly strengthened its ability to cross-present tumor
antigens, which in turn enhanced the tumor infiltrating CD8+ T
cell antitumor response (91). Through screening of known
epigenetic regulators, the circadian locomotor output cycles kaput
(CLOCK), a circadian regulator possessing potential histone
acetyltransferase activity, has been shown to have a negative
correlation with the function of CD8+ activated T cells and DCs
in glioblastoma (GBM) (92). However, further studies are needed to
elucidate the epigenetic regulation mechanism of CLOCK in TIME.

NK cells are cytotoxic lymphocytes critical to the innate
immune system. Their role is analogous to that of cytotoxic T
lymphocytes (CTLs), which recognize target cells such as cancer
cells upon the expression of non-self HLA antigens. NKG2D
ligands (ULBP1 and ULBP3) on tumor cells are downregulated
via DNAmethylation, resulting in the escape of IDH1 and IDH2
mutant gliomas from NK cells (93). IDH1 and IDH2 mutations
cause global DNA hypermethylation because of decreased a-
ketoglutarate levels and TET2 function in many cancer types,
including acute myelogenous leukemia (AML) (93). The
cytotoxicity of NK cells is also regulated by miRNAs. It is well
known that B7-H3, a surface glycoprotein, exerts inhibitory
effects on NK cells, which abolishes the anti-tumor activity of
these cells (94). The downregulation of miR-29 expression in
cancer contributes to the B7-H3 upregulation, leading to NK cell
dysfunction and tumor immune escape (95, 96). Perforin (Prf1)
and granzyme B (GzmB) are key cytotoxic effectors that kill
cancer cells for NKs. However, miR-27a* reverses the
cytotoxicity of NK cells by silencing Prf1 and GzmB expression
Frontiers in Immunology | www.frontiersin.org 6
(97). Because Prf1 and GzmB are the functional effectors of
CTLs, the cytotoxic capacity of CTLs may also be inhibited by
miR-27a*. Using a genome-wide mRNA and miRNA database,
Yun et al. identified that miR-583 targets the 3’-UTR of the IL2
receptor gamma (IL2Rg) and acts as a negative regulator of NK
cell differentiation (98). The activity of NK cells is strongly
repressed by TGF-b, an immunomodulatory cytokine that is
released in the TIME. TGF-b induces the overexpression of miR-
27a-5p, which targets 3’-UTR of the chemokine receptor
CX3CR1 expressed in several immune cells, resulting in the
suppression of the migration ability of NK cells (99). Another
TGF-b-induced miRNA is miRNA-183. The miR-183 binds and
suppresses the DNAX activating protein 12 kDa (DAP12), an
adaptor protein critical for NK cells, to inhibit NK cell function,
thus creating an immunosuppressive TIME (100).

T Cells
The key effector cells for tumor eradication are the CD8+
cytotoxic T cells because they directly recognize and kill cells
displaying foreign antigens through binding MHC I molecules.
The loss of MHC I expression in tumor cells abolishes antigen
presentation, thereby contributing to immune evasion. A genome-
wide CRISPR/Cas9 screen was performed and identified that
PRC2, a complex with histone methyltransferase activity,
silences the expression of MHC I via bivalent H3K4me3 and
H3K27me3 modifications and inhibits the anti-tumor immunity
mediated by T cells (101). Simultaneously, the existence of
bivalent H3K4me3 and H3K27me3 at the MHC I promoter
region in a range of human MHC I-deficient cancers was
detected (101). Thus, targeting bivalent H3K4me3 and
H3K27me3 may be one of the potent therapeutic approaches in
cancer treatment. Another in vivoCRISPR screen in a PDAmouse
model identified that KDM3A potentially blocks T cell-mediated
immune response via regulating the expression of epidermal
growth factor receptor (EGFR) through the Krueppel-like factor
5 (KLF5) and SMAD family member 4 (SMAD4) (102), which
makes KDM3A a potential target for cancer therapy.

ICI therapy for various cancers has revolutionized the
standard of care and achieved significant clinical outcomes.
Nevertheless, only a limited subset of patients harbors positive
feedback after ICI treatment (103). The main reason for this is
that the expression of immune checkpoint molecules/ligands is
always regulated by epigenetic alterations, including DNA
methylation, histone modification, and ncRNAs. Epigenetic
regulation of immune checkpoint proteins on T cells can lead
to an immunosuppressive TIME through the following effects:
less responsive T cells, increased Treg cells, MDSC recruitment,
and impaired release of effector cytokines (104). The Cancer
Genome Atlas (TCGA) Level 1 methylation data from 30 solid
tumor types have revealed that hypermethylated costimulatory
genes and hypomethylated immune checkpoint genes are
negatively associated with functional T cell recruitment to the
TIME (105). To promote the therapeutic efficacy of ICI
treatment, methods that can be used to restimulate the
expression of immune checkpoint proteins and costimulatory
molecules are one of the solutions in cancer therapy.
April 2021 | Volume 12 | Article 640369
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As mentioned above, EZH2 epigenetically upregulates the
expression of CCRK, and CCRK inactivates GSK3b via
phosphorylation, thus further activating b-catenin in HCC
cells (87, 106). In addition, b-catenin signaling in melanoma
samples is correlated with the absence of a T cell gene expression
signature (107). These results suggest a relationship between
EZH2 and CD8+ T cell infiltration within the TIME in
melanoma. Regarding to T cell infi l tration, CXCL1
overexpression in PDA tumors can diminish the number of
infiltrated T cells (108). In this study, a library of congenic cell
clones from KPCY tumors was established, and the immune
microenvironment was analyzed. In brief, they found that
H3K4me3 modification at the Cxcl1 promoter enhances the
expression of CXCL1 in PDA tumor cell clones, leading to low
infiltration of T cells and DCs, and the recruitment of MDSCs,
which shapes the TIME and influences the outcome of
immunotherapy (108). Effector T-cell trafficking to the TIME
is mediated by T helper 1 (TH1)-type chemokines CXCL9 and
CXCL10. Whereas, in a human ovarian cancer model,
H3K27me3 induced by EZH2 and DNA methylation catalyzed
by DNMT1 at their promoter regions repress the expression of
CXCL9 and CXCL10 in tumor cells (109). Furthermore, the
expression of EZH2 and DNMT1 in tumors is negatively
correlated with CD8+ T cell infiltration within the TIME, as
well as patient prognosis (109). Therefore, EZH2 can serves as a
cancer therapeutic target. Infiltrated T cells may be dysfunctional
because of different mechanisms, which may include nuclear
receptor subfamily 4 group A member 1 (NR4A1) regulation.
NR4A1 is highly expressed in tolerant T cells and can bind to
activator protein 1 (AP-1) to promote H3K27ac, which leads to
the activation of tolerance-related genes (110).

In the healthy state, Treg cells play a pivotal role in
maintaining host immune homeostasis. However, in HCC
tumors, TGF-b stimulation leads to the low expression of miR-
34a, upregulates CCL2 and finally recruits more Treg cells to the
TIME (111). EZH2, an important methyltransferase, is
considered as a potent therapeutic target in many cancers. The
distinct expression level of EZH2 in Treg cells depends on their
locations. Particularly, Treg cells in tumor tissues specifically
express high levels of EZH2 and its histone modification
H3K27me3 compared with those in non-lymphoid tissues,
resulting in tumor tolerance (112). In addition, the EZH2 and
H3K27me3 levels are increased only in Treg cells when
compared to CD4+Foxp3- T cells in tumor tissues (112).
Targeting EZH2 in Treg cells remodels the TIME by
improving recruitment and function of CD4+ and CD8+

effector T cells that guide antitumor immunity (112). The
presence of Th17 cells (a group of CD4+ T cells characterized
by RORg expression and IL-17 production) in the TIME is
correlated with poor prognosis in colorectal cancer patients.
Th17 cells can be recruited to the TIME via the CCR6-CCL20
pathway in cervical cancer due to upregulated CCL20 in tumor
tissues and high expression of CCR6 on Th17 cells aggregated
within tumor tissues (113). It is a possible that Th17 cells are
recruited into the TIME via the CCR6-CCL20 axis, thereby
contributing to the lncRNA u50535-mediated tumor growth
Frontiers in Immunology | www.frontiersin.org 7
and metastasis of CRC (114, 115). In addition to CD8+ T cells,
how to regulate the Treg cells and Th17 cells in TIME is also a
viable option to improve the clinical outcome of cancer therapy.

In recent years, the gut microbiota has received increasing
interest as they have been revealed ton interact with many
human diseases, including cancer not only limited to colorectal
cancer but also extraintestinal tumors (116). The gut microbiota
can affect the DNA methylation patterns, chromatin structure,
and miRNA activity to maintain the host immune system and
homeostasis through the microbes themselves or metabolites
(117–119). Butyrate, a short chain fatty acid (SCFA) derived by
gut microorganisms, inhibits HDAC activities and induces an
abundance of Treg cells, leading to tumor suppression in colitis-
associated cancer (CAC), a major subset of CRC (120, 121).
However, the relationship between HDAC inhibition and Treg
cell recruitment in CRC needs to be clarified. Cancer
immunotherapy requires microbiota-derived signals because
the function of DCs for priming CD8+ T cells is controlled by
the gut microbiota through H3K4me3, which activates genes
related to immune responses (122, 123). There is limited
evidence illustrating the mechanism of epigenetic modification
between gut microbiota and TIME, which makes this area being
an interesting field for researchers to investigate.
EPIGENETICS IN INTRATUMORAL
HETEROGENEITY

ITH is termed as subpopulations of cancer cells with different
phenotypes and molecular features within a tumor and also
contains heterogeneity of the TIME, resulting in tumor
metastasis, drug resistance and tumor relapse (Figure 3). Cancer
stem cells (CSCs), a small population of stem-like cancer cells
within the TIME, are one of the two major frameworks for
interpreting the causes of ITH (22). Accumulating evidence
suggests that CSCs represent a heterogeneous population of cells
that can be regulated by epigenetics, possessing tumorigenicity and
metastasis. In breast cancer, the MLL4-mediated H3K4me2 and
the CBP/p300-c-Myc complex-mediated H3ac contribute to self-
renewal of CSCs by regulating the expression of epithelial–
mesenchymal transition (EMT) regulators, such as SNAIL,
ZEB1, and ZEB2, in the absence of KDM6A (124). KDM6A
(also known as UTX), a component of the MLL complex,
recruits LSD1, HDAC1, and DNMTs to form a complex that
inhibits H3K4me2 and H3ac, and enhances DNA methylation at
the promoter regions of SNAIL, ZEB1, and ZEB2, thereby
resulting in abolished CSC self-renewal, tumor proliferation, and
migration (124). However, the role of KDM6A in breast cancer
remains controversy, and whether KDM6A can serve as a
therapeutic target needs to be further investigated. The
expansion of CSCs is also promoted by TWIST1, whose
expression is elevated by the CBP-mediated H3ac at the
promoter, in which CBP degradation is repressed by MTDH, a
protein always associated with tumor progression, metastasis, and
drug resistance (125). Several epigenetic inhibitors were
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investigated to block self-renewal of CSCs, including DNMT,
HDAC, histone methyltransferase (HMT), histone demethylase
(HDM), and bromodomain and extra-terminal domain (BET)
inhibitors (126, 127). Additionally, epigenetic regulators, miRNAs,
have an ability in modifying CSC development. For example, both
miR-34a and miR-141 inhibit prostate cancer stem cells and
metastasis by targeting CD44, a CSC marker (128, 129).

CSCs are demonstrated to be involved in immune resistance
by multiple lines of evidence in many cancer types and therefore
contribute to immunosuppressive TIME. One of the main CSC
regulators, c-Myc, that is commonly expressed in many human
cancers, can upregulate the expression of immune checkpoint
molecules CD47 and PD-L1 (130, 131). Non-autonomously,
CSCs from many solid tumors have been proven to be able to
release a majority of immunosuppressive factors or cytokines,
such as VEGF, TGF-b, IL-4, IL-6, IL10, PD-1, and others, among
which many can help recruit suppressive immune cells, including
TAMs, Treg cells, and MDSCs, and impair CD8+ T cell function
(132, 133). Collectively, CSCs play a pivotal role in the remodeling
of TIME to establish an immunosuppressive environment.
Multiple therapeutic methods targeting CSCs have sprung up
like mushrooms, such as NK cells, CSC-based DC vaccine, CSC-
based T cells (including CAR-T), and monoclonal antibodies
(133). Overall, targeting CSC-based immunotherapies is a
potential effective strategy for cancer treatment.

Another major framework for interpreting the causes of ITH
is clonal evolution (22). The concept clonal evolution was
proposed by Nowell in 1976 for the first time (134).
Throughout the process of tumor development, clonal
evolution preferably proceeds in a branching rather than in a
linear manner, and this leads to clonal and (epi)genetic diversity
in different subpopulations (22). Cancer therapeutic responses in
clinical are largely determined by the evolution of resistant
subpopulations and the changes in cellular phenotypes (135).
Frontiers in Immunology | www.frontiersin.org 8
Moreover, cancer immunotherapy is mainly dependent on the
degree of functional infiltrated T cells, which positively correlates
with clinical outcome. However, the number of infiltrated T cells
is discriminated among different subclones originating from a
single tumor tissue isolated from a PDA mouse model and
associated with epigenetic regulation (108).

First, an autochthonous mouse model, including mutated
Kras and p53, of PDA expressing the YFP lineage tag (KPCY)
was established. Then, tumor was isolated from KPCY mice and
experienced a limiting dilution to generate tumor cell clones. The
data showed that TIME is diverse among separated clones, in
which low T cell clones correlated with low DC infiltration and
high MDSC recruitment. Tumors formed from clones with low T
cell infiltration negatively correlated with immunotherapeutic
responses, demonstrating that ITH could induce tumor relapse
in patients responsive to immunotherapy. Mechanistically,
CXCL1 was highly expressed in the tumor clones with low
T cell infiltration due to the high levels of H3K4me3
enriched at the promoter region of the Cxcl1 gene. G-CSF,
responsible for MDSC recruitment, was also expressed at high
levels in the T cell low tumor clones. However, the exact number
of Treg cells was also higher in T cell high clones than in low
clones, suggesting a correlation between Treg cells and
immunotherapy response, which needs to be further explored.
The inhibition of H3K4me3 might be a potential method for
eliminating T cell low tumor clones and could be combined with
immunotherapy to completely eliminate whole tumor in
PDA patients.
CLINICAL TRIALS

The antitumor efficacy of epi-drugs has been proved in
preclinical experiments with elevated antitumor immunity.
FIGURE 3 | Epigenetic regulation of ITH that contributes to immunotherapy resistance. Cancer is a heterogeneous disease with a complicated TIME, leading to
immunotherapy failure. Two main reasons contribute to immunotherapy resistance. First, within the TIME, there are some subpopulations of tumor that are non-
responsive to immunotherapy, which causes resistance to immunotherapy. Second, CSCs cause poor clinical outcome in immunotherapy. CSCs may be not
completely eliminated by immunotherapy, which subsequently lead to tumor relapse and metastasis. Both the two processes can be regulated by epigenetics,
suggesting that a combination of immunotherapy and epi-drugs may be an effective strategy for cancer therapy. BET, bromodomain and extra-terminal domain;
HMT, histone methyltransferase; HDM, histone demethylase; DNMT, DNA methyltransferase; HDAC, histone deacetylase.
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Many epi-drugs have been applied to clinical trials, and
their ability to eradicate cancer has been investigated. Here,
we discuss the recent results of clinical trials involved in
epi-drugs (Table 1).

DNMT Inhibitor
Guadecitabine (SGI-110), a next-generation DNMT inhibitor, is
under investigation in clinical trials for its ability of resistance to
degradation by cytidine deaminase, leading to a prolonged
activity in vivo. It has been confirmed that SGI-110 is able to
improve the expression of HLA class I molecule on melanoma
cells and the number of CD8+ T cells and CD20+ B cells, which
demonstrated that SGI-110 has promising immunomodulatory
and antitumor capacity (153).

In a phase I clinical trial for PK/PD analysis, 20 patients with
recurrent, platinum-resistant ovarian cancer were enrolled and
administered with guadecitabine and carboplatin (136). The first
six patients treated with 45 mg/m2 of guadecitabine
and carbopla t in AUC5 repor ted neutropen ia and
thrombocytopenia, while the remaining 14 patients who were
treated with 30 mg/m2 of guadecitabine and carboplatin AUC4
reported no such toxicity. Furthermore, three patients had a
partial response (PR) and 15% clinical benefit rate (CBR), and six
patients performed stable disease (SD) for more than 3 months
with 45% CBR. Additionally, a CA-125 reduction of at least 50%
was observed in 5/15 evaluable patients. In summary, this phase I
clinical trial demonstrated the efficacy and safety of
guadecitabine and carboplatin combination therapy in a
platinum-resistant ovarian cancer cohort, supporting a
completed Phase II trial (137).

Another phase I trial on guadecitabine was conducted in 22
previously irinotecan-treated patients with metastatic colorectal
cancer (mCRC) (138). They were treated across four doses:
guadecitabine 30 mg/m2 with or without growth factor support
Frontiers in Immunology | www.frontiersin.org 9
(GFS) and guadecitabine 45 mg/m2 with or without GFS. Each
patient received 125 mg/m2 irinotecan at days 8 and 15. At the
endpoint of this trial, the median overall survival (OS) was 10.7
months, and 17 patients were evaluable, among which, 12 had
SD as the best response and five had PD. Using LINE-1 analysis,
global DNA demethylation in tumors was found to be decreased
as expected. What’s more, guadecitabine 45 mg/m2 and
irinotecan 125 mg/m2 with GFS showed the least severe side
effects in mCRC patients. These findings provide a theoretical
basis for a subsequent randomized phase II trial. In elderly non-
fit patients with AML, the combination of retinoic acid and
decitabine led to a higher remission rate and increased median
overall survival, without additional toxicity (147).

HMT Inhibitor
Pinometostat (EPZ-5676) is a first-in-class inhibitor of DOT1L,
which plays a central role in Th cell lineage commitment and
stability, and has been evaluated as a single agent for the
treatment of adult patients with advanced acute leukemia,
especial ly those with mixed-l ineage leukemia gene
rearrangements (MLL-r) leukemia. After treatment, only two
patients experienced complete remission at 54 mg/m2 per day,
demonstrating the clinical benefit of EPZ-5676 for MLL-r
patients (139).

EZH2 is another attractive target for anti-cancer therapy
because of its ability in promoting the division and
proliferation of cancerous cells and role in regulating immune
cells in TIME, including T cells, NK cells, DCs and macrophages
(154). Reprograming the TIME by targeting EZH2 is a viable
area of cancer research (112, 155). At present, there are three
different EZH2 inhibitors, namely tazemetostat, GSK2816126,
and CPI-1205, which have been investigated in phase I clinical
trials. After treatment with tazemetostat, the most commonly
reported adverse event (AE) was asthenia (33%) in 64 patients
TABLE 1 | Recent clinical trials.

Epigenetic inhibitors Target NCT number Conditions Status Reference(s)

DNMT inhibitors
SGI-110 DNMT1 NCT01696032 Ovarian cancer Phase I (136, 137)
SGI-110 DNMT1 NCT01896856 Previously treated metastatic colorectal cancer Phase I/II (138)
HMT inhibitors
EPZ-5676 DOT1L NCT01684150 Advanced hematologic malignancies Phase I (139)
GSK2816126 EZH2 NCT02082977 Advanced hematological and solid tumors Phase I (140)
CPI-1205 EZH2 NCT02395601 B-cell lymphoma Phase I (141)
Tazemetostat EZH2 NCT01897571 Advanced solid tumors and B-cell lymphomas Phase I/II (142, 143)
HDAC inhibitors
Panobinostat pan-HDAC NCT00878436 Recurrent prostate cancer after castration Phase I/II (144)
Vorinostat pan-HDAC NCT01422499 Relapsed solid tumor, lymphoma or leukemia Phase I/II (145)
Vorinostat pan-HDAC NCT00731731 Newly diagnosed glioblastoma multiforme Phase I/II (146)
Combinations
Decitabine/Valproic acid/Retinoic
acid

DNMT/HDAC NCT00867672 Acute myeloid leukemia Phase II (147)

Romidepsin/5-azacitidine HDAC/DNMT NCT01998035 Relapsed/refractory lymphoid malignancies Phase I/II (148)
Romidepsin/5-azacitidine HDAC/DNMT NCT01537744 Advanced solid tumors Phase I (149)
CC-486/pembrolizumab DNMT/PD-L1 NCT02546986 Advanced or metastatic non-small cell lung cancer Phase II (150)
Vorinostat/pembrolizumab HDAC/PD-L1 NCT02638090 Stage IV non-small cell lung cancer Phase I/II (151)
Vorinostat/pembrolizumab HDAC/PD-L1 NCT02538510 Recurrent squamous cell head and neck cancer or salivary gland

cancer
Phase I/II (152)
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(21 with B-cell non-Hodgkin lymphoma and 43 with advanced
solid tumors) (142). Among these, no treatment-related deaths
occurred, and durable objective response rates were 38 and 5% in
patients with B-cell non-Hodgkin lymphoma and solid tumors,
respectively (142). GSK2816126, a highly selective inhibitor of
EZH2, was applied for the treatment of 41 patients with solid
tumors or B cell lymphoma (140). In this trial, 12 (32%) patients
had a severe AE, and fatigue (53.7%) and nausea (48.8) were the
most common toxicity (140). PK/PD results showed that the
half-life of GSK2816126 was approximately 27 h and its
maximum tolerated dose (MTD) was 2,400 mg (140). Finally,
14 (34%) patients experienced the best response of SD and 21
(51%) patients had progressive disease (140). CPI-1205, the third
selective EZH2 inhibitor, was orally administered twice a day in
32 patients with B-cell lymphomas (141). CPI-1205 had the
shortest half-life (~3 h) among the mentioned three EZH2
inhibitors, but induced grade 2 or lower drug-related AEs
(141). Among patients, only one achieved a complete response
(CR) and five patients had SD (141). Based on these findings,
ongoing research needs to be conducted using CPI-1205 in
combination in solid tumors (141).

HDAC Inhibitor
HDAC inhibitors have been proved to be able to alter the
secretion level of cytokines and chemokines, favoring a Th1
immune response in cancer therapy (156). Panobinostat, a pan-
HDAC inhibitor, has been approved by FDA for use in multiple
myeloma patients in 2015 and able to improve NK cell-mediated
tumor eradication (156, 157). In a phase I/II clinical trial,
panobinostat was combined with bicalutamide to treat patients
with castration-resistant prostate cancer (CRPC) and restore the
resistance to bicalutamide in CRPC patients (n = 64; Phase I: 9;
Phase II: 55) (144). In the phase II trial, panobinostat at 40 mg
p.o. triweekly was selected as the highest oral dose based on the
Phase I trial (144). The median time to PSA progression was 9.4
and 6.3 weeks for the A and B arms, respectively (144). The most
common AE for the two arms was fatigue (55 and 65%,
respectively), and the toxicity of panobinostat was tolerable
with dose reductions (144). Overall, panobinostat, together
with bicalutamide, increased rPFS in CRPC patients
and reduced androgen receptor-mediated resistance to
bicalutamide (144).

HDAC inhibitors can also be combined with DNMT
inhibitors for the treatment of lymphomas, AML, and solid
tumors. In a phase I study, 5-azacytidine (a DNMT inhibitor)
and romidepsin (a HDAC inhibitor) were combined for the
treatment of patients with peripheral T-cell lymphoma (PTCL)
(148). This combination therapy was well-tolerated in lymphoid
malignancy patients and produced a better overall response rate
(73%) and complete response rate (55%) in patients with PTCL
than in those with non-T-cell lymphoma (148). Combined with
the DNMT inhibitor CC-486, romidepsin was investigated in
another phase I clinical trial, in which 18 patients with advanced
solid tumors were enrolled (149). Although the combination of
CC-486 and romidepsin was tolerable, the antitumor effect was
not significant (149). Another HDAC inhibitor vorinostat was
Frontiers in Immunology | www.frontiersin.org 10
investigated in two Phase I/II clinical trials as a single agent or in
combination therapy (145, 146).

Combination Therapy With ICI
Most patients exhibited no or partial response to ICI therapy,
which is attributed to several factors, including tumor mutational
burden (TMB), TIME and tumor immune evasion (9). Owing to
the function of epigenetic regulation in malignancies, the
combination of epi-drugs and ICI therapy may be open a new
gate for cancer therapy, especially DNMT inhibitor and HDAC
inhibitor (158).

A randomized phase II study was conducted to compare the
treatment efficacy and safety of pembrolizumab (PD-L1 mono-
antibody) plus CC-486 or placebo in NSCLC patients previously
treated with platinum (150). Unfortunately, no improved PFS
was shown between pembrolizumab + CC-486 and
pembrolizumab + placebo arms. The treatment feasibility
might be influenced by AEs, particularly gastrointestinal, thus
resulting in non-comparable median OS (11.9 months vs. not
estimable) (150).

Two clinical trials, a phase I/Ib and a Phase II, were
performed using pembrolizumab and vorinostat combination
therapy in patients with NSCLC, and head and neck (HN) and
salivary gland cancer (SGC), respectively. The phase I/Ib study
demonstrated that pembrolizumab (200 mg) plus vorinostat (400
mg) were the recommended dose which was well tolerated (151).
Among the enrolled 33 patients, 30 were evaluable for response:
four (13%) had partial response; 16 (53%) had SD; and 10 (33%)
had progressive disease (151). In the ICI-pretreated cohort,
CD8+ T cell presence in the tumor stromal area was correlated
with treatment benefit (151). While MDSCs showed no such
association. Another combination therapy involving
pembrolizumab and vorinostat was investigated in a phase II
trial conducted in 25 HN and 25 SGC patients (152). The
toxicities of this combination therapy were more severe than
those of pembrolizumab alone reported elsewhere. The median
OS and median PFS were 12.6 and 4.5 months and 14 and 6.9
months in the HN and SGC cohorts, respectively. Beneficial
responses in SGC were reportedly fewer than those in HN when
treated with pembrolizumab and vorinostat, possibly due to the
low expression of PD-L1 on SGC.
CONCLUSION

Epigenetic regulation (DNA methylation, histone modification,
and ncRNAs) plays a controversial role in cancer initiation and
progression, especially in the modification of TIME. Epigenetics-
related drugs approved by FDA are proved to be sufficient for
cancer therapy, suggesting that targeting epigenetic pathway is a
promising strategy for cancer treatment. This strategy can not
only induce anti-proliferation of tumor cells, but also shift the
TIME from cold to hot. Moreover, the gut microbiota-mediated
epigenetic regulation can also influence tumor cells and the host
immune system; however, the mechanism by which the
microbiota epigenetically shape TIME needs to be further
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investigated. Another interesting area of research is the
epigenetic regulation of B cell function in tumor development.
Because of ITH, therapies targeting each tumor clone and CSCs
represent new directions for cancer treatment.

Both pre-clinical and clinical studies have confirmed the
antitumor effect of epi-drugs. However, a single epi-drug had
not achieved much positive feedback in clinical trials,
demonstrating that epi-drugs should be employed in
combination with other cancer therapeutic approaches,
including chemotherapy, radiotherapy, and immunotherapy,
particularly ICI therapy. Due to the toxicity of epi-drugs,
ongoing research should focus on how to decrease their side
effects. ncRNAs are well-known group of factors that regulate
tumor development. Thus, combination of ncRNA-related drugs
and immunotherapy may be another potential strategy for
cancer treatment in clinical trials.
Frontiers in Immunology | www.frontiersin.org 11
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