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Epstein Barr virus (EBV) is one of the most successful pathogens in humans with more
than 95% of the human adult population persistently infected. EBV infects only humans
and threatens these with its potent growth transforming ability that readily allows for
immortalization of human B cells in culture. Accordingly, it is also found in around 1-2% of
human tumors, primarily lymphomas and epithelial cell carcinomas. Fortunately, however,
our immune system has learned to control this most transforming human tumor virus in
most EBV carriers, and it requires modification of EBV associated lymphomagenesis and
its immune control by either co-infections, such as malaria, Kaposi sarcoma associated
herpesvirus (KSHV) and human immunodeficiency virus (HIV), or genetic predispositions
for EBV positive tumors to emerge. Some of these can be modelled in humanized mice
that, therefore, provide a valuable platform to test curative immunotherapies and
prophylactic vaccines against these EBV associated pathologies.

Keywords: cytotoxic lymphocytes, human immunodeficiency virus (HIV), Kaposi sarcoma associated herpesvirus
(KSHV), HLA-DRB1*1501, mutant Epstein Barr viruses (EBVs)
INTRODUCTION ON EBV

The Epstein Barr virus (EBV) or human herpesvirus 4 (HHV4) is a ubiquitous human g-herpesvirus
that persistently infects more than 95% of the human population (1). In Sub-Saharan Africa, this
percentage is already reached at 2 years of age, while in Europe and the US one third of the
population acquires EBV at a later age (2). This delayed primary EBV infection bears the risk to
develop into infectious mononucleosis (IM), an immunopathology due to massive anti-viral CD8+

T cell expansion and the accompanying cytokine release (3). Especially CD8+ T cells that recognize
lytic EBV antigens, expressed during the viral infection program that produces viral particles, are
increased to high frequencies during IM (4). Even so IM resolves in most cases, alterations in the
resulting EBV specific immune response might be the reason for elevated risks for EBV associated
Hodgkin’s lymphoma and multiple sclerosis (MS) (5, 6).

In addition to immunopathologies due to altered or increased immune responses to EBV
infection, this virus is primarily known for its oncogenic potential (7). It was originally discovered in
endemic Burkitt’s lymphoma (BL) of Sub-Saharan African children (8, 9). Furthermore, EBV can be
found in a subset of Hodgkin’s lymphoma (HL), diffuse large B cell lymphoma (DLBCL) and
immunoblastic lymphomas during immune suppression after transplantation, such as post-
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transplantation lymphoproliferative disease (PTLD), or during
HIV co-infection (10). These are mostly B cell lymphomas, but
also EBV associated natural killer (NK)/T cell lymphomas can
occur, often after prolonged uncontrolled EBV infection (11). In
addition, EBV is associated with epithelial cell derived
nasopharyngeal carcinoma (NPC) and 10% of gastric
carcinomas. These EBV associated malignancies mainly express
latent EBV antigens that are not involved in infectious virus
production but contain at least one of the main two EBV
oncogenes, nuclear antigen 2 (EBNA2) and latent membrane
protein 1 (LMP1) (12, 13). Latent EBV infection follows a pre-
latent phase upon B cell entry during which a set of both lytic and
latent antigens are expressed in order to support B cell activation,
proliferation and survival [as reviewed in (14)]. During latent
infection, which is the default gene expression program upon B
cell infection by EBV, up to 6 EBNAs, two LMPs as well as non-
translated Epstein–Barr virus-encoded small RNAs (EBERs) and
miRNAs are expressed. This gene expression program is thought
to drive EBV infected B cells after viral transmission via saliva in
sub-mucosal secondary lymphoid tissues like tonsils into
activation and differentiation to memory B cells, in which EBV
then persists for life (15). From this memory B cell compartment,
in which EBV only expresses non-translated RNAs, lytic
reactivation and infectious virus production occurs after
plasma cell differentiation, presumably after encountering the
cognate antigen of the B cell receptor of the infected cell (16). At
submucosal secondary lymphoid tissues this might lead to viral
shedding into saliva for transmission. The distinct B cell
differentiation stages and their respective EBV gene expression
patterns can also be found in the EBV associated malignancies,
and the respective B cell lymphomas (BL, HL and DLBCL)
increase in frequency during iatrogenic or HIV induced
immune suppression (10, 17). This suggests that immune
responses prevent transition from premalignant latent EBV
infections to overt tumors. Indeed, primary immunodeficiencies
that affect individual genes map to cytotoxic lymphocytes and their
ability to kill EBV infectedB cells as themost important component
of EBV specific immune control (18–20). In order to interrogate the
function of the in patients identified genes, dissect the contribution
of viral genes with EBV mutants and characterize the influence of
co-infections in vivo, preclinical mouse models with reconstituted
human immune cells (humanized mice) have been developed and
their contribution to a better understanding of EBV infection,
oncogenesis and immune controlwill be summarized in this review.
EBV INFECTION, IMMUNE CONTROL,
AND LYMPHOMAGENESIS IN
HUMANIZED MICE

To date humanized mice serve as a reliable model to study
pathogens that exclusively target humans. In the past decades,
several humanized mouse models were established that
responded to infection with EBV and allowed for assessing the
importance of host immune factors as well as viral proteins
Frontiers in Immunology | www.frontiersin.org 2
during an infection. In this review, we will primarily focus on
NOD/Shi-scid/IL-2Rgnull (NOG) and NOD/LtSz-scid IL2Rgnull

(NSG) mice with and without HLA-A2 transgenes as well as NSG
or NOD/LtSz-scid mice implanted with human fetal liver and
thymus tissue (BLT) that were all either neonatally or as adult
mice reconstituted with human immune system components by
transfer ofhumanCD34+hematopoietic progenitor cells (HPCs) or
of cord blood often after CD34+ HPC depletion. Most studies with
EBV infection have been performed in these particular humanized
mouse models and these were consistently permissive for multiple
EBV strains (21–25), mirroring acute infection as well as EBV
associated lymphomagenesis of humans. A more complete
overview of humanized mouse models was recently published
(26). As is the case for humans, human B cells constitute the
main reservoir for EBV in humanized mice, enabling viral
replication and lymphoproliferation. EBV infection of humanized
mice was therefore marked by viral loads in blood and secondary
lymphoid organs (22, 24, 27, 28).

Analogously to acute symptomatic primary infection inhumans
(29–31), the number of NK cells in peripheral blood and spleen of
humanized NSG mice increases starting at three weeks of EBV
infection and peaks at week four. The NK cell response constitutes
an important measure to prevent uncontrolled lytic EBV infection
and to bridge the time until adaptive T cell responses are primed.
Indicative of this is that depletion of NK populations in humanized
NSG mice resulted in higher viral loads and tumor incidence
(32, 33).

Initial control by NK cells is succeeded by priming and
expansion of cytotoxic CD8+ T lymphocytes (CTLs) in
peripheral blood. Those CTLs are mainly specific for lytic
antigens (22, 25, 34, 35) and exhibit a cytolytic effector profile
determined by high expression of activation molecules like HLA-
DR or 2B4 and cytotoxic effector molecules such as Granzyme B
(22, 25, 35). Consequently, expression of HLA-DR positively
correlates with increasing viral loads in infected humanized NSG
mice (36). In contrast to CTL expansion, CD4+ helper T cells do
not expand to a similar degree which is why an inversion of the
CD8 to CD4 T cell ratio is one of the hallmarks of EBV infection
in humanized mice as is in humans suffering from IM (25, 34).
Despite lower expansion rates and total numbers, CD4+ T cell
help seems to be required to tackle the infection in humanized
mice since CD4+ T cell depletion prior to infection results in
higher viral loads (22). This corresponds to human data
depicting a cytolytic effector function of EBV specific CD4+ T
cells during infection (37, 38).

In contrast to T cell responses, antibody mediated responses
to EBV are not yet as well characterized in humanized mice. In
humanized NOG and NSG mice, IgM responses to BFRF3 and
EBNA1, respectively, were observed. Detection of EBV specific
IgG antibodies, however, has proven to be more difficult. This
drawback might arise from deficiencies in germinal center
formation and therefore difficulties in antibody isotype class
switching as well as inefficient B cell development in several
humanized mouse systems (22, 39–43). There are, however,
promising developments in the generation of humanized mice
capable of mounting IgG responses to pathogens (44, 45).
March 2021 | Volume 12 | Article 640918
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Despite active immune control of EBV infection, lymphoma
formation can be observed in humanized mice. The degree of
lymphomagenesis is thereby dependent on the amount of viral
particles with which the animal is challenged. Humanized NSG
mice, for example, present in 20 – 30% of cases with disseminated
lymphomas in spleen, liver, lymph nodes or kidney when
challenged intraperitoneally with high dose EBV (105 infectious
particles) for four to fiveweeks (46, 47). Othermousemodels, as for
example humanized BALB/c Rag2nullIL2rgnull SirpaNOD (BRGS)
mice, present with higher lymphoma incidences of up to 75%
while surviving four weeks of infection (48). Besides that,
lymphomagenesis may be dependent on genomic or host
immunologic alterations which will be discussed in the
following sections.
ALTERED EBV PATHOLOGY DUE TO
GENETIC ALTERATIONS IN THE VIRAL
GENOME

Since the discovery that humanized mice are susceptible to EBV
infection and allow for the identification of host immune factors
in response to the pathogen, several groups started assessing the
importance of viral genes during infection. For example,
infection of a humanized BRGS mouse with type 1 or 2 EBV
strains was examined. The two EBV strains differ mainly in their
genetic sequence of the latent genes EBNA2, EBNA3A and
EBNA3C (49–51) and, consequently, in their ability to
transform infected cells in vitro. More importantly, in contrast
to EBV type 1, EBV type 2 was additionally observed to be
human T cell tropic which could explain findings of EBV related
human T cell lymphomas (48). Coleman and colleagues were able
to reproduce T cell tropism of EBV type 2 in vivo. However, the
infection of humanized mice with either strain resulted in
comparable degrees of viral replication and lymphomagenesis
contrasting the in vitro findings. Lymphomas caused by both
strains exhibited similar features, resembling diffuse large B cell
lymphomas (DLBCL) and expressing all latent EBV gene
products (48, 52). The strain specific differences that underlie
in vivo infection seem, for now, to be limited to lower LMP1
expression levels and higher lytic activity in EBV type 2 infected
animals (52). Still, the reason why the two EBV strains developed
different strategies, remains elusive. In addition to EBV type 2
that is primarily found in Sub-Saharan Africa (53), also Asian
EBV strains present with higher lytic EBV replication, and this
also extends to infections of humanized mice (21, 54, 55).

Apart from defining differences between the virus strains,
various gene loci of EBV type 1 were extensively studied in the
past decades using humanized mice (Figure 1). White and
colleagues investigated the contribution of EBNA3B to infection.
In their study, they infected humanized NSG mice with the B95-8
(EBV type 1) strain of EBV which lacked the EBNA3B gene locus.
Interestingly, the absence of EBNA3B led to higher tumor
incidences in those mice which White and colleagues assigned to
higher replicative activity of infected cells and a lower level of T
cell infiltration into tumors due to decreased expression of chemo-
Frontiers in Immunology | www.frontiersin.org 3
attractants as for example CXCL9 and CXCL10 (56). A lower
degree of T cell infiltration is thereby in line with EBNA3B being
often targeted by T cells (57).

In addition to T cell infiltration, the importance of MHC class
I restricted antigen presentation for EBV specific immune
control by CD8+ T cells in humanized mice was demonstrated
with a B95-8 virus that lacks the viral miRNAs (36). These
compromise antigen processing for MHC class I presentation
(58). In their absence EBV is more efficiently immune controlled
in humanized mice in a CD8+ T cell dependent manner. In
contrast to miRNA deficiency, EBER knock-out EBV infects
humanized mice similarly to wild-type virus (59), except for the
increased inflammation promoting potential of EBER2 of some
Asian EBV strains (55).

Other studies on B95-8 viruses lacking the EBNA3A or
EBNA3C gene locus highlighted that these genes are dispensable
for establishment of persistent infection in vivo. Despite findings
suggesting that EBNA3A or 3C knockout viruses are hardly able to
transform B cells in vitro, persistence was established in secondary
lymphoidorgans andbloodover a periodof threemonths andTcell
responses were mounted against the virus. Lack of EBNA3A or 3C,
however, seems to result in decreased aggressiveness of EBV
infection as viral loads were lower and the tumorigenic potential
was presumably lost (60). Studies in cord blood reconstituted
humanized NSG mice in which T cells might exert less immune
control due to efficient inhibitory receptor engagement and in
which higher frequencies of EBV associated lymphomas are
observed (61), came to similar conclusions regarding a decreased
aggressiveness in the absence of EBNA3A and 3C. However,
EBNA3A mutants could not only establish persistent infection in
thismodel, but tumorigenic potential was delayed andnot lost. Still,
both studies observed decreased LMP1 expression levels in infected
cells in spleen and tumor tissue (60, 62). In addition, the use of a
complete EBNA3A knockout virus (60) compared to an EBV
mutant with only decreased EBNA3A expression (62) might
explain differences in the viruses’ tumorigenic potential. In the
same cord blood reconstituted humanized NSG mouse model,
EBNA3C knockout EBV was able to cause lymphomas with
lower frequency. Similar to EBNA3A hypomorphic EBV,
lymphoma formation seemed to be delayed (52). Therefore, in
humanized mice with diminished immune control, decreased
EBNA3A or absent EBNA3C expression might still allow for the
delayed development of EBV associated diffuse large B
cell lymphomas.

Furthermore, LMP1 and 2 might also be dispensable for EBV
infection in humanized mice (63, 64), but their absence delays
lymphomagenesis. In the case of LMP1 deficiency the observed
lymphoma formation required CD4+ T cell help (63).

Surprisingly also lytic EBV reactivation, at least early lytic
gene expression, seems to promote lymphomagenesis in
humanized mice. B95-8 EBV infection caused less tumors in
the absence of the immediate early transactivation factor BZLF1
that induces lytic reactivation (23, 46). Vice versa, BZLF1
promotors that enhance lytic EBV infection are associated with
increased lymphoma formation (65, 66). Infection of humanized
mice with mutant EBV viruses can therefore reveal the function
March 2021 | Volume 12 | Article 640918
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of genetic variability or viral gene products, enabling further
insights into the life cycle of EBV in vivo.
MODIFICATION OF EBV SPECIFIC
IMMUNE CONTROL BY HOST GENETICS
AND MANIPULATION OF HUMAN
IMMUNE COMPARTMENTS

In addition to testing mutant EBV viruses and different viral
isolates in vivo, humanizedmice also allow interrogation of human
genetic variation, gene products and leucocyte compartments
during EBV infection, oncogenesis and immune control. With
regards to genetic variation IM and elevated antibody responses
against EBV nuclear antigen 1 (EBNA1) have been found to
synergize with the MHC class II molecule HLA-DRB1*1501 to
increase risk for the development of MS (5). Indeed, HLA-
DRB1*1501 restricted EBNA1 specific CD4+ T cell responses are
also elevated in MS patients (67–69). However, despite elevated T
cell responses to EBV infection in humanized mice that have been
reconstituted from HLA-DRB1*1501 donors, these animals
experience higher viral loads (70). Furthermore, the respective
HLA-DRB1*1501 restricted CD4+ T cells that recognize EBV
Frontiers in Immunology | www.frontiersin.org 4
transformed B cells (lymphoblastoid cell lines or LCL) cross-
react with myelin basic protein (MBP), an autoantigen in MS.
These findings suggest that EBV is inefficiently immune controlled
in the context of HLA-DRB1*1501 and that the resulting increased
numbers of EBV infected B cells might stimulate in turn myelin
antigen specific autoreactive T cell responses to cause MS.

Indeed CD4+ T cell responses seem essential to maintain
efficient immune control of EBV in humanized mice. Both,
iatrogenic immune suppression with tacrolimus (FK506) that
mainly affects CD4+ T cell activation and expansion after EBV
infection of humanized mice, and CD4+ T cell depletion by HIV
co-infection leads to elevated viral loads and increased EBV
associated B cell lymphoma formation (71, 72). During HIV co-
infection CD8+ T cell depletion does not further increase EBV
viral loads or lymphoma formation (72). This suggests that HIV
induced CD4+ T cell depletion compromises T cell help to
maintain protective CD8+ T cell function because CD8+ T cell
depletion during only EBV infection of humanized mice
significantly affects immune control (22, 36, 72, 73). Moreover,
antibody mediated depletion of both CD4+ and CD8+ T cells
increases viral loads and associated tumors in EBV infected
humanized mice (22, 43). In addition, antibody blocking of 2B4,
a co-stimulatory molecule on cytotoxic lymphocytes that uses
SLAM-associated protein (SAP), and SAP is mutated in X-linked
FIGURE 1 | Changes in Epstein Barr virus (EBV) infection, pathogenesis and immune control as revealed by infection of humanized mice with mutant viruses.
Elimination of EBNA3C (DEBNA3C) allows establishment of persistent EBV infection without transformation. Loss of EBNA3B (DEBNA3B) increases and loss of
BZLF1 (DBZLF1) decreases EBV associated lymphomagenesis. Loss of viral miRNAs (DmiRNA) leads to increased expression of the antigen processing machinery
for MHC class I presentation, allowing for improved immune control by CD8+ T cells. Deficiency in LMP1 (DLMP1) causes dependency on CD4+ T cell help for EBV
induced B cell transformation.
March 2021 | Volume 12 | Article 640918
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lymphoproliferative disease 1 (XLP1) thereby predisposing for
EBV associated pathology, increases EBV viral loads and
lymphomagenesis in humanized mice (73). 2B4 blocking on top
of CD8+ T cell depletion does not lower EBV specific immune
control further, suggesting that 2B4 is mainly required on CD8+ T
cells to suppress EBV infection. SAP deficiency is, however, also
associated with loss of invariant NKT cells (74) which have been
shown to restrict EBV transformed B cells in humanized mice (75,
76). This could also contribute to compromised immune control
of EBV in XLP1. Moreover, antibody blocking of PD-1, an
inhibitory receptor on both effector and regulatory T cells,
increases EBV loads and lymphomagenesis in infected
humanized NSG mice engrafted with human CD34+ HPCs (26,
35). This loss of immune control correlates with immune
suppressive cytokine and regulatory T cell amounts in anti-PD-1
treated and EBV infected humanized mice. Strikingly, blocking
PD-1 and/or CTLA-4 in cord blood reconstituted humanized
NSG mice resulted in decreased tumor formation (61). As cord
blood reconstituted humanized NSGmice seem to develop weaker
T cell mediated immune control after EBV infection and allow for
higher frequencies of EBV associated lymphomas, especially after
infection with the lytic M81 EBV strain, PD-1 and CTLA-4
blockade might be required to strengthen this immune control
(61) which seems to be in part based on Vg9Vd2 T cells (77). Thus,
composition of the T cell compartment and balance between
regulatory and anti-viral T cells might determine the outcome of
PD-1 and CTLA-4 blockade. However, genetic loss of CTLA-4
seems to be associated with EBV associate pathologies in some of
the affected individuals (78). Similarly, PD-1 blockade seems to
cause loss of EBV specific immune control and brain homing of
EBV infected B cells in a subgroup of treated patients (79).

In addition to T cells, innate lymphocytes contribute to EBV
specific immune control. Protection against EBV infection of
humanized mice has been shown for NK, NKT and Vg9Vd2 T
cells (32, 33, 75, 77, 80). Early differentiated NKG2A+KIR- NK
cells restrict primarily lytic EBV replication and degranulate
their cytotoxic machinery toward lytically EBV replicating BL
cells (29, 32). In contrast, depletion of plasmacytoid dendritic
cells, the main hematopoietic source of type I interferon (IFN)
during viral infections, does not significantly influence EBV
infection of humanized mice (81). Accordingly, type I IFN
signaling deficiencies do not predispose for EBV associated
pathologies (19). These studies demonstrate that humanized
mice can be used to interrogate the role of genetic variations,
of leucocyte compartments and of their receptors in EBV specific
immune control.
ALTERATION OF EBV ASSOCIATED
PATHOGENESIS BY CO-INFECTION

In addition to HIV infection, some EBV associated malignancies
are also observed during additional co-infections. Endemic BL
can be primarily observed in geographic areas of holoendemic
exposure to the malaria parasite Plasmodium falciparum (82, 83).
In Sub-Saharan Africa, where Denis Burkitt described this tumor
Frontiers in Immunology | www.frontiersin.org 5
for the first time (84), Kaposi sarcoma associated herpesvirus
(KSHV) or human herpesvirus 8 (HHV8) a another pathogen
with which EBV interacts during co-infections is also highly
prevalent (85). Both EBV and KSHV are found in the tumor cells
of 90% of primary effusion lymphomas (PELs) (10). Moreover,
KSHV infection seems to benefit from EBV co-infection for
persistence (47, 86–88). Humanized mice that are infected with
both KSHV and EBV develop B cell lymphomas with higher
incidence (47). The developing lymphomas harbor both EBV and
KSHV (Figure 2). They present with hallmarks of plasma cell
differentiation that is characteristic for PELs (89). Interestingly, this
plasma cell differentiation that is also in healthy EBV carriers
associated with lytic EBV replication (16), causes elevated
induction of at least early lytic EBV reactivation in PEL-like
tumors of double-infected humanized mice (47). Co-infection
with an EBV mutant that can no longer activate lytic infection
(BZLF1 deficient EBV), reduces lymphomagenesis duringEBVand
KSHV co-infection of humanized mice, suggesting that the
transactivated lytic EBV gene expression might contribute to
conditioning of the tumor microenvironment for efficient
growth (7).

HIV co-infection also does more than just suppress EBV
specific immune control. It was noted that anti-retroviral therapy
(ART) reduced immunoblastic EBV associated lymphomas in
HIV infected individuals, while BL and HL frequencies did not
decline (17). Similarly, in humanized mice HIV co-infection
influences EBV infected B cells directly (72). It was found that
HIV is capable to infect EBV transformed B cells due to CD4 up-
regulation during EBV infection and maintained CXCR4
expression on human B cells (Figure 2). HIV also integrates
and replicates in EBV infected B cells but alters their gene
expression pattern for enhanced antigen processing toward
MHC class I restricted antigen presentation. Accordingly, HIV
and EBV infected B cells are efficiently recognized by both EBV
and HIV specific CD8+ T cells and mainly accumulate in double-
infected humanized mice after CD8+ T cell depletion. Future
studies will need to show if double-infected B cells alter EBV
associated lymphoma formation over a longer observation
period, independent of HIV induced immune suppression.
CONCLUSIONS AND OUTLOOK

In summary, the development of humanized mice revolutionized
the study of pathogens exclusive to humans such as EBV. The
possibility to use small rodents instead of endangered New World
monkeys (90, 91) greatly facilitated the research on host immune
factors and viral genes during infection. Various humanized
mouse models are consistently permissive for infection with and
allow replication of EBV. Even more promising, these models
mimic human lymphoproliferative diseases and the reaction of
human immune system components to infection. In addition, host
and virus genetic alterations and their implications in disease
outcome may be more extensively studied in humanized mice
which may not be comparably easy in humans. Further studies on
host susceptibility factors like HLA-DRB1*1501 are needed to
March 2021 | Volume 12 | Article 640918
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assess additional groups at risk of developing EBV associated
diseases and to develop personalized treatments in the future.
Similarly, the interplay between EBV and other co-infecting
pathogens is difficult to assess in humans but may be elucidated
in humanized mice. Thus, with humanized mice it became feasible
to study not only contributions of single immune cell types or
single molecules to infection outcome but also to investigate the
importance of virus and host genetics. The findings resulting from
infection models in humanized mice thereby enable applied
research on EBV vaccines, or the development of new
treatments against EBV induced lymphomas.

Despite these advantages there are still limitations to each of
the humanized mouse models employed. The biggest limitation
with respect to EBV infection is that humanized mice do not
support infection of oropharyngeal epithelia. In humans the
infection starts in the oropharynx with a complex interplay
between submucosal B cells and polarized epithelia. Therefore,
EBV’s complete life cycle cannot be mimicked thus far.
Furthermore, most models failed to mount proper antibody
responses to EBV which is why their contribution to infection
could not yet be well studied using a mouse model. Reports on
new humanized mouse models with improved seroconversion to
IgG, however, seem promising in solving this problem (44, 92). A
further limitation of the presented EBV infection models is that
in most cases lymphomas with expression of all latent EBV genes
develop. As a result, the in humans more prominent HL or BL
with restricted latent gene expression cannot currently be
modelled in humanized mice and therefore such models still
Frontiers in Immunology | www.frontiersin.org
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have to be developed. Along these lines infection with EBNA2
deficient EBV has recently been reported to cause lymphomas
with some HL characteristics and might be further explored to
gain insights into this EBV associated malignancy (93). With
further developments of humanized mice in the upcoming years
we may be able to reveal even minor host and viral genetic as well
as host immune factors that contribute to control of EBV
infection. Thus, we may be able to use the gained knowledge
to design vaccines or therapies against this most transforming
human tumor virus.
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FIGURE 2 | Influence of co-infections on EBV transformed B cells. (A) Co-infection with the Kaposi sarcoma associated herpesvirus (KSHV) transactivates lytic EBV
replication and is associated with plasma cell differentiation, characterized for example by BLIMP1 and IRF4 expression. This leads to enhanced lymphomagenesis
and the resulting tumors have characteristics of primary effusion lymphomas (PELs). (B) EBV infection of B cells up-regulates CD4 and with the sustained expression
of CXCR4 renders EBV transformed B cells susceptible to infection with the human immunodeficiency virus (HIV). This leads to the integration of the reverse
transcribed HIV genome into the host cell genome. Double-infected B cells up-regulate the antigen processing machinery for MHC class I presentation and are
therefore efficiently immune controlled by CD8+ T cells.
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