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Recurrent reproductive failure (RRF), such as recurrent pregnancy loss and repeated

implantation failure, is characterized by complex etiologies and particularly associated

with diverse maternal factors. It is currently believed that RRF is closely associated

with the maternal environment, which is, in turn, affected by complex immune factors.

Without the use of automated tools, it is often difficult to assess the interaction and

synergistic effects of the various immune factors on the pregnancy outcome. As a result,

the application of Artificial Intelligence (A.I.) has been explored in the field of assisted

reproductive technology (ART). In this study, we reviewed studies on the use of A.I. to

develop prediction models for pregnancy outcomes of patients who underwent ART

treatment. A limited amount of models based on genetic markers or common indices

have been established for prediction of pregnancy outcome of patients with RRF. In

this study, we applied A.I. to analyze the medical information of patients with RRF,

including immune indicators. The entire clinical samples set (561 samples) was divided

into two sets: 90% of the set was used for training and 10% for testing. Different data

panels were established to predict pregnancy outcomes at four different gestational

nodes, including biochemical pregnancy, clinical pregnancy, ongoing pregnancy, and

live birth, respectively. The prediction models of pregnancy outcomes were established

using sparse coding, based on six data panels: basic patient characteristics, hormone

levels, autoantibodies, peripheral immunology, endometrial immunology, and embryo

parameters. The six data panels covered 64 variables. In terms of biochemical pregnancy

prediction, the area under curve (AUC) using the endometrial immunology panel was the

largest (AUC = 0.766, accuracy: 73.0%). The AUC using the autoantibodies panel was

the largest in predicting clinical pregnancy (AUC = 0.688, accuracy: 78.4%), ongoing

pregnancy (AUC = 0.802, accuracy: 75.0%), and live birth (AUC = 0.909, accuracy:

89.7%). Combining the data panels did not significantly enhance the effect on prediction
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of all the four pregnancy outcomes. These results give us a new insight on reproductive

immunology and establish the basis for assisting clinicians to plan more precise and

personalized diagnosis and treatment for patients with RRF.

Keywords: artificial intelligence, recurrent reproductive failure, reproductive immunology, sparse coding, assisted

reproductive technology

INTRODUCTION

Pregnancy is a complex biological process that poses a
great challenge to the maternal immune system. The unique
immunology of the maternal–fetal interface was recognized,
since the “fetal allograft” concept was first described by Sir Peter
Brian Medawar in the early 1950s (1). Correct and precise cross-
talk between fetus and mother is an important basis for the
apposition, adhesion, implantation, and growth of the embryo
in the uterus (2). The abnormal frequencies and functions of
maternal immune cells are associated with reproductive failure,
especially in cases of recurrent reproductive failure (RRF), such as
recurrent pregnancy loss (RPL) and repeated implantation failure
(RIF) (3).

In the conventional medical procedure, the patients with
RRF are assessed and given a score, based on biomarkers that
have been demonstrated to be of relevance to the disease.
The treatment for the patients is based on the classification
or scores (4, 5). However, the etiologies of RRF are highly
heterogeneous and the complex underlying interactions between
the biomarkers make the creation of a personalized treatment
strategy based on all known parameters impossible for the
clinicians. Therefore, the design of a model that can accurately
predict the outcome of treatment methods would be highly
beneficial to the clinicians, enabling the choice of lower-risk
treatments, thus alleviating the financial burden of the treatment
cost and reducing treatment time.

In the field of assisted reproductive technology (ART),
predictive models have been applied as decision aids to embryo,
egg, sperm selection, and pregnancy outcome prediction, and
for the intrinsic evaluation of various factors related to clinical
outcomes (6, 7). Presently, the validity of the applied models
has been demonstrated by analyzing the correlation between
factors and the treatment outcome or etiology (8). However,
the varying degrees of accuracy and limitations of the applied
models have inhibited their use in the routine implementation
of in vitro fertilization (IVF) procedures (6). To address this
problem, more complex Artificial Intelligence (A.I.) systems,
such as artificial neural networks (ANNs), have been introduced
in ART fields (9, 10). A.I. systems are advantageous due to their
significant information processing properties in terms of non-
linearity, high levels of parallelism, noise and fault tolerance, as
well as learning, generalization, and adaptive capabilities (11).
Nevertheless, few studies that focus on the pregnancy outcome
prediction in patients with RRF exist.

Sparse coding is a common machine learning technique used
to extract features from raw data. The core of sparse coding
involves establishing a sparse representation of the raw data to
form a linear combination of basic elements called “atoms,” which

collectively form a library known as “dictionary.” The advantages
of using sparse coding include: (1) training a learning model by
adopting a relatively lower number of features from raw data,
which, in turn, lowers the computational cost during model
training; (2) increased interpretability of the learning results
as critical features that can be identified efficiently from the
dictionary (12). It has been demonstrated that sparse coding can
be applied in genome-wide association studies, neuroimaging,
and oncology for object detection and classification tasks (13–
16). Sparse coding techniques have not been comprehensively
studied in the area of reproductive medicine, and its application
in immunological profile analysis of patients with RRF remains
to be explored.

The remainder of this article is organized as follows. A
literature review in the field of A.I. and reproductive medicine
is presented in the next section, followed by the methodology
and demonstration of sparse coding application to analyze
multidimensional clinical data of patients with RRF and predict
their pregnancy outcomes. The results on the performance of the
model are then introduced and finally, the concluding remarks
are presented in the discussion.

Overview of A.I. Application in
Reproductive Failure
Artificial Intelligence in Predicting Pregnancy

Outcomes of Patients With Infertility
Machine learning is a subset of A.I. that enables computer
algorithms to model the relationship between a set of observable
data (input data) and another set of variables (output data)
(17). It provides the ability to interpret and understand data
and to develop predictive models based on experience. Machine
learning methods include ANN, Support Vector Machines
(SVM), C4.5, Classification and Regression Tree (CART),
Random Forest (RF), K-Nearest-Neighbor (KNN), and so on.
ANNs and SVMs are widely used in biomedical problems
analysis. Machine learning methods can provide more options
and richer task information for problem solving. At the same
time, machine learningmethods are gaining popularity in clinical
decision-making (18–20).

The concept of a neural network is derived from the structure
and function of biological neural networks. In particular,
ANNs propose a system with stacked layers of interconnected
processors, or nodes, that can form increasingly complex features
in each successive layer (21). Raw information is supplied into the
input layer and passes through the implicit layer by a weighted
connection system. Finally, the output values of the transformed
features are generated in the output layer, to predict the outcome.
In a clinical setting, the input layer can represent medical data,
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the output layer can represent prognostic subclasses and multiple
implicit layers can represent feature detectors, used to capture
higher-order correlations. The SVM algorithm classifies the input
data by calculating support vectors that construct hyperplanes
in a higher-dimensional space, where the features are separable.
C4.5, CART, and RF are three decision trees with non-parametric
characteristics that map characteristics to outcomes using a
partitioning procedure that recursively divides the source set
of each node or branch point into unrelated subsets based on
the value of a particular characteristic. KNN is an instance-
based learning method that assigns classes to the data, based on
nearest-neighbor decision rules.

On the basis of big data training iterations, dimensionality
reduction can be applied to a large number of influential
factors by using various machine learning methods for modeling
and prediction. Simultaneously, relevant attributes with high
influence can be extracted, and a prediction model with relatively
high accuracy can be obtained. Hassan et al. (21) evaluated
the predictive ability of five different machine learning models,
namely, Multilayer Perceptron (MLP), SVM, C4.5, CART, and
RF, on the success rate of IVF pregnancies. A feature selection
algorithm for climbing features (attributes), combined with
automatic classification using a machine learning technique, was
used to reduce the number of most influential attributes to 19
for MLP, 16 for RF, 17 for SVMs, 12 for C4.5, and 8 for CART,
in order to analyze and predict IVF pregnancies in a more
accurate manner. The most influential factors were summarized
as: age, fertility factor index, basal sinus follicle count, number
of mature eggs, sperm collection method, gametes, in vitro
fertilization rate, 14-day follicle count, and embryo transfer
date. Vogiatzi et al. (8) used the ANN approach to validate the
efficiency of an ANN based on correlated parameters of live
birth as a comprehensive tool for predicting clinical outcomes
in patients undergoing ART. The ANN was constructed using
12 statistically significant parameters from the initial integration
with a cumulative sensitivity of 76.7% and a specificity of 73.4%.
The standard deviation of the performance metrics evaluated
between the training and the testing sets was low in the validation
process, pointing to the stability of the constructed ANN. The
constructed ANN, based on statistically significant live birth
outcome variables, is a stable and efficient system with increased
performance metrics. The validation of the system led to the
recognition of its clinical value as a medical decision aid and
provided a reliable method for the routine practice of IVF units
in a user-friendly environment. Elson et al. (22) developed a
decision tree based on a combination of clinical, morphological,
and biochemical parameters predicting successful pregnancy
outcomes that assisted the expected management of women
with tubal ectopic pregnancies. Significant differences were
detected in maternal age, initial serum β-hCG, and progesterone
among pregnant women who required surgery or recovered
on their own. Analysis utilizing a decision tree can be
used as an estimation guide for the probability of successful
prediction individually.

Machine learning methods have, in general, high prediction
accuracy; however, the final model prediction accuracy can vary.

Commonly used classifiers include SVMs, recursive partitioning,
RF, adaptive augmentation, and KNN. Hafiz et al. (23) used
data mining techniques to predict the implantation outcome of
IVF and intracytoplasmic sperm injection (ICSI), which were
found to be superior to other comparable methods using RF
and recursive partitioning, with the corresponding area under
the ROC curve (AUC) values reaching 84.23 and 82.05%,
respectively. Ghaeini et al. (24) proposed an ICSI outcome
prediction model based on decision trees and SVMs. The input
variables of the model included parameters such as the medical
history of the couple, hormone testing, and cause of infertility.
The output variable was the occurrence of a clinical pregnancy.
The accuracies of the decision tree method and SVMs were 70.3
and 75.7%, respectively. The performance of the SVM method
was superior to the performance of the decision tree method.

Artificial Intelligence in Predicting Pregnancy

Outcomes of Patients With RRF
Currently, research on predictive models for pregnancy
outcomes in patients with RRF is limited and has mainly
focused on classifying patients for better clinical management,
ignoring the effects of relevant immune factors on pregnancy
outcomes of the patients. Bruno et al. (25) used machine
learning to stratify patients with RPL into different risk
categories, validated their appropriate prognosis and potential
treatments through diagnostic workup, provided a decision-
support system tool to stratify RPL patients, and objectively
addressed their appropriate clinical management. Immune
factors were not accounted for and pregnancy outcomes
were not predicted. Li et al. (26) suggested that RPL may be
related to abnormally elevated amounts of uterine natural
killer (uNK) cells. They pointed out the difficulty of counting
uNK and stromal cells under histochemical sections, because
of the close morphological proximity of stromal cells to
epithelial cells. This paper was the first to report on the
ability to distinguish between different cell morphologies and
accurately count them using image recognition techniques.
Researchers can greatly benefit from this method in analyzing
immunohistochemical images. Nevertheless, its application
is limited and is unable to provide predictions, based on cell
counts alone. Mora-Sanchez et al. (27) concluded that the degree
of allelic sharing of human leukocyte antigen (HLA) genes is
related to RPL, combining immunogenetics with A.I. to create a
personalized tool to elucidate the genetic causes of unexplained
infertility and a gamete matching platform that could improve
pregnancy success.

The representative literature on the development of predictive
models for pregnancy outcomes in recent infertile and patients
with RRF is summarized in Table 1. Notably, a limited amount of
models were observed that were established for the prediction of
pregnancy outcome of patients with RRF. The published models
were based only on genetic markers or common indices. To
investigate the impact of immune factors on pregnancy outcomes
in patients with RRF, we applied A.I. for the analysis of the
medical information of patients with RRF, including immune
indices for pregnancy outcomes prediction.
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TABLE 1 | Recent representative literature related to predictive models for patients with infertility or RRF.

References Sample

size

Study

design

List of

selected

features

Attribute/feature

selection

technique used

Validation

(training/test

procedure)

Modeling

method

IVF/ICSI

or RRF

Immune

factors

Outcome Performance reported

Ramos-

Medina et al.

(28)

428 Retrospective

cohort study

7 attributes No feature

selection

Did not mention LR RM, RIF Yes Clinical pregnancy,

live birth

No report

Dhillon et al.

(29)

12,638 Retrospective

cohort study

8 attributes No feature

selection

9,915 of the data were

used for training and

2,723 for testing

LR IVF/ICSI No Live birth AUC 0.62

Milewski et al.

(30)

1,995 Retrospective

cohort study

20 attributes PCA, principal

component

analysis

Train-test ANN IVF No Clinical pregnancy AUC 0.666

Vaegter et al.

(31)

8,182 Prospective

cohort study

36 attributes Bivariate GEE

regression

70% of the data were

used for training and

30% for testing

GEE multivariate

regression

IVF/ICSI No Live birth Accuracy 0.67

Hafiz et al.

(23)

486 Cross-

sectional

study

29 attributes No feature

selection

Five-fold cross

validation

SVM, 1NN, RF,

RPART, Adaboost

IVF/ICSI No Pregnancy SVM: AUC 0.576, Accuracy 68.30%;

1NN: AUC 0.500, Accuracy 64.84%

RF: AUC 0.842, Accuracy 83.96;

RPART: AUC 0.821, Accuracy 83.56%;

Adaboost: AUC 0.475,

Accuracy 66.99%;

Hassan et al.

(21)

1,048 Retrospective

cohort study

25 attributes Hill climbing

wrapper

algorithm

3/4 of the data were

used for training and

1/4 for testing

MLP, SVM, C4.5,

CART, RF

IVF No Pregnancy MLP: AUC 0.991, Accuracy 97.77%;

SVM: AUC 0.993, Accuracy 98.01%;

C4.5: AUC 0.966, Accuracy 93.21%;

CART: AUC 0.97, Accuracy 95.24%;

RF: AUC 0.992, Accuracy 98.83

Ghaeini et al.

(24)

251 Retrospective

cohort study

9 attributes No feature

selection

70% of data were

randomly selected for

training, 15% for

validation, and 15% for

testing the model.

DT, SVM ICSI No Clinical pregnancy DT Accuracy 70.3%;

SVM Accuracy 75.7%

Blank et al. (7) 1,052 Retrospective

cohort study

32 attributes No feature

selection

Train-test RF, LR IVF/ICSI No Pregnancy RF: AUC 0.74; LR: AUC 0.66

Vogiatzi et al.

(8)

426 Retrospective

cohort study

118 attributes either t-test or

χ
2-test

70% of the data were

used for training and

30% for the testing

ANN IVF No Live birth Accuracy 75.7%

Qiu et al. (32) 7,188 Retrospective

cohort study

8 attributes No feature

selection

Five-fold

cross-validation

LR, RF, SVM,

XGBoost

IVF/ICSI No Live birth LR AUC 0.72; RF AUC 0.73; SVM AUC

0.72; XGBoost AUC 0.74.

Itzhaki et al.

(33)

72 Retrospective

cohort study

13 attributes RReliefF

algorithm

Data were randomly

split into a training set

(70% of the data) and a

test set (30%)

LR, SVM, NN IVF No Positive beta-hCG,

Clinical pregnancy,

Live births

Positive beta-hCG: LR Accuracy 53%,

SVM Accuracy 59%, NN Accuracy

85%;

Clinical pregnancy, LR Accuracy 58%,

SVM Accuracy 63%, NN Accuracy

90%;

Live births, LR Accuracy 55%, SVM

Accuracy 58%, NN Accuracy 87%.
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EXPERIMENTAL METHODS

Data Acquisition
Medical data from 942 patients with RRF, including RPL or
RIF, who visited the Fertility Center of Shenzhen Zhongshan
Urology Hospital, China, from February 2015 to November 2019,
were retrospectively extracted from the electronic medical record
(EMR) system. RPL is defined as two or more spontaneous
abortions prior to 20 weeks of gestation. RIF refers to infertile
couples who experienced failure to conceive after multiple IVF
cycles. During the process of diagnosis and laboratory detection,
the medical data were generated and stored in the EMR system.
Out of 942 samples, 381 were excluded, due to missing values.
Finally, 561 data samples were included in the analysis.

Data Processing
Data processing, model design, and programming were all
carried out in MATLAB 2017b (The MathWorks, Inc.). Due to
diversity in clinical testing and reporting period, concatenation
of data within 90 days prior to serum human chorionic
gonadotropin (hCG) test was performed for each patient. Z-score
normalization was used for numerical data and one-hot encoding
for categorical data.

Model Training and Performance
The initialization of the dictionary matrix (Wd) was carried out
using uniformly distributed numbers. Each column of Wd was
normalized to a magnitude of 1. The processed and normalized
data set (X) and dictionary matrix were used as input into
the Iterative Shrinkage and Thresholding-based Algorithm with
coordinate descent to obtain the sparse representation (Z) (34).
Tanh and ReLu were selected as the activation functions of the
hidden layers for the sparse representation. Softmax was used in
the output layer for linear classification to obtain the prediction
results. The cost of prediction was calculated using the sum of
least squares between the prediction result and the true label.
TheWdmatrix was updated through backpropagation. Forward-
and back-propagation were repeated until the optimal dictionary
matrix was obtained (i.e., lowest cost). The data set was divided
into training data set (90%) and testing data set (10%) for each
data panel. The performance of the model was evaluated on
the testing data set. The evaluation metrics included receiver
operating characteristic (ROC) curves, accuracy, sensitivity, and
specificity. The true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) rates were used for the
calculation of the abovementioned metrics as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP
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TABLE 2 | Definition and data range of variables in the model.

Field Definition of field Data range/class Total

N = 561

Mean ± SD/N (%)

Live birth

N = 237

Mean ± SD/N (%)

No live birth

N = 324

Mean ± SD/N (%)

P-value

Basic characteristics panel

Female age (years) Female age at time of

conception

19–47 34.67 ± 4.39 33.73 ± 4.08 35.35 ± 4.48 <0.001

Female BMI (kg/m2) Female body mass index 15.2–48.68 21.69 ± 3.01 21.55 ± 3.27 21.79 ± 2.80 0.166

Kayrotype of couple Kayrotype analysis of couple {Normal, abnormal} Abnormal: 48 (8.60%)

Normal: 510 (91.40%)

Abnormal: 22 (9.36%)

Normal: 213 (90.64%)

Abnormal: 26 (8.05%)

Normal: 297 (91.95%)

0.585

Autoantibodies panel

aβ 2 GPI-IgM (U/ml) Concentration of aβ 2 GPI-IgM 0.27–287 10.53 ± 19 12.9 ± 20.48 8.79 ± 17.68 0.418

aβ 2 GPI-IgG (U/ml) Concentration of aβ 2 GPI-IgG 0.1–133.87 1.25 ± 5.86 1.3 ± 8.36 1.21 ± 2.92 <0.001

aCL-IgM (MPL) Concentration of

anti-cardiolipin antibody -IgM

0.13–104.75 4.69 ± 4.46 4.68 ± 4.62 4.7 ± 4.35 0.690

aCL-IgG (GPL) Concentration of

anti-cardiolipin antibody -IgG

0.23–102 5.16 ± 5.21 6.15 ± 3.84 4.43 ± 5.91 <0.001

aTG (IU/ml) Concentration of

anti-thymocyte globulin

0–1,801 87.25 ± 191.56 96.37 ± 204.4 80.57 ± 181.63 0.246

aTPO (IU/ml) Concentration of

anti-thyroidperoxidase

antibodies

0–1,300 34.3 ± 75.4 35.44 ± 63.79 33.46 ± 82.95 0.393

SSA (U/ml) Concentration of SSA 0–251 12.2 ± 18.66 13.36 ± 23.15 11.36 ± 14.50 0.471

SSB (U/ml) Concentration of SSB 1–430 8.26 ± 8.53 8.45 ± 11.17 8.11 ± 5.9 0.060

Sm (U/ml) Concentration of Sm 1–207 6.5 ± 4.8 6.99 ± 5.39 6.14 ± 4.3 0.169

RNP (U/ml) Concentration of

ribonucleoprotein

1–754 23.36 ± 27.12 25.23 ± 23.63 21.98 ± 29.37 0.008

Scl-70 (U/ml) Concentration of Scl-70 1–212 15.2 ± 15.98 14.97 ± 13.06 15.37 ± 17.84 0.596

Jo1 (U/ml) Concentration of Jo1 2–384 19.73 ± 28.13 19.96 ± 25.72 19.55 ± 29.81 0.862

dsDNA (U/ml) Concentration of

double-stranded DNA

0–112 16.09 ± 14.45 15.76 ± 15.61 16.33 ± 13.56 0.097

Centromeric B (U/ml) Concentration of centromeric B 0–232 13.32 ± 14.7 14.03 ± 18.42 12.81 ± 11.24 0.940

histones (U/ml) Concentration of histones 1–78 8.24 ± 5.8 8.07 ± 5.27 8.37 ± 6.16 0.774

Peripheral immunology panel

D2 (ng/ml) Concentration of D-dimer 45.36–30161.82 224.73 ± 188.95 228.1 ± 215.39 222.26 ± 167.29 0.809

ADP (%) Platelet aggregation rate when

ADP is used as an aggregator

5.7–98.9 75.82 ± 13.31 76.17 ± 12.81 75.56 ± 13.67 0.860

Col (%) Platelet aggregation rate when

Col is used as an aggregator

0.1–100 75.44 ± 20.15 75.46 ± 20.28 75.42 ± 20.08 0.406

ARA (%) Platelet aggregation rate when

ARA is used as an aggregator

0–100 59.05 ± 36.07 59.04 ± 34.19 59.06 ± 37.43 0.234

IgG T (%) The percentage of IgG+ T cells

in T cells

0.1–100 41.98 ± 35.35 47.13 ± 34.53 38.22 ± 35.52 0.001

IgG B (%) The percentage of IgG+ B cells

in B cells

0.8–100 62.16 ± 29.66 66.46 ± 27.24 59.01 ± 30.98 0.006

IFN-r (%) The percentage of IFN-r+ Th

cells in Th cells

3.6–67.8 22.53 ± 7.6 22.19 ± 6.82 22.78 ± 8.12 0.824

TNF-a (%) The percentage of TNF-a+ Th

cells in Th cells

5.1–84.4 38.88 ± 9.74 37.4 ± 8.88 39.97 ± 10.19 0.003

NK cytotoxicity 50:1 NK cytotoxicity to K562 at E: T

ratio of 50:1

3.1–79.7 34.57 ± 12.5 36.39 ± 11.32 33.24 ± 13.15 0.005

NK cytotoxicity 25:1 NK cytotoxicity to K562 at E: T

ratio of 25:1

1.4–76.2 23.42 ± 10.39 24.95 ± 9.98 22.3 ± 10.56 0.005

T (%) The percentage of T cells in

CD45+ lymphocytes

35.81–999.62 126.23 ± 194.65 138.04 ± 204.95 117.59 ± 186.61 <0.001

Tc (%) The percentage of Tc cells in

CD45+ lymphocytes

11.37–59.34 27.18 ± 6.1 27.08 ± 5.84 27.26 ± 6.3 0.908

(Continued)
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TABLE 2 | Continued

Field Definition of field Data range/class Total

N = 561

Mean ± SD/N (%)

Live birth

N = 237

Mean ± SD/N (%)

No live birth

N = 324

Mean ± SD/N (%)

P-value

Th (%) The percentage of Th cells in

CD45+ lymphocytes

16.77–62.96 37.04 ± 5.79 37.13 ± 5.88 36.98 ± 5.74 0.765

NK (%) The percentage of NK cells in

CD45+ lymphocytes

1.32–54.99 15.18 ± 5.07 15.02 ± 4.98 15.29 ± 5.14 0.674

B (%) The percentage of B cells in

CD45+ lymphocytes

3.68–33.49 13.72 ± 3.77 13.76 ± 3.7 13.68 ± 3.83 0.868

CD4/CD8 The ratio of Th cells and Tc

cells

0.34–3.62 1.47 ± 0.49 1.48 ± 0.48 1.46 ± 0.5 0.346

T (No.) The absolute number of T cells

per 100 µl blood

362.78–5999.08 1582.8 ± 487.26 1557.77 ± 475.69 1601.1 ± 495.48 0.213

Tc (No.) The absolute number of Tc

cells per 100 µl blood

104.86–3142.96 614.74 ± 231.03 600.82 ± 199.57 624.92 ± 251.38 0.872

Th (No.) The absolute number of Th

cells per 100 µl blood

241.58–3175.38 844.39 ± 302.62 836.67 ± 327.13 850.03 ± 283.73 0.277

NK (No.) The absolute number of NK

cells per 100 µl blood

33.95–1907.72 344.6 ± 160.4 335.25 ± 155.15 351.45 ± 164.04 0.133

B (No.) The absolute number of B cells

per 100 µl blood

61.78–1731.29 320.43 ± 167.27 318.54 ± 180.53 321.82 ± 157.14 0.639

Endometrial immunology panel

HE Histological dating {Inconformity, early,

mid, late}

Inconformity: 27

(20.00%)

Early: 1 (0.74%)

Mid: 106 (78.52%)

Late: 1 (0.74%)

Inconformity: 2

(25.00%)

Early: 0 (0%)

Mid: 6 (75.00%)

Late: 0 (0%)

Inconformity: 25

(19.69%)

Early: 1 (0.79%)

Mid: 100 (78.74%)

Late: 1 (0.79%)

0.949

CD56 (%) The percentage of CD56+ cells

in total endometrial cells

0.5–58.77 13.13 ± 6.94 13.8 ± 7.35 12.64 ± 6.6 0.051

Foxp3 (%) The percentage of Foxp3+

cells in total endometrial cells

0.01–1.11 0.1 ± 0.06 0.1 ± 0.06 0.1 ± 0.06 0.891

CD68 (%) The percentage of CD68+ cells

in total endometrial cells

0.15–12.32 2.22 ± 0.95 1.95 ± 0.94 2.41 ± 0.92 <0.001

CD163 (%) The percentage of CD163+

cells in total endometrial cells

0.5–10 2.64 ± 1.2 2.81 ± 1.34 2.53 ± 1.08 0.015

CD1a (%) The percentage of CD1a+ cells

in total endometrial cells

0–0.612 0.07 ± 0.06 0.07 ± 0.05 0.08 ± 0.06 0.030

CD83 (%) The percentage of CD83+ cells

in total endometrial cells

0.09–11.37 2 ± 1.01 1.88 ± 1.1 2.08 ± 0.93 <0.001

CD57 (%) The percentage of CD57+ cells

in total endometrial cells

0.02–2.66 0.39 ± 0.24 0.35 ± 0.22 0.41 ± 0.25 0.002

CD8 (%) The percentage of CD8+ cells

in total endometrial cells

0.53–18.27 3.14 ± 1.65 2.8 ± 1.6 3.38 ± 1.65 <0.001

CD138 The intensity of CD138+ cells

in endometrial tissue

{–, ±, +} –: 496 (96.88%)

±: 2 (0.39%)

+: 14 (2.73%)

–: 190 (98.45%)

±: 2 (1.04%)

+: 1 (0.52%)

–: 306 (95.92%)

±: 0 (0%)

+: 13 (4.08%)

0.004

Hormone panel

FSH (mIU/ml) Concentrationn of

follicle-stimulating hormone

0.97–59.62 7.31 ± 3.49 7.3 ± 4.24 7.31 ± 2.82 0.593

LH (mIU/ml) Concentrationn of luteal

hormone

0.35–48.96 5.14 ± 3.34 5.51 ± 4.26 4.87 ± 2.42 0.069

E2 (pg/ml) Concentration of estrogen 0.29–1,778 52.12 ± 69.45 46.02 ± 36.55 56.57 ± 85.67 0.773

P (ng/ml) Concentration of progesterone 0.03–59.02 0.83 ± 2.59 0.81 ± 2.49 0.84 ± 2.66 0.004

PRL (ng/ml) Concentration of prolactin 0.3–1,249 37.69 ± 90.22 36.14 ± 68.48 38.83 ± 103.35 0.023

T (ng/ml) Concentration of testerone 0–71.42 1.63 ± 6.07 1.47 ± 5.59 1.75 ± 6.4 0.083

TSH (µIU/ml) Concentration of thyroid

stimulating hormone

0.01–25.33 2.32 ± 1.01 2.29 ± 1.04 2.35 ± 1 0.138

(Continued)
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TABLE 2 | Continued

Field Definition of field Data range/class Total

N = 561

Mean ± SD/N (%)

Live birth

N = 237

Mean ± SD/N (%)

No live birth

N = 324

Mean ± SD/N (%)

P-value

FT3 (pg/ml) Concentration of free

triiodothyronine

1.01–301.2 3.11 ± 0.5 3.08 ± 0.46 3.14 ± 0.52 0.370

FT4 (ng/dl) Concentration of free thyroxine 0.71–84.88 2.01 ± 2.42 1.88 ± 2.37 2.1 ± 2.45 0.002

Embryo panel

ways to conceive IVF-ET or natural conception {IVF-ET, natural

conception}

IVF-ET: 517 (92.16%)

Natural conception:

44 (7.84%)

IVF-ET: 215 (90.72%)

Natural conception:

22 (9.28%)

IVF-ET: 302 (93.21%)

Natural conception:

22 (6.79%)

0.278

Endometrial

preparation programs

Endometrial preparation

programs during IVF-ET cycle

{Hormone-

replacement cycle,

natural cycle, others}

Hormone-replacement

cycle: 200 (43.67%)

Natural cycle: 113

(24.67%)

Others: 145 (31.66%)

Hormone-replacement

cycle: 79 (47.59%)

Natural cycle: 46

(27.71%)

Others: 41 (24.70%)

Hormone-replacement

cycle: 121 (41.44%)

Natural cycle: 67

(22.95%)

Others: 104 (35.62%)

0.050

Fertilization way Fertilization method to get

embryo

{ICSI, IVF} ICSI: 154 (32.56%)

IVF: 319 (67.44%)

ICSI: 54 (27.69%)

IVF: 141 (72.31%)

ICSI: 100 (35.97%)

IVF: 178 (64.03%)

0.059

Type of embryo Type of embryo {Blastosphere,

cleavage stage

embryo}

Blastosphere: 324

(62.43%)

Cleavage stage

embryo: 195 (37.57%)

Blastosphere: 148

(69.48%)

Cleavage stage

embryo: 65 (30.52%)

Blastosphere: 176

(57.52%)

Cleavage stage

embryo: 130 (42.48%)

0.006

Type of transfer Embryo transfer or frozen

embryo transfer

{ET, FET} ET: 53 (10.27%)

FET: 463 (89.73%)

ET: 40 (18.96%)

FET: 171 (81.04%)

ET: 13 (4.26%)

FET: 292 (95.74%)

<0.001

No. of transferred

embryo

The number of transferred

embryos in one transfer cycle

1–3 1.8 ± 0.55 1.88 ± 0.57 1.73 ± 0.53 0.012

Quality of embryo Quality of transferred embryo {Sequence

1,2,3,4,5}a
1: 624 (68.95%)

2: 244 (26.96%)

3: 32 (3.54%)

4: 4 (0.44%)

5: 1 (0.11%)

1: 296 (75.32%)

2: 84 (21.37%)

3: 12 (3.05%)

4: 1 (0.25%)

5: 0 (0%)

1: 328 (64.06%)

2: 160 (31.25%)

3: 20 (3.91%)

4: 3 (0.59%)

5: 1 (0.2%)

0.006

RESULTS

Clinical Characteristics of Samples
Following the literature review and in combination with the
expertise of clinicians, six panels with 64 variables were
considered as input variables. Three immune-related data
panels, including the autoantibodies, peripheral immunology,
and endometrial immunology panels were considered. Other
IVF-related data panels contributing to the pregnancy outcome,
including basic characteristics, hormones, and embryo panels
were also considered. The clinical characteristics used in this
study along with their respective description explaining their
physical implications, type of the values, and their range in the
collected data set are listed in Table 2. The mean age at the time
of conception was 34.67 years and significantly different between
the live birth group and non-live birth group. The average
body mass index (BMI) was 21.69 kg/m2, with no statistically
significant differences detected (21.55 vs. 21.79). Statistically
significant differences were detected between some of the 64
variables, between the groups of patients who did and did not
achieve a live birth (Table 2).

Model Performance on Immunological
Data Panels
We tested the sparse coding model using various data panels
including autoantibodies (Figure 1), peripheral immunology

(Figure 2), endometrial immunology (Figure 3), and the
combination of all three immunological data panels (Figure 4).
A summary of prediction accuracy using various data panels is
shown in Table 3. Four output labels were used for prediction,
namely, biochemical pregnancy, clinical pregnancy, ongoing
pregnancy, and live birth. The ROC curves during the model
training generally had AUC values exceeding 0.9, for each
immunological panel. The AUC values decreased during testing.
In terms of predicting biochemical pregnancy, the AUC of
prediction using the endometrial immunology panel was higher
(AUC = 0.766, accuracy: 73.0%) compared to the AUC of the
panel using autoantibodies (AUC = 0.447, accuracy: 70.3%) and
peripheral immunology panel (AUC = 0.697, accuracy: 72.4%).
The AUC of prediction using the autoantibodies panel was
higher in predicting clinical pregnancy (AUC = 0.688, accuracy:
78.4%), ongoing pregnancy (AUC= 0.802, accuracy: 75.0%), and
live birth (AUC= 0.909, accuracy: 89.7%), compared to the AUC
of the panels using peripheral immunology and endometrial
immunology panel. Combining all three immunological data
panels did not result in an increase of the AUCs of all four
pregnancy outcomes.

Performance of Model on Combined Data
Panels
Additionally, the sparse coding model was tested using both IVF-
related data panels and immunological data panels. The AUC
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FIGURE 1 | Autoantibodies panel performance of sparse coding in predicting

pregnancy outcomes at different pregnancy periods. (A) ROC plot of the

training data set. (B) ROC plot of the testing data set.

during the training phase was 1.0 for the prediction of all four
pregnancy outcomes, using combined data panels. The AUC
during the testing phase ranged from 0.661 to 0.793, following
a similar lower trend, as in the case of immunological data
panels (Figure 5). The use of combined data panels did not
significantly enhance the effect on the prediction of all four
pregnancy outcomes.

DISCUSSION

A machine learning model was developed in this study for
the prediction of the pregnancy outcomes for the patients with
RRF at any gestational period, namely, biochemical pregnancy,
clinical pregnancy, ongoing pregnancy, and live birth. The

FIGURE 2 | Peripheral immunology panel performance of sparse coding in

predicting pregnancy outcomes at different pregnancy periods. (A) ROC plot

of the training data set. (B) ROC plot of the testing data set.

accuracy of themodels for each stage in the testing data set ranged
from 54.2 to 89.7%.

We observed that the performance of the endometrial
immunology panel in biochemical pregnancy prediction was
superior to the autoantibodies and peripheral immunology panel.
Consistent with this result, it has been reported that implantation
failure in ART is thought to be mainly due to impaired
endometrial receptivity (35). In addition, implantation failure
and miscarriage occurrence have been reported to have different
mechanisms (36). Antiphospholipid syndrome (APS), which is
characterized by the presence of anti-cardiolipin autoantibodies
(ACAs), is the most common autoimmune disease associated
with RPL (37). However, the association between ACAs and
RIF is somewhat controversial (38). Anti-thyroid autoantibodies
(ATA) have been also demonstrated to correlate with RPL, while,
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FIGURE 3 | Endometrial immunology panel performance of sparse coding in

predicting pregnancy outcomes at different pregnancy periods. (A) ROC plot

of the training data set. (B) ROC plot of the testing data set.

the association between ATA and RIF remains unclear (39–
41). Our results showed that the AUC of the model using the
autoantibodies panel in predicting clinical pregnancy, ongoing
pregnancy, and live birth was the highest, while, the AUC for
biochemical pregnancy prediction was the lowest. Subsequently,
we can safely conclude that different models are appropriate for
pregnancy outcome prediction at different pregnancy periods.

Machine learning algorithms have been widely used in
many complex scenarios, such as image analysis, diagnosis,
classification, and prognosis (42). Multiple machine learning
techniques have been applied to improve the success rate of
ART. The A.I. application in reproductive medicine has focused
mainly on oocytes evaluation and selection (43), sperm analysis
and selection (44), and embryo selection (45). A few studies
have attempted to establish models for IVF outcome prediction

FIGURE 4 | Combination of immunology-related panels (autoantibodies,

peripheral immunology, and endometrial immunology) performance of sparse

coding in predicting pregnancy outcomes at different pregnancy periods. (A)

ROC plot of the training data set. (B) ROC plot of the testing data set.

(23, 46). Typical machine learning techniques such as Deep
Artificial Neural Network (DANN) and Convolutional Neural
Network (CNN) can be used to handle the high dimensionality
data features, but very often these models are hard to interpret
due to the “black-box” situation (47), which is usually not
favored in biomedical applications. We adopted sparse coding
which helps in the creation of an overcomplete information
space composed of atom features with high dimensionality,
which are critical to our model classifications. Simultaneously,
the sparse representation of atoms can highlight the important
features of patients using only a few atoms. It also enables
us to visualize the features and interpret the classification or
prediction results. To our knowledge, this is the first sparse
coding-based prediction model based on reproductive big data
including basic patient characteristics, hormone levels, immune
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TABLE 3 | Summary of training and testing accuracy of models on various data

panels.

Data panels Pregnancy outcome Training

accuracy (%)

Testing

accuracy (%)

Autoantibodies Biochemical pregnancy 86.7 70.3

Clinical pregnancy 84.9 78.4

Ongoing pregnancy 83.1 75.0

Live birth 89.0 89.7

Peripheral immunology Biochemical pregnancy 93.0 72.4

Clinical pregnancy 87.4 68.4

Ongoing pregnancy 87.4 55.4

Live birth 92.2 54.2

Endometrial Biochemical pregnancy 98.0 73.0

immunology Clinical pregnancy 97.0 59.5

Ongoing pregnancy 98.3 62.2

Live birth 100 76.7

Combined Biochemical pregnancy 96.1 65.7

immunology-related Clinical pregnancy 97.1 62.3

panels Ongoing pregnancy 95.6 55.1

Live birth 97.0 79.0

Combined Biochemical pregnancy 100.0 68.1

immunology-related Clinical pregnancy 100.0 70.6

panels and IVF-related Ongoing pregnancy 100.0 68.7

panels Live birth 100.0 71.4

status, and embryo parameter information for patients with RRF.
This model represents an attempt at combining the reproductive
immunology parameters with a machine learning algorithm.

In conventional clinical practice, clinicians can only
provide the successful pregnancy probability to the patient
according to the mean success rate of the fertility center.
In addition to predicting pregnancy outcomes, clinicians
are also concerned about developing effective treatment
strategies based on the medical data of the patient. The
models in the majority of the previous studies provided the
live birth probability to the clinicians. Given the variation
in the probability of success, the clinicians were unable to
know how close the status of the patient is related to a
successful pregnancy. The clinicians usually plan the treatment
strategy according to the medical data of the patient and their
experience on the underlying connection between different
parameters. Interpreting the underlying relationships between
medical data may influence the decision of the clinicians
concerning treatment strategies. Future studies can include
a thorough analysis of the immune status of the patients, by
comparing the atoms which contribute to a successful pregnancy,
generated in the sparse representation and assist clinicians to
develop more personalized treatment strategies based on the
comparison result.

Several limitations of this study need to be considered.
First, the entire data set of this study was derived from a
single reproductive immunology center. Second, other factors

FIGURE 5 | Combination of immunology and IVF-related panels

(autoantibodies, peripheral immunology, endometrial immunology, basic

patient characteristic, hormone level, and embryo parameter) performance of

sparse coding in predicting pregnancy outcomes at different pregnancy

periods. (A) ROC plot of the training data set. (B) ROC plot of the testing

data set.

that potentially affect pregnancy outcomes, such as lifestyle
(e.g., smoking history) and family genetic history, were not
taken into consideration in our study. Finally, the performance
of our model is related to the quantity and quality of the
data. Therefore, the model presented here needs further study
with more multi-center clinical data before full implementation
in a clinical setting. Moreover, the current A.I. is mainly
used as a support system to improve the accuracy and
efficacy of the clinicians, rather than a stand-alone decision-
making system. The clinicians should collaborate with algorithm
engineers to continually optimize the model, as it is applied in
clinical work.
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