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Macrophages are a specialized class of innate immune cells with multifaceted roles in
modulation of the inflammatory response, homeostasis, and wound healing. While
developmentally derived or originating from circulating monocytes, naïve macrophages
can adopt a spectrum of context-dependent activation states ranging from pro-
inflammatory (classically activated, M1) to pro-wound healing (alternatively activated,
M2). Tumors are known to exploit macrophage polarization states to foster a tumor-
permissive milieu, particularly by skewing macrophages toward a pro-tumor (M2)
phenotype. These pro-tumoral macrophages can support cancer progression by
several mechanisms including immune suppression, growth factor production,
promotion of angiogenesis and tissue remodeling. By preventing the adoption of this
pro-tumor phenotype or reprogramming these macrophages to a more pro-inflammatory
state, it may be possible to inhibit tumor growth. Here, we describe types of tumor-derived
signaling that facilitate macrophage reprogramming, including paracrine signaling and
activation of innate immune checkpoints. We also describe intervention strategies
targeting macrophage plasticity to limit disease progression and address their
implications in cancer chemo- and immunotherapy.

Keywords: cancer, macrophage, plasticity, therapy, tumor, inflammation
INTRODUCTION

Macrophages represent one of the most phenotypically diverse innate immune cell populations.
They are key homeostatic regulators that activate and modulate the innate and, subsequent adaptive
immune response to infectious agents and host-derived components. Much like other innate
immune cells, they are hard-wired to respond to cues rather than being “educated” to elicit a
response, as is the case of adaptive immune cells (1). Macrophages are equipped with a variety of
Pattern Recognition Receptors (PRRs) that, once activated, trigger pre-determined programs in
response to environmental stimuli. Some pro-inflammatory stimuli include Pathogen-Associated
Molecular Patterns (PAMPs), cellular or chemical moieties derived from pathogens, or Damage-
Associated Molecular Patterns (DAMPs) which are released by damaged cells and malignancies.
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These signatures permit macrophage adoption of the appropriate
functional phenotype to restore physiological equilibrium.

During infections, macrophage polarization to the
proinflammatory state is crucial for the production of type 1
cytokines such as interferon-g (IFNg), tumor necrosis factor-a
(TNFa) and interleukin 12 (IL-12) for host resistance (2–4). This
is similar to the response following injury. Cells in damaged
tissues undergo necrosis and release their contents in an
uncontrolled manner (5–7). Contrary to apoptosis, which is a
highly organized program for cell death, necrosis is more
immunogenic and induces a macrophage pro-inflammatory
response. Cellular components released during necrosis act as
DAMPs that, when bound to PRRs like Toll-like Receptors
(TLRs), initiate pro-inflammatory signaling in resident and
extravasated monocyte-derived macrophages. Activation of
PRRs, and other sensors, facilitate the adoption of a pre-
programmed pro-inflammatory state, also termed M1 or
“classically activated” (Figure 1). This occurs through
increased activation of signaling pathways involving NFkB,
p38, MAPK, and others, which regulate the expression of pro-
inflammatory cytokines (e.g., IL-1, IL-6, IL-12 (8, 9)) (Figure 2).
These macrophage-secreted signals recruit a variety of other
Frontiers in Immunology | www.frontiersin.org 2
immune cells that pioneer the clearance of infected and
damaged material.

A hallmark of the pro-inflammatory response is the
destruction of damaged cells and those in the immediate
vicinity. This creates a need for wound healing to restore tissue
integrity. Upon removal of damaged tissue, the aggregate
population of macrophages at the site of injury transitions to a
pro-wound healing phenotype, also referred to as M2 (Figure 1).
This transition is triggered by anti-inflammatory mediators
following the loss of pro-inflammatory signals, like DAMPs.
These pro-wound healing macrophages coordinate the
proliferation of key cell types including vascular endothelial
cells, which promote recellularization by delivering oxygen and
nutrients to the site of repair, and fibroblasts which drive scar
formation (10–12). Macrophages also dampen the local
inflammatory response, fostering a more hospitable
environment for continued repair, cellular proliferation and
the prevention of extensive or persistent inflammation that
might contribute to further tissue damage (13–16).

While macrophage plasticity is beneficial during the wound
healing process, the macrophage response is subverted during
cancer. Often termed “a wound that does not heal” (17), tumors
FIGURE 1 | Signals associated with macrophage differentiation to the classically and alternatively activated subsets. Created with BioRender.
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manipulate and reshape the immune response to promote and
sustain tumor growth. Presumably, due to the inhospitable
nature of the tumor microenvironment (e.g., hypoxia, nutrient
starvation), cancer cells undergo necrotic death which should
induce the macrophage pro-inflammatory response, ultimately
leading to further immune activation and reduced tumor growth.
However, in many tumors, the pro-wound healing phenotype is
predominant, which actually supports cancer progression. This
review outlines strategies employed by tumors to mitigate
macrophage pro-inflammatory activation or engage the pro-
wound healing response. Current therapeutic interventions
that alter the intra-tumoral M1/M2 balance and shift it
towards a more pro-inflammatory/anti-tumor response are
also described. We also explore potential conceptual flaws in
the current pro-inflammatory/pro-wound healing paradigm in
cancer, based on recent single-cell RNA-seq findings, and
implications these could have in the manipulation of
macrophage activation state to reduce tumor growth.
THE ROLE OF MACROPHAGES IN THE
ANTI-TUMOR RESPONSE

During tumorigenesis, genetic mutations can be acquired
through exposure to chemical carcinogens (18), radiation (19)
or viral infections (20, 21). Alternatively, inherited mutations
(22, 23) or those accumulated during chronic inflammation (24–
26) may also drive carcinogenesis. Cell intrinsic tumor
suppressive mechanisms, like DNA repair, senescence or
apoptosis (27), often fail to contain tumor cell proliferation,
promoting the need for immune-mediated elimination of the
Frontiers in Immunology | www.frontiersin.org 3
aberrant cells. Ideally, early responding immune cells, like
macrophages, will detect and eliminate tumor cells. Much like
during wound healing, macrophages may detect DAMPs,
possibly from hypoxia-induced tumor cell death or dysregulated
cellular processes (28), to trigger a pro-inflammatory response
and pave the way for true wound healing or a return to
homeostasis. Alternatively, macrophages or dendritic cells, as
antigen presenting cells, may engulf tumor neo-antigens,
process them and present antigenic peptides to tissue resident
CD8+ or CD4+ T cells, or in the case of dendritic cells, transit to
the draining lymph node to activate T cells (29–31). Whether for
tissue resident or T cells transiting from the lymph nodes, pro-
inflammatory macrophages provide co-stimulatory signals such
as CD40 (32) or CD80/86 (33), secrete activating cytokines (34),
and generate nitric oxide to increase vascular permeability and
immune cell infiltrate. T cells with the cognate receptor matching
the tumor neo-antigen, in the presence of co-stimulation, should
eradicate tumor cells unless they encounter other immuno-
suppressive signals.

While many early-stage tumors are presumably destroyed
through these mechanisms, the immune response to cancer is
clearly not effective. Rather, based on the immune-editing
hypothesis (35), the pro-inflammatory response applies a
selective pressure, forcing tumors to “evolve” to avoid
detection (e.g., through reduced antigenic protein expression,
reduction in antigen presentation (35) or suppression of the local
immune response (36)). Alternatively, nascent tumors may
undergo a period of dormancy, and may later be reactivated by
acquired secondary or tertiary mutations that allow for reduced
immunogenicity or increased immune suppression. Collectively,
this evolution is thought to allow tumor cells to reach an
equilibrium with the immune response. Following this
FIGURE 2 | Tumor-macrophage interactions and their subsequent roles in immune evasion and activation. Created with BioRender.
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equilibrium state, tumors may effectively “escape” the immune
response by utilizing mechanisms to prevent immune activation,
allowing them to grow largely unchecked.

Consequently, these immuno-editing processes may limit
macrophage responsiveness to DAMPs and tumor neo-
antigens, effectively abrogating their ability to transition to an
M1 phenotype (37) and promote T cell activation. In many
tumors, there is a promotion of the M2 phenotype which fosters
tumor growth. Presumably, either acquired through the
equilibrium/escape processes of immuno-editing or because
tumors provide contextual cues similar to those that promote
the pro-wound healing response. These M2 macrophages are
pro-tumorigenic and are often denoted as tumor-associated
macrophages (TAMs). Akin to the wound healing response,
macrophages facilitate cellular proliferation through
production of growth factors like Wnts (38), CXCL8 (39) or
IL-6 (40, 41). However, instead of promoting the re-growth of
tissue resident cells, these factors drive tumor growth. Likewise,
macrophages also secrete key effectors of vascularization, like the
vascular endothelial growth factor (VEGF) (42, 43), platelet-
derived growth factor (PDGF) (44) and transforming growth
factor b (TGFb) (45) to promote angiogenesis (Figure 1). These
physiologic processes are hijacked to increase blood flow to the
tumor, increasing tumor cell access to oxygen and nutrients for
continued cell proliferation. M2 macrophages may also maintain
tumor growth through the remodeling of the extracellular matrix
(ECM) through secretion of matrix metalloproteases (MMPs)
and other factors (45, 46) (Figure 1).

In the tumor context, pro-inflammatory macrophages are
considered a positive prognostic marker (47–49). Pro-
inflammatory macrophages are thought to positively regulate
the immune response and kill tumor cells directly. These
polarized macrophages prevent tumor growth by generating
factors such as reactive oxygen and nitrogen species, or other
secreted factors like TNFa, that lead to tumor cell death (50–53).
Macrophages can be induced to a pro-inflammatory state by
other immune cells, such as through the secretion of IFNg by T
cells, or directly by tumor cells. Alternatively, DAMPs can be
released by necrotic or necroptotic tumor cell death due to
hypoxia or nutr ient deprivat ion within the tumor
microenvironment (54, 55). These DAMPs, whether they be
nucleic acids, ATP, stress-related proteins such as heat shock
proteins (HSPs) (56–58), or transcription factors such
as HMGB1, HMGN1 (59–65), bind to and activate two
major classes of PRRs including the TLRs or the NOD-like
receptor (NLR) family. Interestingly, several TLRs that recognize
pathogenic signatures a lso recognize DAMPs. For
instance, TLR4, which is activated by the binding of bacterial
lipopolysaccharide (LPS) also recognizes HSPs and transcription
factors (66).

Conversely, the presence of M2 pro-wound healing
macrophages in tumors is generally a negative prognostic
marker, with patients with high numbers of intra-tumoral M2
macrophages showing decreased survival (67). Tumor cells are
known to secrete, or induce the secretion of, factors like IL-4,
IL-10 or IL-13 that polarize macrophages toward an M2
Frontiers in Immunology | www.frontiersin.org 4
phenotype (44, 68). Some pro-wound healing properties of M2
macrophages foster tumor growth and prepare a tumor-friendly
milieu (Figure 1). M2 macrophages can act to directly increase
tumor growth by secretion of growth factors like endothelial
growth factor (EGF), VEGF and TGFb (69–73), and can reduce
the hypoxia inherent in most tumors while allowing the delivery
of nutrients to sustain tumor growth. M2 macrophages also assist
in the remodeling of the tumor microenvironment. Regulation of
fibroblast ECM placement, degradation of existing ECMs
through MMPs and chemotactic migration signals, allow
continued tumor growth and metastasis. In some cases, live
cell imaging has shown tumor cells utilizing accessory
macrophages to travel to blood vessels and allow entry into the
vasculature (74–76).
MACROPHAGE-DIRECTED THERAPEUTIC
STRATEGIES FOR CANCER TREATMENT

Based on knowledge garnered from the study of macrophage
activation states in tumors, as well as associated signaling
affecting polarization, several strategies have been developed to
mitigate tumor progression by altering macrophage infiltration
or by activating/re-activating them to a pro-inflammatory state.
While a limited number of macrophage-directed therapeutics are
currently in use in clinical trials, continued identification and
pharmacological targeting of macrophages is expected to bolster
the use of macrophage targeted agents.

Macrophage Depletion to Reduce
Pro-Tumoral Activity
Since higher numbers of TAMs are associated with worse cancer
prognosis, research has focused on reducing their numbers by
targeting their tumor recruitment and differentiation (77–79). As
a result, some of the subsequent strategies are being tested for
clinical use and may be broadly available soon.

Macrophages, similar to other phagocytes, can be selectively
targeted by complexing cellular pro-apoptotic substances, such
as bisphosphonates, into nanoparticles (80) (Table 1). The
deletion of TAMs by using clodronate encapsulated in
liposomes (clodrolip) leads to reduced teratocarcinoma and
rhabdomyosarcoma tumor growth in pre-clinical murine
studies (144). This inhibition was coupled with a decrease in
tumor microvascular density, suggesting its potential
combination with VEGF-neutralizing agents to maximize its
effect (144).

Alternatively, inhibition of the chemotactic axis CCL2-CCR2
may prevent the accumulation of circulating macrophages within
the tumor microenvironment. Indeed, several monotherapy or
combinational clinical trials are currently underway with positive
results (81). However, CCL2-CCR2 inhibitors should be carefully
administered since the sudden interruption of therapeutic
regimens could dramatically increase tumor progression and
metastasis (145).

Additionally, targeting the monocyte/macrophage colony
stimulating factor (CSF-1) and its receptor (CSF-1R) is a
May 2021 | Volume 12 | Article 642285
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TABLE 1 | Summary of preclinical, clinical and current therapeutic approaches targeting macrophages for the treatment of various malignancies.

Therapeutic
Agent

Therapeutic
Modality

Indication Target Effect Development
Status

References

Anti-CCR2 Monoclonal
antibodies (mAbs),
small molecule
inhibitor

Metastatic solid tumors CCL2/CCR2 CCR2 antagonist blocks the
adaptation of TAM features

Phase I/II clinical
trials

(81–84)

Anti-CD24 mAbs Advanced solid tumors CD24/Siglec10 Increases expression of M1
macrophages and phagocytosis

Preclinical (85, 86)

Anti-CD39 mAbs Advanced solid tumors CD39 Increases extracellular ATP, promotes
M1 phenotype

Phase I clinical trials (87–89)

Anti-CD40 Vaccine, mAbs Lung cancer, metastatic
melanoma, solid cancers

CD40 CD40 agonism promotes
proinflammatory activity and increases
antigen presentation

Phase I/II clinical
trials

(90–93)

Anti-CD47 mAbs Advanced solid tumors,
hematologic malignancies

CD47/SIRPa Increases macrophage phagocytosis
and M1 activation

Phase I/II clinical
trials

(94–96)

Anti-CD73 mAbs Advanced or metastatic cancer CD73 Promotes anti-tumorigenic
macrophage activation

Phase I/II clinical
trials

(87, 88, 97)

Anti-CSFR1 Blocking
antibodies, small
molecule inhibitor
(BLZ945)

Advanced solid tumors CSF1/CSFR1 Increases proinflammatory and
tumoricidal activity, inhibits
recruitment of immunosuppressive
populations

Phase I/II clinical
trials

(98–101)

Bemcentinib Small molecule
inhibitor

Advanced or Metastatic Solid
Tumors

Axl RTK Inhibits polarization to the anti-
inflammatory macrophage phenotype

Phase I/II clinical
trials

(102–104)

BMS-777607 Small molecule
inhibitor

Advanced solid tumors TAM RTKs Restores proinflammatory immune
activation, decreases immune
suppressive cytokines and
efferocytosis

Phase I/II clinical
trials

(105, 106)

Clodronate Bisphosphonate Breast, prostate and bone
neoplasms

Complement
receptors

Depletes TAMs Phase III (107–111)

CpG ODN Single stranded
DNA, vaccine
adjuvant

Breast cancer, malignant
melanoma, glioblastoma,
leukemia

TLR9 TLR9 agonist to switch macrophage
polarization to proinflammatory

Phase I/II clinical
trials

(112–114)

Dasatinib Small molecule
inhibitor

Chronic myeloid leukemia
(CML), acute lymphocytic
leukemia (ALL) advanced cancer

Src family tyrosine
kinases

TAM depletion Phase IV clinical
trials, FDA
approved for CML
and ALL

(115–117)

Ferumoxytol Metallic
nanoparticles

Breast cancer, small cell lung
cancer

Varies based on
surface conjugates
of nanoparticles

Reprograming of TAMs to tumoricidal,
proinflammatory macrophages

Pre-clinical (118–120)

IL-12 Polymeric
nanoparticles,
vaccine, gene
therapy

Metastatic cancer, solid tumors IL-12R Re-education of TAMs Phase I/II clinical
trials

(121. 122,
123)

Imatinib Small molecule
inhibitor

Metastatic, advanced solid
tumors, refractory malignancies

STAT6 Inhibits macrophage polarization to
anti-inflammatory subset

Phase IV clinical
trials
FDA approved for
CML

(80, 124,
125)

Imiquimod Topical, vaccine,
small molecule
inhibitor

Basal cell carcinoma (BCC), skin
cancer, solid tumors

TLR7 Reprogramming TAMs toward
proinflammatory phenotype

Phase IV clinical
trials

(126–128)

Nilotinib Small molecule
inhibitor

Solid tumors, neoplasms,
gastrointestinal stromal tumors

BCR-ABL Inhibits macrophage polarization to
anti-inflammatory subset

Phase IV clinical
trials
FDA approved for
CML

(80, 125)

P2X7
antagonism

Topical BCC ATP/purinergic
receptor

Promotes M1 activation and
phagocytosis

Phase I (129–131)

STAT3
Inhibitors

Small molecular
inhibitor

Advanced solid tumors STAT3 Inhibits polarization to anti-
inflammatory phenotype

Phase I/II clinical
trials

(132–134)

STAT6
inhibitors

Small molecular
inhibitor

– STAT6 Inhibits polarization to anti-
inflammatory phenotype

– (135–137)

Sunitinib Small molecular
inhibitor

Refractory solid tumors, renal
cell carcinoma (RCC),
gastrointestinal stromal tumors
(GIST)

Multi-targeted
RTKs

Blockade of anti-inflammatory
phenotype

Phase IV clinical
trials, FDA
approved for RCC
and GIST

(80, 138)

Zoledronic
acid

Bisphosphonate Breast cancer, prostate cancer,
metastatic neoplasms

TLR4 Phenotype switch to proinflammatory Phase IV clinical
trials

(139–143)
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tractable strategy for macrophage depletion. In the absence of
this signal, bloodborne monocytes are unable to differentiate into
macrophages, preventing macrophage tumoral accumulation
(146). Accordingly, several CSF-1R/CSF-1 targeted therapies,
such as PLX3397, JNJ-40346527 and BLZ945, are currently
being tested in clinical trials either alone or in combination for
the treatment of several cancers (98, 147–149). However, these
inhibitors can also stimulate the recruitment of tumor-
promoting granulocytes to the site of the tumor, resulting in
therapy failure (150). Therefore, combination of CSF-1R
repressor with adaptive immune checkpoint inhibitors may be
an interesting strategy to mitigate this unexpected effect (150).

Finally, the antineoplastic agent, trabectedin, also depletes
TAMs to induce pro-inflammatory T cell recruitment in
pancreatic ductal adenocarcinoma preclinical models (151).
Therefore, it could also be a potential new strategy for TAM
depletion during cancer treatment.

Manipulating Macrophage Activation State
to Improve the Anti-Tumor Response
Using in vitro models of macrophage polarization, it has been
shown that responses to respective M1/M2 stimuli are transient.
Treatment with M1 inducing agents, like LPS and IFNg, induce a
pro-inflammatory response within 2-4 hours, which may subside
within 24-48 hours (51, 152). After this transient activation,
macrophages return to a “resting” state akin to the naïve (M0)
polarization. Likewise, activation with one stimulus does not
preclude the ability to adopt a subsequent, alternative
polarization. A notable example is when stimulating conditions
are switched from IFNg to IL-4 or vice versa, macrophages adopt
the profile of the most current cytokine microenvironment (153).
Gao and colleagues utilized M-CSF and IL-4 to induce human
monocyte differentiation to the M2 phenotype. Following M2
polarization, macrophages were treated with lactoferrin-
containing IgG immunocomplex (LTF-IC), which promotes
M1-like activation and is an immune activator in rheumatoid
arthritis (154). After M1 stimulation, M2 marker expression was
reduced while M1 markers were increased. In a similar
experiment, Cheng et al. induced M2 polarization in murine
RAW264.7 cells using IL-4 and IL-13. Subsequent treatment of
M2 macrophages with a b-1,6-glucan (AAMP-A70) caused a
reduction of M2 polarization concurrently with increased M1
marker expression (155). These findings are particularly important
in the context of cancer treatment, as they clearly demonstrate the
plasticity of macrophages depend on the environmental stimuli.

Considering the transient and plastic nature of macrophages,
paired with the negative prognosis of intra-tumoral M2
macrophage accumulation, several approaches have been
developed to repolarize M2 macrophages to an M1 phenotype.
Macrophages, much like T cells, also have immune checkpoints.
The prevention of tumors from activating innate immune
checkpoints, is another approach in preventing the suppression
of macrophage anti-tumor responses. Alternative approaches
that manipulate the plasticity of macrophages are being heavily
explored. Several of these strategies are described in the
following sections.
Frontiers in Immunology | www.frontiersin.org 6
Pro-Inflammatory Stimulation via
TLR Agonism
The activation of TLRs, surface or endosomal proteins able to
detect cellular damage and induce a proinflammatory immune
response, have been broadly used therapeutically to alter
macrophage activation in several diseases, including cancer
(156–158) (Figure 2). The rationale is that the stimulation of
these receptors, particularly within the tumor environment, may
activate the pro-inflammatory response seen during the early
stages of wound healing and infection, leading to the eradication
of tumor cells (159, 160). Moreover, the release of tumor-derived
DAMPs and neo-antigens during this process should generate a
positive feedback loop to further increase the anti-tumor
response (75, 159). A potential drawback of this form of
therapy is tolerization, a state of unresponsiveness that appears
after repetitive exposure to the same inductor, characterized by
the release of anti-inflammatory factors that mask TLR
activation (161).

Components of pathogenic organisms, such as LPS, derived
mainly from Eschericia coli, are commonly used tools to activate
macrophages and induce a pro-inflammatory state, often in
combination with IFNg to maximize the effects (162).
However, LPS administration in humans produces severe
toxicity and multiple exposures rapidly lead to tolerance, thus
new strategies to improve its clinical use are currently being
investigated (162). More recently, TLR3, TLR7/8 and TLR9
agonists have risen as new therapeutic alternatives to induce a
TLR-dependent, tumor-localized pro-inflammatory response
(163). For instance, the TLR7 agonist, Imiquimod, induces a
robust rejection of skin primary malignancies and metastases by
generating a pro-inflammatory tumor microenvironment in
human patients (164) (Table 1). Similarly, polyinosinic-
polycytidylic acid (poly-IC), a TLR3 agonist, triggers T cell
tumor infiltration and Th1 responses, which should in turn
activate macrophages through IFNg signaling, to reduce
malignant growth (165). Finally, the TLR9 agonist family CpG
oligodeoxynucleotides (CpG ODN) have also shown strong
cancer cytotoxic effects by exerting a potent tumor-localized
immunostimulatory action (166) (Table 1). Based on early
successes, these TLR agonists are currently in Phase 1/2/3
clinical trials (162, 163).

To target macrophages more specifically, nanoparticles that
take advantage of the phagocytic properties of macrophages are
being developed. After injection, nanoparticles are trafficked to
the tumor where they are engulfed by macrophages. Techniques
are being developed to package TLR agonists into nanoparticles
for more specific activation of these immune cells (167). This
novel approach would reduce the off-target effects of TLR
agonists on other immune cells, such as lymphocytes, as well
as to reduce their tolerizing effects (168). Furthermore, injected
nanoparticles tend to accumulate in the tumor because of often
ill-formed and leaky tumor vasculature, leading to a therapy
more targeted to intra-tumoral macrophages (169). Loading b-
cyclodextrin nanoparticles with the TLR7/8 agonist R484 has
surfaced as one of the most promising techniques to restrain
tumor growth by shifting TAM behavior to the M1 state (170).
May 2021 | Volume 12 | Article 642285
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Activating ATP NOD-Like Receptors to
Promote M1 Polarization
Purinergic activation of macrophages plays a crucial role for the
secretion of the pro-inflammatory cytokines, IL-1b and IL-18,
and can be mediated through the activation of the NLRP3
inflammasome (171–173) (Figure 2). Cellular stress (e.g.,
exposure to chemotherapeutics, toxins, and radiation) and
tissue damage are key contributors to ATP release into
the extracellular environment (174). Release of ATP is one
of the most potent DAMPs for immune activation,
promoting M1 macrophage polarization and increasing
macrophage tumoricidal potential (87, 129, 175), (Figure 2).
However, to maintain the cellular ATP equilibrium, tumor
cells, macrophages, and other immune cells, express
ectonucleotidases to maintain the concentration gradient.
CD39 and CD73 are ectonucleotidases that are involved in the
formation of the metabolite adenosine (ADO). CD39
sequentially hydrolyzes ATP and ADP to form AMP, whereas
CD73 hydrolyzes AMP to form ADO (Figure 2). This shift in the
concentration gradient also acts as a switch to a more M2-like
functional program and attenuates the anti-tumor response.
Adenosine activates ADO/purinergic G-coupled protein
receptors on tumor and immune cells, such as macrophages, to
induce immunosuppression (176). Likewise, ADO also functions
to inhibit TLR signaling and the secretion of proinflammatory
cytokines such as TNFa, IL-6, and IL-8 from activated human
monocytes (177). Given the contrasting nature of ATP versus
ADO signaling for macrophage activation in tumor immunity,
this interface serves as a potential target for the clearance of
tumor cells. Inhibition of CD39 in preclinical models have shown
significant promise in diminishing the immunosuppressive
activity of TAMs, whereas inhibition of CD73 proved effective
in controlling metastatic growth (178) (Table 1). Furthermore,
combinational therapeutic strategies employing innate immune
checkpoint inhibitors and anti-CD39 or anti-CD73 promoted
antitumor immunity (88). Lastly, antagonism of the ATP
receptors (P2X7) increases tumor infiltrating immune effector
populations and decreases tumor burden (130) (Table 1).
Macrophage Polarization by Targeting
Intracellular Signaling Mechanisms
In addition to mimicking extracellular pro-inflammatory stimuli,
intracellular signaling pathways are also being targeted to reduce
the prevalence of M2 signaling in tumors. This has been observed
in the tumor-mediated manipulation of macrophage PI3Kg
signaling to reduce the pro-inflammatory response (179).
Actually, targeting PI3Kg pharmacologically has effectively
“flipped the switch” from M2 to M1 in preclinical models
(179, 180). PI3K is a family of phosphorylation enzymes that
act on the 3’ end of phosphatidylinositol (PI) and work in
conjunction with the Akt family of serine/threonine kinases
and the mechanistic target of rapamycin complex (mTORC) 2
to switch the activation status of TLR-stimulated macrophages to
a less pro-inflammatory program (181, 182) (Figure 2). PI3K/
Akt signaling is involved in migration and diapedesis of innate
Frontiers in Immunology | www.frontiersin.org 7
immune effectors such as neutrophils and monocytes/
macrophages and is associated with the upregulation and
stabilization of hypoxia-induced transcription factors in
macrophages (183). Induction of these transcription factors is
associated with the hypoxic tumor microenvironment and
stimulates M2-like characteristics in macrophages, thus
supporting tumorigenesis and metastasis (184–186). Moreover,
the PI3K/Akt pathway also promotes macrophage-mediated
remodeling of the ECM, angiogenesis and immunosuppression
of the adaptive immune response. Inhibition of PI3K signaling
has shown considerable effects in regulating VEGF expression, a
known factor that stimulates the adoption of the M2 functional
program (183). There are several preclinical and clinical
studies aimed at manipulating PI3K signaling to improve
tumor outcomes. Inhibition of this pathway has been
shown to increase macrophage infiltration and production
of proinflammatory cytokines and chemokines (187). Akt
signaling has differential downstream effects and deficiencies in
Akt1 induced M1 activation (188). Consequently, inhibition of
Akt signaling disrupts mTORC2 aggregation which diminished
macrophage viability and proliferation (189).

The signal transducer and activator of transcription (STAT)
signaling pathway is also of clinical interest. Downstream of
several receptor tyrosine kinases, the STAT family communicates
signals from the cytosolic face of the plasma membrane to the
nucleus, where STAT dimers act as transcription factors and
transcriptional modulators. STAT1 is recognized as a pro-
inflammatory mediator and signaling can be initiated by type I
and II interferons, growth factors, TLR activity and cytokine
release. STAT1 signaling has broad effects on cancer and can
either be antitumoral or pro-tumoral. Antitumoral STAT1
signaling is usually attributed to the tumoricidal activity of M1
macrophages while the pro-tumoral action is affiliated with the
enrichment of STAT1-dependent genes that protect against
genotoxic damage or promote tumor growth (190). Conversely,
STAT3 is broadly recognized as an anti-inflammatory regulator,
stimulating M2-like macrophage polarization. STAT3
phosphorylation can be triggered by interleukins such as IL-8,
IL-10, IL-35 and growth factors such as EGF. Following
activation, STAT3 signaling promotes a myriad of pro-tumoral
outcomes such as the inhibition of apoptosis, cell proliferation,
metastasis, angiogenesis and therapeutic resistance (41, 191).
Studies targeting the activation of STAT1 or the suppression of
STAT3 may be crucial for manipulating the balance of M1/
M2 signaling.

Other transcription factors are also under study for potential
roles in M1/M2 plasticity. These include KLF6, Zeb1 and
NFAT1. KLF6 is a transcriptional regulator of macrophage
polarization that serves as a phenotypic switch to transform
M2-polarized TAMs to M1, effectively inhibiting tumor
proliferation and migration (192). Contrariwise, ZEB1 is
associated with TAM pro-tumoral activity, indicated by its
ability to pioneer epithelial to mesenchymal transition to
maintain tumor progression and initiate metastasis (8).
Nuclear factor of activated T cell (NFAT) also supports the
M2-like phenotype of TAMs through the regulation of
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interleukins (IL-6, IL-10, IL-12) and multiple TLR-induced genes
such as iNOS (193). NFAT1 is overexpressed in TAMs and
promotes tumor cell proliferation, invasion and metastasis and
facilitates the recruitment of macrophage populations that are
associated with poorer outcomes (194, 195). Given the role of
NFAT signaling in regulating immune homeostasis, NFAT
inhibition may effectively suppress anti-inflammatory cytokine
production while subsequently initiating pro-inflammatory and
tumoricidal programs within these tumor-associated
macrophage populations.

Unfortunately, because individual transcription factors tend
to be involved in transcriptional regulation throughout the
genome, specifically targeting them to selectively target
individual regulatory programs remains elusive. However, as
time goes on, it may be possible to more selectively target
individual immune cell types or add co-factors to increase
specificity, yielding more robust anti-tumor efficacy.

Manipulating Macrophage Metabolism to
Increase M1 Polarization
The metabolic changes associated with M1/M2 polarization may
also regulate activation state (196, 197). Much like the distinct
glutaminase-dependent differentiations of Th17 and Th1 T cells
to regulate the immune response (198), direct metabolic changes
in macrophages, or the output of altered metabolism, can affect
M1/M2 polarization.

Arginase is essential for amino acid metabolism and has
potent immunomodulatory effects through the catalysis of L-
arginine. L-arginine is involved in nitric oxide synthesis which
contributes to the tumoricidal activity of macrophages (199).
However, the catabolism of L-arginine by arginase results in the
formation of L-ornithine and its decomposition product,
putrescine, which are known to support the cell growth and
proliferation of tumor cells (199–202). Furthermore, increased
production by TAMs impairs the antitumor immune response
(203). Likewise, putrescine induces macrophage efferocytosis to
prevent inflammation and promote tissue repair (204), a
hallmark of tumor progression. Catabolism of L-arginine also
has devastating consequences for other immune effectors, such as
cell cycle arrest and anergy (203). Inhibition of arginase I
expression reduces tumor burden and subsequently increases
lymphocyte infiltration within the tumor microenvironment
(205, 206) indicating significant potential for clinical testing.

Like arginase, indoleamine 2,3-dioxygenase (IDO1) is an
immunosuppressive molecule secreted by TAMs. IDO1
catabolizes tryptophan to kynurenine which binds to the aryl
hydrocarbon receptor to trigger a myriad of immunoregulatory
mechanisms in immune cells (207). The signaling cascade
triggered by IDO1 enzymatic activity facilitates immune
evasion by diminishing lymphocyte responsiveness and
anticancer immunosurveillance (208–210). IDO1 activity is
also suggested to increase tolerance in macrophages,
downregulate antigen presentation molecules (HLA-DR) and
decreased macrophage phagocytic activity (211). Furthermore,
IDO has also been shown to increase M2 polarization and
recruitment while inhibition of IDO activity increases M1
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populations (212). IDO1 inhibition prevents tryptophan
depletion and subsequently blocks the associated downstream
immunosuppressive signals (213, 214). This suggests that
targeting IDO enzymatic activity in tumors that overexpress
this enzyme may improve macrophage polarization to M1,
immune activation and immunotherapeutic efficacy.

Targeting Innate Immune Checkpoints to
Improve Therapeutic Outcomes
Much like the adaptive immune response, immune checkpoints
have been discovered and characterized for innate immune cells.
One example is the Tyro3/Axl/Mer (TAM) family of receptor
tyrosine kinases, (Figure 2). During normal physiological
processes, this family of receptors is instrumental in apoptotic
cell engulfment and degradation (efferocytosis). The TAM family
of receptors has 5 known ligands, Gas6 (215), Pros1 (216), Gal3
(217), Tubby and Tulp1 (218). As cells undergo apoptosis,
phosphatidylserine that has flipped from the cytosolic face of
the plasma membrane to the extracellular region is recognized by
these ligands to form a bridge to the TAM receptors. However,
these ligands can also activate the TAM receptors in the absence
of phosphatidylserine (219), though activation is reduced. Lastly,
kinase inhibition or genetic loss of Mer prevents internalization
of apoptotic material (220, 221).

In addition to its role in efferocytosis, genetic lack of Mer is
associated with hypersensitivity to TLR activation (222, 223),
suggesting its role in limiting the innate immune response and
preventing autoimmunity. More recently, it was shown by
Lemke and Rothlin, in dendritic cells, that activation of Mer
initiates an anti-inflammatory program involving upregulation
of Socs1/2 (224). Later, Cook et al., demonstrated, in the context
of cancer, that genetic deletion of Mer was associated with
reduced M2 macrophage polarization with increased M1 (225).
Ubil et al. later showed that tumor-secreted Pros1, acting on Mer
and Tyro3 induces the downregulation of pro-inflammatory
gene expression (51). Mice bearing tumors with genetic
deletion of Pros1 showed increased intra-tumoral macrophages
that were skewed towards the M1 phenotype. This was associated
with increased adaptive immune infiltrate with approximately 5-
fold more CD4+ and CD8+ T cells as well as a ~50% reduction in
Tregs. Mice with Pros1 deficient tumors lived ~30% longer than
mice with parental tumors. Furthermore, addition of the TLR7/8
agonist, Resiquimod, did not improve survival in mice bearing
Pros1 replete tumors whereas survival duration was doubled for
mice whose tumors lacked Pros1. Taken together, these findings
demonstrate that tumor secretions can dampen the innate,
macrophage, response and subsequently the adaptive immune
response. TAM kinase inhibitors are currently in Phase I clinical
trials for the treatment of human cancers.

Another marker involved in immune checkpoints
and expressed by intra-tumoral macrophages is PD-L1. PD-L1
is generally associated with expression by tumors, particularly in
response to IFNg. When tumor expressed PD-L1 binds to
PD-1 on T cells, it leads to T cell inactivation and facilitates
tumor immune evasion. Tumors are also able to induce
expression of PD-L1 in macrophages to similarly limit the
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action of effector T cells (226). Macrophage PD-L1 - T cell PD-1
interactions are, therefore, at the interface of innate and adaptive
immune responses.

Several PD-1 and PD-L1 targeted therapeutics are currently
in the clinic for treatment of various forms of cancer (227). In
addition to the direct effects of blocking PD-1/PD-L1
interactions, PD-1 targeted treatments also induce secondary
effects, such as the increased polarization of macrophages from a
pro-wound healing phenotype to a more anti-tumor, pro-
inflammatory, state. Xiong et al. characterized intra-tumoral
macrophage polarization states of MC38 tumor bearing mice
after anti-PD-1 treatment. They observed an increase in the
numbers of M1-like and M1/M2 intermediate macrophages with
a decrease in M2-like phenotypes. Using IFNg depletion of
supernatants from tumors which had either been treated with
vehicle or anti-PD-1 antibody, they determined that IFNg was a
primary driver of macrophage polarization (228). Presumably,
anti-PD-1 treatment of tumor bearing mice led to increased T
cell activation, including IFNg secretion. In turn, polarization of
intra-tumoral macrophages were skewed towards an M1 state,
including increased antigen presentation and expression of pro-
inflammatory cytokines. Activated M1 macrophages increased T
cell activation in a self-reinforcing cycle, ultimately leading to
reduced tumor growth. This study succinctly demonstrates the
importance and inter-relatedness of the innate and adaptive
immune functions in limiting tumor progression.

Targeting “Don’t Eat Me” Signaling to
Improve Macrophage Activation and
Antitumor Immunity
A crucial aspect of macrophage activity is phagocytosis, the
internalization of cells, pathogens, and other particles for tissue
homeostasis. As key endocytosing immune cells, macrophages are
the primary phagocytic population and should be able to recognize
aberrant cells and clear them using this process. However, tumor
cells express anti-phagocytic ligands or “don’t eat me” signals
similar to healthy cells in order to avoid elimination.

CD47 is an immunoglobulin that is crucial in self recognition
for the maintenance of immune tolerance and homeostasis. It
complexes with the signal regulatory protein a (SIRPa) on
phagocytic cells to inhibit uptake and subsequent immune
activation (229). However, this molecule is also expressed on
the surface of many tumor cells and plays a key role in immune
evasion (Figure 2). CD47/SIRPa signaling leads to the
phosphorylation of the SIRPa cytoplasmic immunoreceptor
tyrosine-based inhibition motifs (ITIM) resulting in the
recruitment of the tyrosine phosphatases SHP1/2. This
signaling mechanism prevents the accumulation of myosin at
the phagocytic synapse, effectively inhibiting phagocytosis (230–
232). This process is crucial in preventing uncontrolled clearance
of healthy cells but becomes a detriment based on its role in
facilitating immune evasion in cancer. As such, these signals are
also targeted to improve the antitumor response. CD47 blockade
has shown significant efficacy in the treatment of several
hematological cancers and solid tumors which may be
mediated by innate immune effector populations such as
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macrophages (94, 95, 233, 234) (Table 1). Furthermore,
preclinical models of the CD47/SIRPa signaling axis are highly
efficacious for treating multiple cancer types and are currently
being probed in clinical trials.

CD24 is another “don’t eatme” signal that is expressed bymany
tumor types (Figure 2). CD24 is a glycosylphosphatidylinositol
anchored protein that is known to complex with Siglec10 on
macrophages and other innate immune cells for the suppression
of the inflammatory response inmany conditions including sepsis,
liver damage and infection (85, 235, 236). LikeCD47 signaling, the
CD24/Siglec10signalingaxisresultsintherecruitmentofSHP1/2at
the ITIMs of Siglec10, inhibiting the TLR-mediated inflammatory
response and the cytoskeleton rearrangement required for
phagocytosis (85). As such, theCD24/Siglec10 complex is a potent
inhibitor of macrophage phagocytic activity and is protective of
cancer cells. Inhibitionof theCD24/Siglec10 signalingaxis restores
the macrophage-mediated antitumor response by enhancing
phagocytic clearance of tumor cells (85, 86). Moreover, increased
uptake of antigenic materials is also associated with increased
immune activation and infi l tration within the tumor
microenvironment (85).

The importance of these signaling cascades in regulating
macrophage plasticity are extensively studied and new models
are currently being probed to increase innate immune activation
and improve current immunotherapeutic approaches. A
summary of these targets and their effect on macrophage
activity within the tumor microenvironment, along with their
development status, are described in Table 1.
CURRENT EXPERIMENTAL MODELING
OF M1/M2 PHENOTYPES MAY NOT
ACCURATELY REPRESENT
INTRA-TUMORAL MACROPHAGE
POLARIZATION STATES

To model macrophage responses, the M1/M2 paradigm was
developed and dates back more than 20 years (237). In early
models, naïve macrophages were induced to adopt two known
polarization states (238). Since then, through decades of
research, multiple in vitro models of M1 and M2 polarization
have been developed in which various exogenous stimuli can
induce activation states that mimic physiological conditions (e.g.,
pathogenic infection (239–241), pro-inflammatory activation by
T cells (242, 243), etc.). At present, experimental macrophage
models have been delineated into 5 core subsets: M1, M2a, M2b,
M2c and M2d (244), (Figure 1).

Historically, activation of the M1 state has been modeled
using stimuli such as LPS, IFNg (a pro-inflammatory signal
derived from activated T cells) or both in combination. While
LPS induces TLR4 activation and downstream NFkB signaling,
IFNg binds the IFNgR1/2 complex, leading to STAT1
phosphorylation and nuclear translocation to mediate pro-
inflammatory gene expression (245, 246). Alternatively,
addition of TNFa (247) to naïve macrophages yields a similar
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activation state. TNFa binds to TNFR1 and TNFR2, leading to
activation of downstream signaling cascades including p38 (248,
249) and others (250–253). The pro-inflammatory signaling
pathways tend to converge on NFkB, STAT1 and MAPK
pathways, with significant crosstalk effectively leading to
similar outcomes in terms of gene expression changes and
activation states.

M2 activation states are comparatively more complicated
with at least 4 different subsets being identified, including M2a,
M2b, M2c and the relatively newer M2d phenotype (152, 254,
255) (Figure 1). Induced by IL-4, IL-13 or the combination
thereof, M2a has been described as an anti-inflammatory and
pro-wound healing subset (256–258). M2b, which is induced by
addition of IL-1b, has shown immuno-regulatory properties and
associated gene expression (244, 259). M2c macrophages,
induced by treatment with IL-10, show increased expression of
immune suppressive and tissue remodeling markers (260). Some
indications also suggest efferocytosis is increased in M2c
macrophages (261). Finally, in an attempt to create a model of
TAMs (M2d), it was discovered that treatment with IL-6 could
cause upregulation of tumor growth and angiogenesis
markers (262).

At this point, there is not one clearly prevailing macrophage
M2 subset that best represents tumor associated macrophages.
Instead, researchers often combine multiple stimuli, such as IL-4
(M2a), IL-13 (M2a) and IL-10 (M2c), which are present in the
tumor microenvironment, to mimic tumor associated
macrophages (263, 264).

While continually improving, our understanding of intra-tumoral
macrophage activation states have led to an iterative improvement in
models. However, newer and better methodologies are currently
being utilized to disaggregate our current population-level
understanding. Specifically, single cell RNA-seq (sc-RNA-seq) has
refined our understanding of intra-tumoral macrophage
heterogeneity and called into question some of our existing
paradigms on “either/or” M1/M2 polarization.
SINGLE-CELL RNA-SEQ DATA SHEDS
NEW LIGHT ON INTRA-TUMORAL
MACROPHAGE POLARIZATION

Based on established in vitro models of macrophage polarization
(M1/M2), early characterization of intra-tumoral macrophages
focused on a few pro-inflammatory or pro-wound healing
markers (e.g., iNOS, IL-1, CD206, etc.) to identify activation
states. As more nuanced models of polarization have been
developed, additional markers have been identified, demonstrating
that rather than adhering to distinct polarized types, macrophages
exhibit a spectrum of overlapping activation states. Further
complicating the ability to describe tumor associated macrophages
is that spatial location and microenvironmental factors can have
major impacts on polarity, causing macrophages in one part of the
tumor to have very different activation states than those in adjacent
locations. The advent of single cell RNA-seq has opened new venues
for understanding intra-tumoral macrophage activation and may
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identify misconceptions about how macrophages behave in the
tumor microenvironment. This new technique allows for the
characterization of individual cells within the tumor resident
immune cell subset. Depending on the process flow, immune cell
subtypes may be enriched prior to single-cell RNA-seq analysis
(265, 266) or bioinformatically identified based on expression
patterns (267). Several variations of single-cell RNA-seq exist,
some of which also incorporate locational data.
Characterization of Macrophage
Activation State in Tumors
Using single-cell RNA-seq to characterize immune subset in
primary breast cancer samples, Chung et al. found that
macrophages tend toward the M2 phenotype (265), confirming
previous findings that breast cancer tends to foster M2
polarization (46, 268). Of the 515 cells from 11 patients
characterized, most non-carcinoma cells in the cancer samples
were identified as immune cells based on their gene expression
signatures. TAMs were primarily found to have pro-wound
healing M2-associated profiles (269, 270). A key finding of this
paper is that it supports the notion that in breast cancer, many
macrophages and other innate and adaptive cell populations
have an immune suppressive phenotype.

Recognizing that there is robust heterogeneity of intra-
tumoral macrophage polarization states, single cell RNA-seq is
also being used to determine whether there are discrete
activation states or whether there is a contiguous spectrum
driven by local microenvironmental conditions. Azizi et al.,
employed a large-scale, high-dimensional analysis platform to
characterize the immune profiles of more than 45,000 cells from
eight breast carcinomas, matched with normal breast tissue,
blood and lymph nodes using single-cell RNA-seq (271). To
do so, they collected CD45 positive cells from treatment-naïve
breast cancer patients including estrogen receptor (ER+) and
progesterone receptor (PR+) positive, human epidermal growth
factor receptor 2 amplified (HER2+) and triple negative (TNBC)
tumors. These CD45+ cells were isolated by fluorescence-
activated cell sorting (FACS) and subjected to single-cell RNA-
seq using the inDrop platform (272, 273). Data was preprocessed
using the SEQC pipeline with the Bayesian clustering and
normalization method, Biscuit, utilized for data analysis. One
of the key findings of the study is that intra-tumoral
macrophages have higher numbers, diversity and activation
relative to those derived from normal tissues or lymph nodes.
Somewhat surprisingly, the authors of this study found a positive
correlation between M1 and M2 gene expression, with
simultaneous co-expression of markers associated with both
activation states. This is in direct contrast to previous results
from in vitromodel studies, in which one or more agents used to
activate macrophages led to one aggregate activation state, either
M1 or M2.

A different study, characterizing the heterogeneity of
macrophages activation states in gliomas using single-cell
RNA-seq made a similar observation on the simultaneous co-
expression of M1 and M2 markers in TAMs. This study,
conducted by Muller et al. (274), compared marker expression
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of two macrophage populations – brain-resident microglia,
derived from progenitors that migrated to the central nervous
system (CNS) and bone marrow-derived monocytes that
extravasate through the blood brain barrier and differentiate
into macrophages. Similar to Azizi et al., Muller et al., found that
macrophages could co-express M1 and M2 markers
simultaneously with 66% of tumor associated macrophages co-
expressing the canonical M2 marker, IL-10, while also expressing
the M1 marker, TNFa. They confirmed their results by using
flow cytometry of tumor derived macrophages to show that
CD11b+ cells could co-express the M1 co-stimulatory marker,
CD86, while also expressing CD206.

Taken together, these studies call the M1/M2 polarization
paradigm into question. While, to some extent, supporting the
notion that a spectrum of intra-tumoral macrophage activation
states exist (275, 276), the finding of simultaneous M1 and M2
associated markers by macrophages is quite novel. Perhaps
historical use of conventional models coupled with aggregate
analyses of pooled macrophage populations fail to detect a more
widespread phenomenon of M1/M2 marker co-expression in
tumors. Further experiments and analysis will be required to
confirm these finding. Also, development of model systems that
better recapitulate the dual activation states observed in vivomay
yield better understanding of how intra-tumoral macrophages
will respond to targeted therapeutics. Perhaps most importantly,
these findings suggest that activating, or re-activating, the M1
phenotype in tumors may consequently lead to concurrent
increased M2 polarization, thereby confounding outcomes.

Using Single Cell RNA-Seq Based
Methods to Characterize Macrophage
Activation While Incorporating Spatial
Localization Within the Tumor
Conventional large-scale characterization of macrophage
polarization loses spatial resolution. As such, novel single-cell
RNA-seq/bioinformatic approaches are being developed that
provide contextual identity. One such technique involves the
use of spatial transcriptomics (277). This method performs
unbiased mapping of transcripts over entire tissue sections
using spatially barcoded oligo-deoxythymidine microarrays.
Individual microarray spots capture transcriptome information
from between 10-200 cells and the data is integrated with single
cell RNA-seq data to provide both cellular context and
transcription data at the single cell level. Using this approach,
Moncada and colleagues performed multimodal intersection
analysis on patient pancreatic ductal adenocarcinoma (PDAC)
tumors (278). One of their key findings was that macrophages
seem to adhere to the M1/M2 paradigm and exist in two main
subpopulations. The first was a pro-inflammatory M1 subset,
which expressed IL-1b, and a second subset, which expressed M2
associated genes like CD163 (278). Likewise, the two
subpopulations were differentially localized, with M1
macrophages enriched in the cancerous regions or the stroma,
while M2-like macrophages were enriched in the ducts. This data
demonstrates that two opposing macrophage polarizations can
exist in the same tumor, though their activation state is driven by
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local micro-environmental conditions. These findings suggest
that, fundamentally, treatments may be more effective if they can
be selectively targeted to regions where they will make the biggest
change. Conversely, systemic treatment with an M1 inducing
agent could disrupt essential processes and induce off-
target effects.

Derivation of M2 Macrophage
Subpopulations
Circulating monocytes are recruited to tumors by the expression
of chemoattractants such as CCL2 (279–281), S100A8 and
S100A9 (282, 283). Once monocytes extravasate, they are
thought to differentiate into M1 or M2 macrophages based on
signals from the tumor microenvironment. In a recent study,
Song et al. used single-cell RNA-seq to characterize the
differentiation process of extravasating monocytes. 11,485 cells
from Non-Small Cell Lung Cancer (NSCLC) patients were used
to develop a model of divergent monocyte differentiation into
M1 or M2 macrophages. While there were differences between
patients, on average, a substantially larger proportion of the
recruited monocytes adopted the M2 phenotype (283). In
CD14+ cells derived from in NSCLC samples, expression of
polarization markers was stratified along a continuum effectively
providing a snapshot of macrophage differentiation states. Work
by Song et al., may enable the identification of specific lineage
markers that will allow prediction of future differentiation states.
They also identified signals from tumor-derived epithelial cells
that skew differentiation to the M2 phenotype. By better
understanding the process through which tumor resident M2
macrophages are derived, it may be possible to develop specific
interventions that prevent accumulation of M2 macrophages.
OPEN QUESTIONS IN MACROPHAGE
PLASTICITY DURING CANCER

Macrophages are a highly plastic innate immune cell subset.
Depending on contextual cues from their local environment,
they adopt phenotypes across a spectrum of activation states,
ranging from pro-inflammatory (M1) to pro-wound healing
(M2). Further, macrophages, both individually and in
aggregate, can readily transition from one polarization state to
the next depending on the most recent signals prevailing in their
environment. This plasticity allows them to effectively adapt to
the changing environments associated with infection and wound
healing and facilitate the return to immune homeostasis.
Unfortunately, in the context of cancer, macrophage plasticity
is subverted to benefit continued tumor progression. Either by
tumor-mediated suppression of M1 polarization or through the
evolved lack of pro-inflammatory cues associated with cancer,
intra-tumoral macrophages are generally of the pro-wound
healing (M2) phenotype. The pro-wound healing properties
which would be beneficial during injury repair, such as
production of growth factors or promotion of angiogenesis,
support continued tumor cell proliferation and tumor expansion.
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Recognizing the inherent plasticity of macrophages, several
therapeutics have been developed to either reduce the number of
intra-tumoral macrophages, thereby reducing the M2 pool, or
alter the M1/M2 balance to favor a more pro-inflammatory/anti-
tumor response. Numerous clinical trials have demonstrated that
increasing M1-associated polarization or effector functions can
improve clinical outcomes. This is, perhaps, not surprising since
a pro-inflammatory milieu is associated with better patient
outcomes for many cancer types. However, to realize the
promise of these new treatment modalities, several factors still
need to be considered. As we have learned from adaptive
immune targeted treatments, activation or checkpoint blockade
alone are not likely to be sufficient to generate durable responses
in several cancer types. Rather, macrophage targeted therapies
will likely require co-treatments targeting the cancer directly
(e.g., chemotherapy) or the adaptive immune response (e.g.,
checkpoint directed therapeutics) or both. Also, for the most
part, M1 polarization is thought to reduce tumor growth.
However, chronic and persistent local inflammatory conditions
are also known to induce tumor formation (284–287). A prime
example is that increased inflammation associated with obesity
can actually increase the likelihood of tumor progression (288).
Several other preclinical models of inflammation, such as colitis-
induced colon cancer (72–76), have shown that persistent
inflammation exacerbates tumor progression. As an
illustration, in a high-fat diet induced inflammation model,
prostate cancer progression was substantially increased (289).
The rationale is that persistent cell damaging conditions may
elicit genetic mutation or cell signaling alterations that foster
tumor growth. While the current paradigm is that “more
inflammation is better”, there is likely to be an optimal amount
of inflammation so as not to induce secondary tumor formation.

Another key question to be addressed, in addition to finding
optimal combinations, is how to limit potential engagement of
the autoimmune response. Even if a macrophage targeted
therapy is successful in generating an anti-tumor response,
what are the best ways to ensure it is targeted strictly to the
tumor and not surrounding healthy tissues or organ systems?
While some delivery systems, like nanoparticles, favor intra-
tumoral macrophages, many require systemic delivery,
increasing the potential for off-target effects. Potentially
compounding the likelihood of off-target effects is reliance
upon the bystander effect to generate an anti-tumor response.
For example, TLR agonists mimic PAMPs and DAMPs that
would be released during infection or injury. However, the
resulting immune activation does not target tumor-intrinsic
moieties, but rather utilize the destructive potential of pro-
inflammatory macrophages to either kill neighboring tumor
cells or activate other local immune cells. This lack of tumor
specificity opens the greater possibility of non-specific cellular
damage or even autoimmunity based on the release of
cryptic epitopes.

In addition to questions of developing targeted therapeutics,
some basic scientific questions also remain unanswered about
macrophages in the tumor environment. While several models
have shown, in vitro, that macrophages can move from one
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polarization state to the next, it is unclear whether this is also true
in tumors. For instance, lack of lineage tracing prevents the
accurate monitoring of individual intra-tumoral macrophages to
determine what happens after treatment. Are macrophages that
are present in the tumor prior to treatment adopting another
phenotype or is macrophage turnover the cause for an aggregate
shift in polarization? Development and use of lineage tracing
models would provide a more expansive knowledge of
macrophage activation during treatment.

Other questions that have arisen with the advent of single-cell
RNA-seq include whether there is a previously unknown
macrophage state the possesses elements of both the
diametrically opposed M1 and M2 phenotypes. Can both
activation states co-exist in one cell or group of cells? What
environmental or cell intrinsic factors would allow for dual
expression of pro- and anti-inflammatory markers? Do these
dual activation macrophages also exist during wound healing or
response to pathogenic infection or are they a cancer-specific
phenomenon? Are there ways in which these specialized cells can
be modeled in vitro? Perhaps most importantly, how do pro-
inflammatory inducing treatments affect dual M1/M2
macrophages? Does their presence confound treatments
focusing on M1 induction? For instance, if a TLR agonist is
utilized for treatment, does it also increase the expression
of M2 associated markers, simultaneously activating and
inactivating the immune response? Further analysis of single-
cell RNA-seq data may answer these questions. However, it may
be possible, using flow cytometry or other techniques, to isolate
these cells and characterize them using more traditional
biochemical methods.

While there is a more comprehensive understanding of
macrophage biology now than in the past, development of
macrophage targeted therapeutics has trailed behind those
promoting the adaptive immune response. Continuing to
address the unanswered questions presented here, as well
continued testing, both alone and in combination with other
therapeutics, may bridge the gap, providing new hope for
improved survival of cancer patients.
AUTHOR CONTRIBUTIONS

TR - wrote the manuscript, prepared figures, and edited final
work. NP-D - wrote manuscript and edited final work. PG -
wrote manuscript. EU - conceptualized the work, wrote
manuscript, and edited final work. All authors contributed to
the article and approved the submitted version.
FUNDING

NIH/NCI K22 Transition Career Development Award (1 K22
CA237742-01) - Funding for EU, and University of Alabama at
Birmingham Development Funds - Funding for EU.
May 2021 | Volume 12 | Article 642285

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Ricketts et al. Mechanisms of Macrophage Plasticity
REFERENCES
1. Sompayrac L. How the Immune System Works. Wiley-Blackwell (2016).
2. Wang J, Wakeham J, Harkness R, Xing Z. Macrophages are a Significant

Source of Type 1 Cytokines During Mycobacterial Infection. J Clin Invest
(1999) 103(7):1023–9. doi: 10.1172/JCI6224

3. Verreck FAW, De Boer T, Langenberg DML, Hoeve MA, Kramer M,
Vaisberg E, et al. Human IL-23-producing Type 1 Macrophages Promote
But IL-10-producing Type 2 Macrophages Subvert Immunity to (Myco)
Bacteria. Proc Natl Acad Sci USA (2004) 101(13):4560–5. doi: 10.1073/pnas.
0400983101

4. Verreck FAW, de Boer T, Langenberg DML, van der Zanden L, Ottenhoff
THM. Phenotypic and Functional Profiling of Human Proinflammatory
Type-1 and Anti-Inflammatory Type-2 Macrophages in Response to
Microbial Antigens and IFN-g- and CD40L-mediated Costimulation.
J Leuk Biol (2006) 79(2):285–93. doi: 10.1189/jlb.0105015

5. Cocco RE, Ucker DS. DistinctModes ofMacrophage Recognition for Apoptotic
and Necrotic Cells are Not Specified Exclusively by Phosphatidylserine
Exposure. Mol Biol Cell (2001) 12(4):919–30. doi: 10.1091/mbc.12.4.919

6. Sachet M, Liang YY, Oehler R. The Immune Response to Secondary
Necrotic Cells. Apoptosis Int J Programmed Cell Death (2017) 22
(10):1189–204. doi: 10.1007/s10495-017-1413-z

7. Atanasov G, Dietel C, Feldbrügge L, Benzing C, Krenzien F, Brandl A, et al.
Tumor Necrosis and Infiltrating Macrophages Predict Survival After
Curative Resection for Cholangiocarcinoma. Oncoimmunology (2017) 6
(8):e1331806–e1331806. doi: 10.1080/2162402X.2017.1331806

8. Cortés M, Sanchez-Moral L, de Barrios O, Fernández-Aceñero MJ,
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V, Beristain-Terrazas DL, Delgado-Buenrostro NL, et al. Use of STAT6
Phosphorylation Inhibitor and Trimethylglycine as New Adjuvant Therapies
for 5-Fluorouracil in Colitis-Associated Tumorigenesis. Int J Mol Sci (2020)
21(6):2130. doi: 10.3390/ijms21062130

136. Tariq M, Zhang JQ, Liang GK, He QJ, Ding L, Yang B. Gefitinib Inhibits M2-
like Polarization of Tumor-Associated Macrophages in Lewis Lung Cancer
by Targeting the STAT6 Signaling Pathway. Acta Pharmacol Sin (2017) 38
(11):1501–11. doi: 10.1038/aps.2017.124

137. Xiao H, Guo Y, Li B, Li X, Wang Y, Han S, et al. M2-Like Tumor-Associated
Macrophage-Targeted Codelivery of STAT6 Inhibitor and Ikkb Sirna
Induces M2-to-M1 Repolarization for Cancer Immunotherapy With Low
Immune Side Effects. ACS Cent Sci (2020) 6(7):1208–22. doi: 10.1021/
acscentsci.9b01235

138. Le Tourneau C, Raymond E, Faivre S. Sunitinib: A Novel Tyrosine Kinase
Inhibitor. A Brief Review of its Therapeutic Potential in the Treatment of
Renal Carcinoma and Gastrointestinal Stromal Tumors (GIST). Ther Clin
Risk Manage (2007) 3(2):341–8. doi: 10.2147/tcrm.2007.3.2.341

139. Zhu W, Xu R, Du J, Fu Y, Li S, Zhang P, et al. Zoledronic Acid Promotes
TLR-4-mediated M1 Macrophage Polarization in Bisphosphonate-Related
Osteonecrosis of the Jaw. FASEB J (2019) 33(4):5208–19. doi: 10.1096/
fj.201801791RR
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