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The immune system is unique among all biological sub-systems in its usage of DNA-
editing enzymes to introduce targeted gene mutations and double-strand DNA breaks to
diversify antigen receptor genes and combat viral infections. These processes, initiated by
specific DNA-editing enzymes, often result in mistargeted induction of genome lesions
that initiate and drive cancers. Like other molecules involved in human health and disease,
the DNA-editing enzymes of the immune system have been intensively studied in humans
and mice, with little attention paid (< 1% of published studies) to the same enzymes in
evolutionarily distant species. Here, we present a systematic review of the literature on the
characterization of one such DNA-editing enzyme, activation-induced cytidine deaminase
(AID), from an evolutionary comparative perspective. The central thesis of this review is
that although the evolutionary comparative approach represents a minuscule fraction of
published works on this and other DNA-editing enzymes, this approach has made
significant impacts across the fields of structural biology, immunology, and cancer
research. Using AID as an example, we highlight the value of the evolutionary
comparative approach in discoveries already made, and in the context of emerging
directions in immunology and protein engineering. We introduce the concept of 5-
dimensional (5D) description of protein structures, a more nuanced view of a structure
that is made possible by evolutionary comparative studies. In this higher dimensional view
of a protein’s structure, the classical 3-dimensional (3D) structure is integrated in the
context of real-time conformations and evolutionary time shifts (4th dimension) and the
relevance of these dynamics to its biological function (5th dimension).

Keywords: DNA-editing enzyme, immune response, cancer, gene mutations, cytidine deaminase, AID/APOBEC and
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org May 2021 | Volume 12 | Article 6423431

https://www.frontiersin.org/articles/10.3389/fimmu.2021.642343/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.642343/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.642343/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.642343/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.642343/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.642343/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:Atefeh_Ghorbani@sfu.ca
mailto:mq630@mon.ca
mailto:mani_larijani@sfu.ca
https://doi.org/10.3389/fimmu.2021.642343
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.642343
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.642343&domain=pdf&date_stamp=2021-05-31


Ghorbani et al. Evolutionary Comparison of DNA-Editing Enzymes
INTRODUCTION

The adaptive immune system in its classical mammalian form
first appeared in the common ancestor of all jawed vertebrates
(gnathostomes), with the cartilaginous fish being the first extant
animals to evolve somatically diversified lymphocyte (B and T
cell) receptors (BCR or antibodies, and TCR, respectively) (1).
However, further study of the earlier-evolved jawless vertebrates
revealed that these animals too were capable of adaptive
immunity. Instead of B and T cell lymphocytes, their
respective humoral and cellular adaptive immune responses are
mediated by lymphocyte-like cells with Variable Lymphocyte
Receptors (VLRs). Interestingly, these VLRs also appeared to be
somatically diversified, highlighting the importance of
lymphocyte receptor diversification in the adaptive immune
response (2).

Lymphocyte receptors are diversified via purposeful
induction of DNA damage in the form of recombination and
gene mutation (3). Unlike other genes, in jawed vertebrates, the
genes encoding the adaptive immune antigen receptors are
segmented. To encode a functional receptor, the variable (V),
diversity (D; only in the case of the heavy chain), and joining (J)
fragments are assembled by V(D)J recombination, a site-specific
recombination process that is lymphocyte-specific and mediated
by the recombination-activating gene products 1 and 2 (RAG1/
2) co-enzyme complex (4–7). Following binding to
recombination signal sequences (RSS) at the ends of V, D, or J
gene segments, the RAG1/2 complex introduces double strand
breaks (DSBs) at the RSS-coding juncture. Non-homologous end
joining (NHEJ) is initiated to repair the DSBs, resulting in
ligation and forming the V(D)J-encoding gene.

This primary diversification process that occurs during B and
T cell development in the bone marrow and thymus respectively,
gives rise to the initial antibody (BCR) or TCR repertoire in B
and T lymphocytes. In the case of B lymphocytes, further
secondary diversification rounds of the BCR are initiated when
a mature peripheral B lymphocytes bind its cognate antigen (8).
As a result of secondary diversification, activated B cells,
expressing low affinity IgM, give rise to B cells secreting high
affinity antibodies of switched isotopes including IgA, IgG and
IgE. Secondary antibody diversification in jawed vertebrates
includes two processes: affinity maturation (AM) and isotype
switching (IS), driven by somatic hypermutation (SHM) and
Class Switch Recombination (CSR), respectively. SHM in the
antibody V region genes, followed by cellular selection leads to
antibodies of higher affinity to the cognate antigen. CSR changes
the class of antibody from IgM into other isotypes (i.e., IgA, IgG,
or IgE). CSR is mediated by DSBs in the switch (S) regions
flanking the heavy chain constant genes (CH) which initiate a
NHEJ event resulting in the replacement of CHm with other CH

isotypes, changing the antibody’s effector function (9–11). The
outcome of secondary antibody diversification is the production
of more effective isotypes of antibodies which also have as much
as 1000-fold higher affinity for the antigen. The mutations and
DSBs that underlie SHM and CSR are both caused by the enzyme
activation-induced cytidine deaminase (AID) (12, 13). AID is a
member of the AID/APOBEC (apolipoprotein B mRNA editing
Frontiers in Immunology | www.frontiersin.org 2
enzyme, catalytic polypeptide-like) family of cytidine deaminase
enzymes that carry out cytidine (dC) to uridine (dU) conversion
in single stranded DNA or cytidine (C) to uridine (U) conversion
in RNA (14, 15).

The AID/APOBEC family includes 11 family members in
humans: AID, APOBEC1, APOBEC2, APOBEC3 (A-H,
excluding E), and APOBEC4. APOBEC4 and related enzymes
have been found as early as Cnidarian invertebrates but are
frequently absent in actinopterygians and present again in all
mammals (14, 16) (Figure 1A). The APOBEC3 sub-branch
emerged in mammals followed by rapid expansion and
diversification in primates (16, 64) (Figure 1A). APOBEC3s
function in immune response by acting as restriction factors
against viruses. They do so through mediating mutagenesis
of viral genomes, or interference with the reverse transcription
and integration of the viral DNA (65–68). In addition the
adenosine deaminases acting on double-stranded RNA
(ADARs) are enzymes that mediate cellular mRNA processing
through Adenosine (A) to Inosine (I) conversion; however,
they have also been demonstrated to mutate viral RNA
and carry out a range of cytoplasmic innate anti-viral functions
(69–73).

In contrast to jawed vertebrates, the jawless vertebrate
lamprey lacks a classical antibody and TCR, and their antibody
structure is grossly different, both at the genetic and protein
levels. Rather than the classical V(D)J recombination-based Ig
system of jawed vertebrates, lampreys employ a presumed gene
conversion-like process to assemble 8-10 variable leucine rich
repeat motifs in between conserved genes that encode N- and C-
terminal ends of their antibody protein. Although the jawless
vertebrates lack the classical RAG and AID/APOBEC enzymes,
the proposed lymphocytes antigen receptor diversification
process is thought to be mediated by AID/APOBEC-like
cytidine deaminase enzymes denoted CDA (cytosine
deaminase) of which there are two sub-types, CDA1 and
CDA2, the former group appearing to have multiple enzyme
members (2, 17, 74–78).

Though essential for immunity, the DNA-editing enzymes
used to diversify antigen receptors also mediate significant off-
target genome damage. There are several mechanisms in place to
ensure targeting of RAG1/2 to the Ig and T cell receptor (TCR)
genes. These mechanisms include precursor lymphocyte-
restricted RAG expression, CTCF-binding elements flanking
paired RSS sequences, active chromatin markers, active
transcription, and stalled RNA polymerase II (79–82). Despite
these regulatory mechanisms, RAG is known to cause
chromosomal translocation, deletion, and insertions leading to
different types of T cell and B cell lymphoid malignancies, and
many of these off-target RAG cleavage events are believed to
occur through recognition of RSS-like sequences at non-Ig loci,
termed cryptic RSSs (83, 84). It has also been shown that the
excised signal circle can play the role of RSS and cause RAG-
mediated DSBs at a cryptic RSSs in a process termed “cut-and-
run” (85). RAG-mediated chromosomal translocations,
presumably as a form of mis-targeting of V(D)J recombination
are implicated in the etiology of chronic myeloid leukemia
(CML), leukemias and lymphomas (79, 86, 87).
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Mis-targeted activity of AID also causes genome instability
and mutations in B cells (88). For example, in patients with
chronic myeloid leukemia (CML), AID-mediated hypermutation
of tumor repressor and DNA repair genes have been associated
with progression into B lymphoid blast crisis and Imatinib-
resistance phenotype (89). In diffuse large B cell lymphomas
(DLBCL), somatic hypermutation off-targeting has been
reported in proto-oncogenes (90). The IGH/MYC translocation
that is signature of Burkitt lymphoma (BL) has a frequency that
is correlated with AID activity level (91). AID-induced
hypermutations have also been observed in chronic lymphoid
leukemia (CLL) (92). There has also been evidence of AID-
mediated carcinogenesis in germinal center (GC) B cells as the
result of Epstein-Barr virus (EBV)-induced AID expression (93).
Interestingly, under strong inflammatory stimuli, the premature
expression of AID during B cell development creates an
opportunity for cooperation between RAG and AID to drive
the clonal evolution of childhood B cell acute lymphoblastic
leukemia (B-ALL) (94). The role of AID in tumorigenesis has
been conclusively established in several mouse models. In mouse
models of IgH/MYC translocation-driven BL, AID has been
shown to be directly responsible for this tumor-driving
chromosomal translocation (95), and AID transgenic mice are
also prone to AID-driven tumorigenesis (96).

In addition to AID, its APOBEC relatives, the APOBEC3 sub-
branch of enzymes (A3A, A3B, A3H), which have antiviral
properties, are also a significant source of genome damage and
mutations implicated in many types of cancers, such as breast,
ovarian, and lung cancers, as the driving mutation and cancer
progression associated signatures (68, 97–108). Their mutagenic
Frontiers in Immunology | www.frontiersin.org 3
activity in tumors is often the most prevalent mutational
signature, and overall, only second to aging-related mutations
signatures. In addition to AID/APOBEC cytidine deaminases,
recent evidence also implicates ADARs as sources of mRNA
mutations in cancer (109–112). Like AID, the role of APOBEC
enzymes in tumor initiation has also recently been established in
APOBEC-transgenic mouse models (113).

The diversification of the adaptive immune antigen receptors
is the only vertebrate example of controlled self-DNA editing
and damage in the form of purposeful mutation and
rearrangement. The RAG, AID/APOBEC, and ADAR DNA-
editing enzymes play important roles in adaptive and innate
immunity through the mutagenesis and recombination of the
endogenous Ig genes, and the response to viral infection.
The importance of these enzymes is underscored by the
immunodeficiency disorders caused by their deficiency: severe
combined immunodeficiency (SCID) and Hyper IgM syndrome
in the case of dysfunctional RAG and AID, respectively (114–
121). On the other hand, these enzymes also mediate
considerable disease-driving collateral damage to the genome.
Given their importance to immunity, infection, and cancer, it is
not surprising that the DNA-editing enzymes of the immune
system have been the topic of intense study in various fields
including immunology, virology, cancer, DNA damage/repair
and structural biology. In the next section, we provide an
overview of the methodological and model organism landscape
of this research area. The central thesis of this review is that the
evolutionary aspect of these enzymes, despite being an
understudied area, has provided key insights from the basic
biological and applied biomedical perspectives.
A B

FIGURE 1 | Evolutionary and evolutionary comparative studies of AID/APOBEC and AID/APOBEC-like enzymes. (A) The emergence of AID/APOBEC and AID/
APOBEC-like enzymes during evolution and the evolution of antibody genes (Ig/VLR), and occurrence of secondary antibody diversification (i.e., antibody maturation;
SHM and CSR) and primary antibody diversification (i.e., V[D]J recombination) within and outside of vertebrate class. (B) Comparison of number of reports examining
AID in human and mouse (blue; > 99%) and studies done on other species (yellow; < 0.7%). The total number of published peer-reviewed studies on AID as measured by
AID being a keyword in title/abstract (pubmed/scopus search) is 2368. Of these, 49 discussed the topic of AID in species other than human or mice (15–63) and 17 (0.7%)
presented experimental data examining evolutionary divergent AID orthologs (17, 20, 21 26, 30–33, 39, 42, 45, 47, 52, 56, 61–63). NC, noncanonical; MML, multiple mini
loci; TL, translocon; GC, Gene conversion (or Gene conversion-like); unk, unknown.
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CENTRAL THESIS: DESPITE THE
OVERWHELMINGLY ANTHRO- AND
MURINE-CENTRIC APPROACHES TO
STUDY DNA-EDITING ENZYMES,
EVOLUTIONARY COMPARATIVE STUDIES
FOCUSING ON DIVERGENT SPECIES
HAVE PROVIDED SIGNIFICANT INSIGHTS
A survey of published literature on PubMed/Scopus reveals
~5000 articles focusing on the DNA-editing and DNA-
damaging enzymes of the immune system (RAGs: 729, AID:
2368, APOBECs: 2628, wherein these enzymes are in the title/
abstract), published over the last 3 decades of work on RAGs and
1-2 decades of work on AID/APOBEC/ADARs. In the remainder
of this article, because our work has mostly focused on AID, we
will use this enzyme as a representative example of a genome-
editing enzyme that has been extensively studied for 20 years
[since its discovery in 1999 – (12, 13)] in the fields of immunity,
cancer, DNA damage/repair, and epigenetics. In the following
paragraphs, we examine the themes, experimental approaches
and model systems used to study AID. The principles discussed
and the conclusions reached at the end of this review in the
context of AID apply equally and in the same manner to other
DNA/RNA-editing enzymes involved in immunity (APOBECs,
RAGs, and others, discussed below), and, for that matter, to the
study of all other molecules that play roles in human health
and disease.

First, in terms of study themes, topics of investigation include:
understanding (1) functions, including “normal” immune
functions (antibody diversification), non-immune biological
functions (epigenetic regulation of the genome), and
deleterious functions as a result of mis-expression or mis-
targeted activity (initiation and progression of cancers), (2)
regulation, including regulation of expression, interacting
partners (protein, DNA or RNA), and regulation of the
targeting of these enzymes to specific genes or genomic loci,
(3) networks of cellular processes including for instance the
DNA repair and damage response pathways activated
downstream of these enzymes’ mutational activities, (4)
molecular mechanisms, including biochemical analyses, and
(5) 3D structure determination.

Second, in terms of methodological approaches, studies fall
into several categories: (1) whole animal in vivo, (2) mechanistic
experiments using primary cells or model cell line ex vivo,
(3) genomics or bioinformatics studies examining genome-
altering signatures of these enzymes, and association with
immunity or cancer, (4) structure determination by
crystallography or nucleic magnetic resonance (NMR) or
emerging computational methods, (5) “simple” cellular
experimental systems such as bacteria or yeast in which the
enzyme is exogenously expressed followed by reporter assays,
(6) biochemical reductionist cell-free studies of the enzymes as
purified molecules, in vitro.

Third, in terms of model organisms, which will be the
focus of this review, for DNA/RNA-editing enzymes involved
Frontiers in Immunology | www.frontiersin.org 4
in immunity and cancer, and indeed for most molecules
that play roles in human health and disease, the vast majority
of research has been focused on human and, to a lesser
extent, mice. For the past several decades, cellular and
molecular biology approaches for studying molecules involved
in human health focused almost entirely on a handful of
well-characterized model species, including the fruit fly D.
Melanogaster, the worm C. elegans, and rodents, most notably
lab mice. There are several reasons for this: first, many disease-
related molecules function in similar pathways in humans
and these model organisms and their dysfunction in the
model species closely mirrors the resulting human condition;
second, many of these disease-causing molecular pathways
are well understood within the model organisms due to
decades of research; and third, the model organisms are
easy to grow, observe and manipulate at the cellular and
genetic levels. Therefore, the concept of studying a handful of
model organisms to glean mechanisms of human disease is
logical. Indeed, studying molecular mechanisms of human
health/disease-related processes in great depth but in a limited
number of model organisms is what has led to an unprecedented
pace of generating insights into the molecular basis of
human diseases.

The total number of studies with AID as the main, or one
of the main topics of study, as of the time of preparing this
article, is 2368, of which 49 have discussed the topic of AID in
species other than human or mice (15–63). Of these, 14 are
literature reviews, and of the remaining 35, only 17 studies have
presented primary experimental data wherein activities or
functional properties of evolutionary divergent AID orthologs
were compared (17, 20, 21, 26, 30–33, 39, 42, 45, 47, 52, 56,
61–63). And, among these 17, only less than a handful of studies
had an evolutionary comparison as a main conceptual thrust.
Therefore, in terms of effort, this area makes up a minuscule
(0.7%) subset of the research devoted to the AID enzyme,
with > 99% of studies being restricted to human or mouse
AID (Figure 1B).

The goal of this review is two-fold: Our first aim is to make
the case that despite this underrepresentation of effort, several
important discoveries have been contributed by working on
evolutionary distant AID orthologs, with implications across
the fields of cancer, immunity, and genetics. Using the example
of AID, we aim to highlight the concept that despite being a road
infrequently taken, the evolutionary comparative approach to
molecules involved in human health and disease provides
immense value for fundamental biological discovery, with
emerging practical applications in therapeutics and
biotechnology. Our second aim is to suggest that considering
the scale of the evolutionary diversity of species, there is an
immense knowledge gap in our understanding of DNA/RNA-
editing enzymes from species other than human and mouse. In
the sections below, we first review the evolution of AID and
related enzymes, followed by a review of the contributions made
by examining AID through a species-comparative and
evolutionary lens, and the future potential of such avenues
of inquiry.
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EVOLUTION OF AID IN THE CONTEXT OF
RELATED DEAMINASE ENZYMES

The AID/APOBEC family is thought to have originated from
tRNA adenosine deaminase (Tad)/adenosine deaminase acting
on tRNA (ADAT2), the latter of which forms a heterodimer with
ADAT3 to deaminate adenosine (A) to inosine (I) in 34 tRNA.
These mutated tRNAs can recognize multiple mRNA codons, as
I pairs with U, C, or A in the wobble (3rd) position (15, 16).
Interestingly, ADAT2 may be able to deaminate cytidine in DNA
as well (122) indicating the substrate promiscuity of the AID/
APOBEC family may have evolved before the APOBEC family
divided into the multiple family members. Other enzymes related
to Tad/ADAT2, but not to the AID/APOBEC family, include
Tad1p/ADAT1, which deaminates tRNA, adenosine deaminases
acting on pre-mRNA (ADARs 1, 2, and 3), which is involved in
post-translational modifications of RNA (123–125); and cytosine
deaminase , cyt idine deaminase , and deoxycyt idine
monophosphate deaminase (dCMP), members of the
pyrimidine salvage pathway which recycles nucleotides (126).
These enzymes are found throughout the metazoa phylum (16).

Members of the classical AID/APOBEC family (APOBECs 1,
2, 3, and 4) and their newly discovered sister clades and members
are discussed below, in the order in which they likely evolved. It
is suggested that the AID/APOBEC family has evolved from the
tRNA adenosine deaminases containing the consensus motif
(C/H)xExnPCxxC (x is any given amino acid) as their catalytic
domain (14, 127). The shift in substrate specificity from adenine
to cytidine during the divergence of the AID/APOBEC family
from Tad2/TadA deaminases has been attributed to the
expansion of the a4-b4 loop (i.e., Loop8) and a conserved
tyrosine in this loop. The larger L8 decreases the size of the
substrate-binding pocket, and the conserved tyrosine could
participate in base-stacking interactions (128). Moreover, the
HxExnPCxxC motif is the conserved catalytic domain shared by
the AID/APOBEC family in which the glutamate (E) acts as a
proton donor and the histidine (H) with two cysteines (C)
coordinate a Zn2+ ion with the help of a water molecule (39,
52, 129, 130).

The secreted novel AID/APOBEC-like (SNAD) enzymes
belong to a sister clade to the classical AID/APOBEC family,
evolving in the first animals to diverge from fungi (sponges,
SNAD4) and appearing throughout the vertebrate phylum
(SNAD1). SNAD2 and 3 found only in the ray-finned fishes
are likely the result of whole genome duplication event and/or
subsequent expansion of this class. SNAD enzymes are the only
AID-like enzymes in multicellular eukaryotes with a
characteristic predicted secretion sequence and have therefore
been proposed to be secreted potentially for delivery to virus-
infected cells or extracellular parasites; however, their catalytic
activity and other biochemical characteristics remain unknown.
They may have originated from bacterial toxin proteins (16).

APOBEC4 (A4), a member of the classical AID/APOBEC
family, was likely next to evolve, first appearing in the
cnidarians (corals), which diverged after sponges (16). The lack
of introns in the A4 gene indicates it may be the result of
Frontiers in Immunology | www.frontiersin.org 5
early retrotranspositional events. A4 is present in the first
vertebrates, the jawless fish (agnathans), the lobe-finned fish
(sarcopterygians), and tetrapods, but is lost in sharks and often
lost in ray-finned fishes (actinopterygians). It is expressed in
human testes, but its biological role and catalytic activity are
unknown. Unlike the other members of the AID/APOBEC
family which are known to deaminate polynucleotides, critical
amino acids required for polynucleotide deamination (SWS and
F in the middle of the deaminase motif HXE….PCXXC) are
missing from A4, indicating it may act on other substrates (15,
16, 131).

The next-evolved branch of AID-like enzymes include
cytidine deaminase-like 1 (CDA1), CDA1L1, 2, 3, and 4, and
CDA2 found in the jawless vertebrates (agnathans). Lampreys
lack many canonical “pillars” of the adaptive immune system,
such as RAGs and MHC; however, they do have antibody-like
proteins (VLRs) that are diversified somatically, which led to the
discovery of CDA1-like, and CDA1 and 2 in the freshwater and
sea lampreys, respectively. These enzymes will be discussed in
detail in a following section (16, 17, 20).

This was followed by the emergence of AID and APOBEC2
(A2) in the common ancestor(s) of jawed vertebrate classes of
cartilaginous and bony fish. Hence, A2 and AID are considered
the ancestral family members of the classical APOBEC family
due to being present in most jawed vertebrates tested to date.
They appeared at the same evolutionary juncture where the
classical V(D)J-based Ig recombination and canonical heavy/
light-chain based antibody structures emerged (16, 57).
Interestingly, the involvement of CDA1 in diversifying the
lamprey’s immune receptors and the continuing of a similar
role for AID in the jawed vertebrate may be an example of
convergent evolution in that the acquisition of the lymphocyte
receptor diversification role by the AID-like branch had already
occurred before the further divergence of this branch within
vertebrates. A2 may be the result of early retrotranspositional
events, which used AID as a scaffold. Like A4, human A2 does
not appear to edit RNA, DNA, or free cytidine in vitro. Its
ortholog in zebrafish, which has been implicated in retina and
muscle generation, also lacks deaminase activity (132–134).
Additionally, A2 seems to inhibit transforming growth factor
(TGF)-b in Xenopus (frog, amphibian) and zebrafish (135).

The so-called novel AID/APOBEC-like Deaminases 1 and 2
(NAD1/2), while not being original members of the classical
AID/APOBEC family, are closer in sequence to A1, A2, A3 than
A4. NAD1 is found in ray-finned fishes, the coelacanth
(sarcopterygian), amphibians, lizards, and marsupials; NAD2 is
found only in amphibians. Neither NAD has been characterized
and their biological relevance remains unknown (16).

APOBEC1 (A1) is the founding member of the AID/
APOBEC family (136–138). It was originally thought to be first
evolved in mammals due to duplication of AID; however, this
duplication likely occurred in or before the lungfish. A1
deaminates the cytosine at position 6666 of Apolipoprotein B
mRNA, creating a premature stop codon at this position, altering
ApoB100 to ApoB48, which is essential for secretion of
triglyceride-rich chylomicrons (139). It was later discovered
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that like AID and A3s (below), A1 is also quite promiscuous,
acting on retroviral substrates and ssDNA (140, 141). As A1 is
among the later AID/APOBEC family members to evolve, the
RNA-editing capabilities seen in other members of this family
may be a late-evolved characteristic. On the other hand, due to
the progenitors of the AID/APOBEC family acting on RNA and,
in some cases, both RNA and DNA (142), substrate promiscuity
may be an original characteristic of the many family members,
whose activity has just not yet been fully elucidated. In support of
this, changes in substrate binding surface regions of the AID and
APOBEC-related deaminases appear to be the most rapidly
evolving structural feature of these enzymes, and AID certainly
appears to recognize RNA and DNA/RNA hybrids with very
high affinity though its catalytic activity is restricted to the
ssDNA strand (143).

APOBEC3 (A3) is the last group of AID/APOBEC enzymes
to have emerged, likely the result of AID’s gene duplication
events. A pronounced expansion has occurred most recently in
primates leading to 7 unique primate-specific A3 genes (A3A,
A3B, A3C, A3DE, A3F, A3G, and A3H) (64, 144). The expansion
of these enzymes has been proposed to be due to an arms race
between mammals and the targets of A3, retroviruses. The origin
of A3 is not fully clear: the initiating duplication event was
thought to take place in the first placental mammal where no A3
ortholog were found in animals that diverged before placental
mammals. It is thought that in rodents, pigs, and cattle, two AID-
like genes fused to form a single gene; in horses, bats, and felines,
one of the two genes repeatedly duplicated leading to an
expansion of A3 genes. However, the sequenced lungfish
genome appeared to contain a putative A3C gene (145). It is
possible that the A3C found in the lungfish was a novel
APOBEC-like gene representative of convergent evolution.
THE EVOLUTION OF IMMUNOGLOBULIN
LOCI AND DIVERSIFICATION

Pre-vertebrates (protochordates) lack AID but have AID-like
enzymes such as the aforementioned SNADs. While also lacking
B cell receptors, these animals have immune receptors belonging
to the immunoglobulin superfamily (146–149). It is believed that
a type of proto-AID (or AID ortholog) was present in the first
vertebrate ancestor, which then diverged to CDA in the lamprey
and to AID in the early jawed vertebrates, the shark (17, 18).
Similarly, it is hypothesized that the targets of this proto-AID
(somatically diversified lymphocyte receptors) diverged into
three unique receptors with three different lymphocyte cell
lineages: a secreted form (VLRB in the lamprey and BCR in
jawed vertebrates in B cell-like cells) and two membrane-bound
receptors (VLRA/C in the lamprey and TCR ab/gd in jawed
vertebrates in T cell-like cells) (18, 150). Due to CDA1/1L genes
lacking introns, it has been posited that CDA2 was the original
enzyme in all three lamprey lineages, with the ability to
somatically diversify all three VLRs, and that CDA1/1L genes
were the result of retrotransposon events after which CDA2 was
subsequentially silenced in CDA1/1L+ cell lineages. This idea is
Frontiers in Immunology | www.frontiersin.org 6
supported by the fact that in the first-diverged subsequent jawed
vertebrate, the shark, AID appears to initiate somatic
hypermutation of both B and T cell receptors (19, 35, 151,
152). This suggests that perhaps this broader dual role of AID
was lost in subsequent vertebrate lineages and the role became
focused on antibody diversification in B cells only but the dual
role appears again in limited later-diverged species, such as the
Ballan Rasse (ray-finned fish) and in camels (36, 153). Lamprey
CDAs have been relatively understudied after their discovery,
with their VLR antibodies garnering the most attention as novel
non-classical antibody structures that may hold biotechnological
and therapeutic potential (154–156).

The first immunoglobulin loci to evolve were those in the
elasmobranchs (sharks and skates) that are organized quite
differently from the most-studied mammal Ig loci. Shark Ig loci
are organized into multiple mini loci (MML) (149, 157), with a
mini locus or “cluster” equating to one V region placed next to
one or more D regions, followed by one J segment and a single
constant region (V-DDD-J-C)n (158). Some MML are
rearranged in the germline, while most are rearranged by the
RAG recombinase. Shark Ig undergo SHM, with long, tandem
substitutions unique to these species and presumed to be due to
AID-initiated mutations (57, 158–162). It was initially believed
that shark Ig did not undergo CSR; however, though shark Ig
sequences lack the conventional switch regions which first
appeared in amphibians, recombined VDJ of one cluster can
be “switched” with that of another, leading to a different constant
region attached to the recombined VDJ region, possibly initiated
by AID acting on recombination hotspots in a process that is
concomitant with SHM rather than separated as in after the
appearance of distinct switch regions (24, 163, 164). The studied
Sharks have three types of Ig: IgM, present in almost all
vertebrates, IgW (may be a counterpart to IgD), and IgNAR,
which is unique to sharks, being made up of only heavy
chains (165).

Outside of humans and mice, SHM and CSR have been
studied most in ray-finned fish. Poikilotherms such as ray-
finned fish have modest changes in antibody affinity, which has
been reported in several species to be initiated by SHM (40, 41,
43, 49, 57, 166–168). This is likely due to inefficiencies caused by
a lack of organized GCs; instead, ray-finned fish appear to have
GC-like clusters of melanomacrophages with AID-producing
cells in the centre (41, 169). Teleost fish (ray- and lobe-finned
fish) appear to have Ig loci made up of both MML and
translocon-type organizations, the latter of which is how most
tetrapod Ig loci are arranged. In ray-finned fish, the V, D, and J
segments are arranged as in mammalian Ig loci, with the IgM and
IgD constant regions at the 3’ end, one after the other. However,
the teleost-unique IgZ/T constant region is located further
upstream, separated from the IgM and IgD constant regions by
D segments (Vn-Dn-Jn-CZ-Dn-CµCd) (57, 157, 170–172).
Lungfish also have IgW and the lungfish-specific IgN and IgQ
(173). Though bony fish Ig loci do not undergo CSR which
appears first in amphibians, the IgM and IgD isotopes are
“switched” via alternative mRNA splicing, while IgZ/T can be
expressed after alternative V(D)J rearrangement.
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COMPARATIVE EVOLUTIONARY
STUDIES OF AID IN CELL-BASED
FUNCTIONAL ASSAYS
The most emphasis outside human and mouse AID has been on
fish, because of the expected level of divergence in the primary
sequence, and unique features found in fish AID’s primary
structure compared to the very well conserved mammalian
counterparts. Due to evidence of SHM in the early-diverging
vertebrate fish lineages as discussed in the above section, it was
hypothesized that an AID ortholog could be found in bony fish,
and it was indeed found in channel catfish (Ip-AID) (40). This
was the first non-human/mouse AID ortholog to be identified
followed by detailed work on tissue expression patterns and
possible roles in SHM. Shortly thereafter, it was determined that
zebrafish also has a bona fide AID gene (Dr-AID) and noted that
it, along with the predicted AID genes from other ray-finned fish,
encodes an additional 9 amino acids (aa) in the cytidine
deaminase motif, along with a different N terminal motif
compared to tetrapod AIDs (44). In 2004-2006, a series of
early studies looked at the functionality of a small number of
fish AID alongside Xenopus AID using exogenous expression in
bacteria or yeast and measuring mutagenic activity in colony
formation reversion assays, or expression in murine or human
AID-deficient B cells followed by assaying for CSR (31–33, 49).
Even though canonical CSR only occurs in tetrapods (37),
multiple fish AID orthologs were able to initiate both
mutations in E. coli, S. cerevisiae, and murine cells and CSR
when exogenously expressed in AID-deficient B cells, albeit less
effectively than mammalian AID (31–33, 49). This suggested that
CSR as it occurs in mammals evolved due to the emergence of
switch regions within immunoglobulin loci, and not due to
adaptations of the different AID orthologs, and that the
poikilotherm AID itself is fully capable of mediating CSR. In
depth analyses of the regions of human AID required for CSR
pointed to the C-terminus raising the possibility that this region
of AID may be important in other biological roles prior to the
evolutionary emergence of Ig CSR (174). Importantly, these
studies also provide strong opposition to the view that CSR
mediation by AID requires a specific set of protein co-factors,
because early fish AID are presumably not co-evolved with such
presumed co-factors required to chaperone AID to switch
regions of the Ig genes in mouse cells. These findings are in
line with later findings that the role of AID in mediating CSR is
simple dC mutation and DSB generation, and that likely AID is
targeted to these regions through the abundance of ssDNA
structures such as R-loops and DNA/RNA hybrids that are
inherently favored by AID (143, 175, 176).

In experiments wherein fish AIDs were exogenously
expressed in murine AID-deficient B cells, zebrafish AID and
mouse AID could mediate equally efficient CSR, with fugu AID
and catfish AID being respectively 4- and 7-fold less efficient
than these. Nuclear cytoplasmic shuttling of AID has been shown
to be a key regulator of its activity and catfish and fugu AIDs
appear to have nuclear export and localization domains
conserved with other non-mammalian vertebrate domains with
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expectant results upon their mutation and it was shown that
removal of this domain results in accumulation of AID in the
nucleus, confirming its functionality. However, generation of
hybrid AID with interchanged NES domains demonstrated that
the aforementioned difference in their ability to mediate CSR was
not due to different NES sequences, suggesting that fish AIDs
may have different inherent catalytic robustness (31, 32, 49, 177).
In the same set of experiments, the functionality of Xenopus AID
was also confirmed for the first time.

Another property of fish AID that was examined in these
early studies was temperature sensitivity. It was found that
incubating the cells in which the fish AID are being expressed
at lower temperatures than the typical 37°C (18°C for bacteria,
30°C for yeast, and 26°C for mammalian cell lines), yielded
generally more AID activity in the bacterial colony count,
yeast-null mutation, and GFP reversion based assays employed
in bacteria, yeast, and cell lines, respectively (15, 31, 32, 49). The
lamprey CDA1-class deaminases were also shown in bacterial
and yeast-based expression assays to be active cytidine
deaminases. Another example of a structure:function insight
was the example of using zebrafish AID to propose a role for
S38 phosphorylation-dependent interaction of AID with
replication protein A (RPA) and its role in mediating CSR.
Since zebrafish AID lacks this residue but contains D44
which can act as a phosphomimetic residue, it was proposed
that S38 phosphorylation dependent Replication protein A
(PRA) interaction is essential for CSR, though another study
using a zebrafish AID with a D44 mutation found that this
residue is not critical for CSR (30, 42, 62, 178); therefore the
importance of this axis of S38 phosphorylation-AID-RPA
remains uncertain, as the early view that specific cofactors
chaperone AID to the Ig locus ought to be considered in
balance with the various explanations that it may be the
process of transcription and its unique features at the Ig loci
including robust and bidirectional transcription, and unique
DNA or RNA secondary structures (e.g. G quadruplexes) are
the determinants that recruit AID to the Ig loci to carry out SHM
and CSR (179–182).

As the first tetrapods, amphibian (Xenopus) antibodies
undergo SHM and CSR; however, the switch regions in
Xenopus are AT-rich compared to GC-rich, which may affect
switching efficiency (183, 184). Xenopus AID has been shown to
demonstrate CSR activity, and is expressed in hematopoietic
tissues, hinting at a role in ontogeny (31, 51). Neither Xenopus
nor other amphibian AIDs have been biochemically
characterized. Avian Ig loci, at least the ones sequenced (duck,
chicken, and ostrich) are unique among the higher vertebrates in
that there is a single functional germline locus (V-Dn-J or V-J)
that is recombined via V(D)J recombination; further
diversification occurs via AID-mediated gene recombination
(similar to how VLRs are recombined), initiated by avian AID
(185–188). Aside from experiments demonstrating that bovine
AID can demethylate DNA via deaminase activity (61), no other
non-human, non-mouse AID has been characterized in the
higher vertebrates, and its targets (Ig) and activity (SHM and
CSR) in many non-human animals remain unstudied.
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COMPARATIVE EVOLUTIONARY
ANALYSES OF AID IN CELL-FREE
BIOCHEMICAL ASSAYS
Over the last decade, we have pursued a comparative
enzymology approach to study the biochemical properties and
structure:function aspects of purified AID from divergent
orthologs. The initial goal of this effort was to gain insights
into the 3D structure of human AID. Given AID/APOBECs’
involvement in immunity and cancer, intense research has been
dedicated to solving their 3D structures. Unfortunately, AID/
APOBECs proved to be problematic subjects for X-ray or NMR
because they are difficult to make in large quantities due to host
cell toxicity, and they form extensive non-specific interactions
with other molecules making them hard to purify and insoluble.
Hence, > 90% of the 40 reported AID/APOBEC structures are of
partial or significantly altered versions, quite a few with < 50%
identity to the native protein (PDB databank: https://www.rcsb.
org/) (53). These alterations were necessary to enable crystal
formation for X-ray crystallography or enhance solubility for
NMR. AID is a small (only 198 aa) protein but it has by far the
most positively charged surface amongst the AID/APOBEC
family, which underlies its exceptionally high binding affinity
(~nM-range) for its negatively charged ss-DNA substrate (189).
Partially because of this, it has not been possible to obtain a
native AID crystal or NMR structure despite intense attempts for
20 years since its discovery in 1999.

Based on the initial insights from the cell-based assays that
revealed differences in functional efficiencies of orthologous
AIDs and the relatively high divergence among mammalian
and fish AID, we posited that AID from more distantly
evolved species, might have distinct properties and that
discovering the basis of their differences would shed light on
AID’s inner workings. We began studying AID from key
evolutionary points. Fish were of great interest because they
are the most evolutionarily divergent species known to have AID,
and their AID sequences exhibit the highest degree of primary
sequence divergence. Parallel to the evolutionary approach,
several partial X-ray or NMR structures of APOBECs were
utilized in computational modelling to generate thousands of
predicted AID 3D structures. Through this computational
modelling and evolutionary approach, hereafter referred to as
the “computational-biochemical-evolutionary” method, parts of
AID were predicted to have a specific function. A library of
different AID versions (mutants, chimeras with exchanged
domains, fish orthologs) was generated, purified, and subjected
to functional biochemical enzyme assays (e.g., enzyme kinetics,
substrate binding, and optimal temperature determination) to
verify whether a motif predicted by the modelling indeed
mediated the supposed function. The experimental results were
cross-referenced with the evolutionary/computational
predictions, in order to refine a functional map of AID’s
structure, first published in 2015 through this approach (52).
This functional map of AID was later confirmed independently
by an X-ray crystal of a near-native AID in 2017 containing 20 aa
truncations and a handful of residues mutations which altered
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the surface charge of AID from ~+10 to +3 (52, 129). In the
following paragraphs, we review the insights gained through the
computational-biochemical-evolutionary method.

In 2012, by comparing the enzymatic activity and predicted
structure of Hs-AID with bony fish AIDs (i.e., zebrafish [Dr-AID]
and catfish AID [Ip-AID]), we demonstrated that different AID
orthologs present diverse biochemical properties, such as catalytic
rate and optimal temperature, which are governed by a single
amino acid in their C terminus (26). The difference in the optimal
temperature mirrored the ambient temperature of each organism.
We observed that Dr-AID was several fold more active than Hs-
AID while Ip-AID was significantly less active than Hs-AID, in
line with the previous observations of its lesser ability to mediate
CSR when deployed in an AID-deficient B cell (26). The different
catalytic rates amongst AID orthologs may reflect the different
evolutionary paths taken by each species’ immune system. The
computational modelling of the surface charge and topology, and
functional ssDNA binding assays of bony fish and human AIDs,
also led to an early picture of AID’s ssDNA binding grooves. The
width of this groove is ~ 10 Å. Given the width of ds-DNA helix
(~ 20Å), the identified DNA binding groove on AID explained its
substrate specificity for acting only on ssDNA and not dsDNA
(190–193). The presence of this DNA binding groove has been
confirmed upon crystallization of Hs-AID with ssDNA
(129, 194).

In 2013, we demonstrated that zebrafish AID, unlike its
human counterpart and several other bony fish AIDs had the
unique enzymatic ability to mutate 5-methyl dC (5mC) in
addition to regular dC (39). Soon after its discovery, a possible
role of AID in genome methylation and epigenetic
reprogramming was suggested where AID demethylation
activity in the CpG motifs would convert 5mC to
deoxythymidine (dT) (195). Supporting evidence came from
the fact that the AICDA gene is located in a cluster with other
pluripotency genes and is expressed in oocytes and primordial
germ cells (196). Soon after this initial report, AID-mediated
deamination of 5-mC was reported in induced pluripotent stem
(iPS) cells, primordial germ cells, B cells, cancerous cell lines, and
bovine and zebrafish embryo (60, 61, 197–201). Regarding the
enzymatic activity of AID on 5-mC, initially, it was claimed that
Hs-AID has comparable activity on 5-mC as well (196).
However, soon after, several reports showed that although Hs-
AID can indeed deaminate 5-mC, its activity on this substrate
and on other cytidine derivatives with bulky adducts is many
folds less than on dC (39, 202–204). This is a key aspect of AID
activity since AID-mediated CpG demethylation through a C to
T mutation could be a mutagenic process. Given the importance
of CpG motifs in gene expression and epigenetics, one would
expect to avoid efficient activity of AID on 5-mC. In fact,
methylation has been proposed as a protective mechanism
against undesirable AID activity (202). We then used our
comparative computational approach and reported that unlike
Hs-AID, Ip-AID, medaka AID (Ol-AID), and tetraodon AID
(Tn-AID), the zebrafish AID exhibits more efficient activity on
5m-C, deaminating it more efficiently than many other orthologs
deaminate regular dC and significantly more efficient as
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normalized to its own activity on dC (39). From a biological
standpoint, these results explained why in zebrafish, AID was
uniquely involved in embryonic development and its knockdown
resulted in genomes with hypermethylated CpG motifs. From an
AID structure:function standpoint, modeling predictions of
human and zebrafish AID catalytic pockets docked with dC
showed that both AIDs are predicted to form catalytic pockets
with the classical triad of Zn-coordinating residues (C87, C92,
and H56 in human AID) and catalytic glutamic acid (E58 in
human AID) that can accommodate a dC residue in orientations
that support the 4-stage deamination chemistry common to
cytidine and cytosine deaminase. Importantly, the catalytic
pocket of zebrafish AID was predicted to have one of its
composing loops extended and more flexible as compared to
that of human AID, thus providing more space for a 5mC
substrate that is bulkier than a dC (204). In this manner, the
computational-biochemical-evolutionary method not only
solved a biological puzzle about the role of AID in zebrafish,
but it also made a key structural biology contribution by
providing the first detailed maps of AID’s catalytic pocket
th rough pred i c t i v e mode l l ing co r robora t ed wi th
functional enzymology.

In 2015, using our computational-biochemical-evolutionary
method, we mapped a network of primary and secondary
catalytic residues that either contact and/or stabilize the dC in
a catalytic pocket (52). This network of amino acids consists of
G23, R24, R25, E26, T27, L29, N51, K52, N53, G54, C55, V57,
T82, W84, S85, P86, D89, Y114, F115, C116, and E122 in human
AID (52). These residues form the “walls” and “floors” of the
catalytic pocket and interact with substrate dC in several
predicted protein conformations through hydrogen bonding,
electrostatic interactions, and aromatic base stacking. The
importance of direct interactions between some of the
secondary catalytic residues and substrate DNA was validated
when the crystal structure of a partially truncated and mutated
but relatively near native AID was published (129). Given the
importance of proper positioning of dC inside the active site for
efficient deamination activity, defining the secondary catalytic
pocket residues was a step forward in solving the functional
structure of AID. In the same work, we also described a novel
structural regulatory mechanism of AID/APOBEC activity in
that the majority of Hs-AID conformations at any given time
contain catalytic pockets that are closed and inaccessible for
accommodating a dC for deamination (194). Furthermore, we
observed that the majority of ssDNA:AID binding events result
in ssDNA bound non-productively on the surface in
conformations that do not pass over the catalytic pocket,
presumably due to the highly positively charged surface of AID
(+11, the highest surface positive charge amongst AID/
APOBECs) (52, 194). Taken together, the frequent catalytic
closure and sporadic ssDNA binding are significant bottlenecks
for AID activity such that < 1% of all ssDNA:AID binding events
translate into a cytidine deamination event. We then proposed
that due to the potential danger of AID/APOBEC activity for
genomic DNA, this inherent structural regulatory mechanism is
in place as a safe-guard mechanism in AID and in the
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tumorigenic A3 family members; the main pillar of this
hypothesis was that the open:closed dynamic ratio in AID,
A3A and A3B correlated with their catalytic rates and with
their relative responsibility for mediating tumorigenic mutations
in cancers. We termed this novel mechanism Schrödinger’s
CATalytic Pocket (53). Here again, the computational-
biochemical-evolutionary method was key in providing the
functional proof for the existence and regulatory role of
Schrödinger’s CATalytic Pocket. A panel of chimeric AID
enzymes, including bony fish-human chimeras, was generated
since certain fish AID (e.g., the aforementioned zebrafish AID)
have catalytic pockets are composed of loops of different lengths
and hence different breathing dynamics compared to human
AID. The demonstration that the AID chimeras (e.g., human/
zebrafish catalytic pocket chimera AID, or AID/A3 chimera)
predicted to spend more time in the open conformation also
have higher catalytic rates, provided functional proof of the
concept for Schrödinger’s CATalytic Pocket. First revealed by
the computational-biochemical-evolutionary method, the pocket
dynamic has since been independently confirmed by structural
analyses of A3s.

In a study in 2017, to examine whether Hs-AID’s unique
biochemical properties (i.e., low catalytic rate and high affinity
for its substrate) were conserved across vertebrates, we compared
the enzymatic activity of Hs-AID to that of sea lamprey, nurse
shark, and coelacanth. These species were chosen to represent
key points of evolution, lamprey being a jawless vertebrate, shark
being the first jawed vertebrate with the classical Ig system, and
coelacanth being the “fossil fish” lobe fined fish thought to be the
closest fish ancestor of tetrapods (21). We found that despite the
biochemical variability amongst these enzymes in substrate
sequence preference (WRC vs. non-WRC motifs) and optimal
temperatures, the key defining enzymatic characteristics of AID
(lethargic catalytic rate and high nM range affinity for ssDNA
binding) were maintained (205). This finding suggests that these
unique biochemical regulatory features of low catalytic rate and
high ssDNA binding affinity in AID are evolutionary conserved
and thus important for its function, for instance the balance
between making SHM and CSR mutations while protecting the
genome from rampant promiscuous mutagenesis. Furthermore,
using computational modelling, we showed that all of the above-
mentioned AIDs are predicted to exhibit the Schrödinger’s
CATalytic Pocket phenomenon, revealing the importance of
this intrinsic structural regulatory mechanism for AID activity
throughout the vertebrate class (205). Importantly, this was also
the first study to show that two species, key in the evolution of
adaptive immunity in its classical mammalian form, the shark
and the coelacanth, do indeed have a functional AID enzyme.

In amore recent study, colleagues andwe turned our focus to the
extant agnathan the sea lamprey, in which thus far two AID-like
cytidine deaminases (CDA1 and CDA2) have been found (20).
Genetic analyses revealed thatCDA1andCDA2were found in both
the sea and freshwater lampreys, alongwith, unexpectedly,multiple
CDA1-like genes that could be divided into two distinct groups
(CDA1L1_1, _2, _3, _4 and CDA1L2_1, _2). Genomic DNA from
other individuals were searched for homologs of these new
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CDA1-like genes, which were found, along with splice variants of
CDA1L1_1 and CDA1L1_3. When their amino acid sequences
were compared with those of other AID orthologs, these novel
CDA-like proteins were found to contain the conserved deaminase
core catalyticmotif (HxExnPCxxC), suggesting they could be active
cytidine deaminase. In silico modeling of each CDA ortholog also
demonstrated the high likelihood of catalytic cytidine deaminase
activity, as each protein formed a putative cytidine deaminase
catalytic site, and catalytic activity was demonstrated by
expressing these enzymes in 293T cells and assaying the extracts
for cytidine deaminase activity. The enzymes exhibited cold
adaptation, with optimal temperatures being between 14-22°C,
and most had an acid pH-adapted activity profile, reminiscent of
the humanA3 branch enzymes (A3A, A3B, A3G, A3F) rather than
humanAID, and commensurate with structuralmodeling showing
that these proteins have a lower surface charge than human AID.
These results showed for the first time that lamprey has more than
just one version of a CDA1 enzyme, and remarkably, that these are
variably expressed in individuals of the same species, a novel
biological phenomenon the mechanism and importance of which
is yet to be discovered.
DISCUSSION

In the above sections, we reviewed the insights relevant to
structural biology, immunology, and cancer research that have
been brought forth by comparative studies of AID from non-
human/mouse species. This section highlights the future
potential of comparative evolutionary studies for impacting
emerging approaches in structural biology, base-editing, and
protein engineering. The concept of how evolutionary studies
illuminate each of these three arenas is illustrated in Figure 2.

First, with respect to structural biology (Figure 2 arrow 3,
bottom panel, and Figure 3), the significance of this
computational-biochemical-evolutionary approach for AID is
evident by its track record of providing the first 3D map of
AID structure and revealing the concept of Schrödinger’s
CATalytic Pocket in the AID/APOBEC family, both of which
have subsequently been confirmed by independent studies
employing the traditional structure solution methods of
crystallography and NMR. Thus, in the case of AID, not only
did the evolutionary-biochemical-computational approach for
solving its structure prove to be quicker, it was also the only
approach able to deal with AID in an unaltered native state, as
the only way to crystalize AID has been to alter it, with the most
near-native crystal structure still containing 20 aa truncation and
multiple surface mutations that change the charge of native AID
drastically (from +11 to +3) (52, 129). Furthermore, the
evolutionary-biochemical-computational method also revealed
additional time/space dimensions of the structure that are not
normally probed through the traditional methodologies (53). For
this reason, we termed this type of computational-biochemical-
evolutionary structure a five-dimensional (5D) description of a
3D structure. In the 5D structure of a protein, as opposed to the
classical protein structure which has always been viewed as a 3D
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shape, the structure’s dynamics are further explored through
time (4th dimension) dimensions of ‘tempus’ and ‘aevum’. The
‘tempus’ analysis is the studying of a protein structure in a real
time manner where one can examine/predict the ‘protein
breathing’ on the time scale of fractions of a second, while the
‘aevum’ sub-dimension is one wherein dynamic change is
compared throughout ortholog evolution from both closely-
and remotely-related species, on the time scale of hundreds of
millions of years. The 5th dimension, which is “function”, then
explores the understanding of how these dynamic 3D and 4D
structures relate to the biological function of the protein,
including functions in human health/disease. Figure 3
illustrates the concept of how a 5D structure description
contains orders of magnitude more information than the
conventional 3D picture.

Others and we have shown that AID orthologs exhibit a vast
diversity in many of their biochemical properties such as
catalytic rate, optimal temperature, optimal pH, and substrate
sequence specificity. Indeed, the catalytic rate varies over 3 orders
of magnitude, temperature optima vary from very cold to human
body temperature, and pH optima vary over a range of nearly 2
units. Firstly, this is indeed a remarkable range of variation for
evolutionary closely related versions of the same enzyme, given
that a large portion of the enzyme’s primary sequence and its
overall 3D structural architecture are conserved. Secondly, each
of these biochemical characteristics is an indicator of a specific
structural aspect of a protein. For instance, variations in catalytic
rate can be due to differences in substrate binding or differential
dynamics of the catalytic pocket as dictated by breathing loops
that compose the catalytic pocket. Variations in optimal pH are
largely owing to the surface charge of the protein, which in AID
can vary from only slight positive in some bony fish (e.g., +3 in
Salmo Salar) to extremely positive (e.g., +11 in human and
mouse). Substrate specificity differences are mediated by a well-
defined substrate specificity loop which is one of the more
variable structural regions among the AID/APOBEC family
members, causing different surface binding pockets next to the
catalytic pocket that underlie differential preference for the -2
and -1 base positions next to the target dC that is positioned in
the catalytic pocket. For temperature sensitivity, proteins may
increase their thermoresistance using several strategies. In the
first mechanism, the enthalpy change (DHs) measured at the
temperature of maximum stability (Ts) becomes more negative,
causing DG for all temperatures to decrease. This strategy can be
seen as a stability curve to be shifted downward. The second
strategy is to increase (less negative) the change in the heat
capacity upon folding (DCp) which causes Tm to increase. In this
case, the stability curve would broaden. The last approach is to
increase Ts which shifts the curve to the right. Proteins may apply
one, two, or all of these strategies to improve their thermal
resistance, and this is dictated by differences in the secondary
structures employed in various parts of the protein and/or overall
flexibility of the structure. Thus, not only is each of an enzyme’s
biochemical properties reflective of a structural trait in terms of
the 3D folding of the structure, but the relationship between
properties (e.g., between catalytic rate and optimal temperature)
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FIGURE 2 | The concept and three main applications of the evolutionary-biochemical-computational approach to studying DNA-editing enzymes. The evolutionary
comparative approach is shown in the middle with 3 arrows each pointing to an area wherein this approach can make significant impact. The evolutionary comparative
approach shown in the middle panel consists of comparing biochemical properties (Michaelis-Menten kinetics, substrate binding kinetics, optimal temperature, optimal pH,
substrate sequence or shape specificity, etc.) of the enzymes using enzyme assays and considering insights in the context of their 3D solved structures or computational
predicted models as shown in this figure. Due to vast biochemical diversity observed amongst various AID orthologs, examining the biochemical properties of divergent AID
orthologs has shed light on many structure:function aspects of AID/APOBEC enzymes. Arrow 1: the evolutionary comparative study of DNA-editing enzymes can provide
insights into the evolution of the immune system, for instance on whether the immune systems use active deaminases and how/if they have gene sequences or other immune
genes that have co-evolved with their deaminases. Arrow 2: using different orthologs allows for generation of libraries of mutants and chimeric enzymes which can have
diverse biochemical properties such as DNA/RNA-targeting profiles and sequence specificities, and these can be used for applications such as base editing. Arrow 3: the
most important highlight of the evolutionary-biochemical-computational approach is the birth of the concept of 5-dimentional (5D) structural description, proposed in this
article. The 5D description integrates the classical 3D structure of a protein with dynamic changes in time (4th dimension) and the relevance of these to function (5th

dimension). The middle panel contains reproduced figures from previous publications. The thermosensitivity and enzyme velocity plots are from our previous work Quinlan EM
et al. (21). Biochemical regulatory features of activation-induced cytidine deaminase remain conserved from lampreys to humans. Mol Cell Biol 37:e00077-17. https://doi.org/
10.1128/MCB.00077-17. Copyright © 2017 American Society for Microbiology. The computational models are adapted from our previous work Holland et al. (20).
Expansions, diversification, and interindividual copy number variations of AID/APOBEC family cytidine deaminase genes in lampreys. 2018 Apr 3;115(14):E3211-E3220.
doi: 10.1073/pnas.1720871115 Copyright (2018) National Academy of Sciences.
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itself can also provide finer level information into the subtle
differences of 3D folding of the enzyme’s protein structure.

Modelling of proteins with no known related structure is a long-
standing challenge in the field of structural biology where the
recent breakthrough of AlpahFold has gained considerable
attention (206). The AlphaFold algorithm, a learned-based
method in contrast to knowledge- and physics-based ones, uses
co-evolution methods and deep convolutional neural networks.
Remarkably, combining the deep-learning methods such as
AlphaFold with molecular dynamics stimulations has improved
the accuracy of protein structural prediction even further (207).
However, to achieve an accurate result using learned-based
methods, access to a large dataset (e.g., multiple sequence
Frontiers in Immunology | www.frontiersin.org 12
alignment [MSA] of 105 to 106 sequences) of evolutionarily
diverse sequences is necessary (208). Co-evolution-derived
contact methods are based on the idea that the residues in close
contact (< 8 Å considering the Ca) in the 3D structure, which
define the local secondary structural features, co-evolve while the
residues with medium- and long-range contact specify the overall
3D structure of a protein. In fact, the evolutionarily conserved
dynamical/functional domains (termed evolutionary domains
[ED]) have been predicted by coevolutionary coupling analysis of
co-evolving residues (209). The contact map of the protein can be
retrieved either through the evolutionary coupling analysis (ECA)
or supervised machine learning (SML). ECA relies on a high-
quality large MSA (with at least 64 times the square root of the
FIGURE 3 | 5-dimensional description of biological molecules. In the 5D structure description proposed here, the information from the traditional 3D structure is
combined with the structure dynamics in time (4th dimension = time, in real time measured in fractions of a second, and evolutionary time measured in millions of
years) and integrated with how these real-time and evolutionary dynamic structural changes impact the biological function of the protein (5th dimension = biological
function as dependent on 3D and 4D descriptions of a protein’s structure).
May 2021 | Volume 12 | Article 642343
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length of the target protein) while SML methods are capable of
retrieving the contact map even in the case of smaller MSA by
combining the sequence-dependent and independent information
(210). Therefore, the approach of studying a family of proteins
from many orthologs that cover a large range of biochemical
properties, coupled with artificial intelligence (AI) learning, will
pave the road for even more refinement of such AI-based
computational approaches to protein folding, and especially so in
the field of enzymology. Given that this methodology may be
nearing the accuracy of experimental structure determination, as
announced recently, and the applicability of enzyme (e.g., virus
polymerases) structure prediction and engineering for treatment of
emerging pathogens, the evolutionary comparative study of
enzymes can make a critical contribution in this domain.

From a basic evolutionary immunology perspective (Figure 2,
arrow 1, top left), the comparative enzymology approach also has
brought forth meaningful insights and points for further
research. For instance, the discovery that AID’s catalytic pocket
has evolved in one fish species to be significant more active, or
capable of carrying out genome demethylation, speaks to issues
of DNA-repair and genome demethylation that provide hints
that in some instances in evolution, AID may indeed have had a
significantly higher weight of non-immune based physiological
functions as compared to the case in mammals where it plays a
strictly immune role. Though other roles such as epigenetic
remodelling have been proposed for human and mouse AID,
the fact that AID-deficient mice appear only to suffer from Hyper
IgM and no other perturbations suggest that any non-immune
functions of AID in mammals are either marginal or highly
redundant. This in turn suggests that perhaps AID initially
emerged for other functions in the fish and was later co-opted
by the immune system, a familiar pattern, that has already been
shown for other DNA-damaging enzymes used by the immune
system, namely the RAG recombinases. Demonstrating that AID
is an active deaminase in species like sharks and coelacanth,
which are key fishes in the evolution of vertebrates, also shed
light on AID’s role in earlier-evolved immune systems. Lastly,
the unexpected and novel expansion and inter-individual copy
number variation of the AID-like CDA1 enzymes in the lamprey
speaks to the intriguing possibility that somehow the enzymes
themselves may be the subject of an as-yet-undiscovered type of
genetic diversification or environmental response.

From the perspective of protein biotechnological advancements
in protein engineering (Figure 2, arrow 2, top right), the
comparative evolutionary enzymology method is also of value for
emerging biotechnological applications, such as in the emerging
field of base-editing. DNA base editing is a new genome editing
tool, introduced in 2016, based on the clustered regularly
interspaced short palindromic repeats (CRISPR) associated (Cas)
system of bacterial adaptive immunity, where a point mutation is
precisely introduced into the genomic DNA (211–214). This tool is
comprised of a guide RNA, a catalytically impaired Cas nuclease
coupled to a ssDNA mutating enzyme. There are two different
classes of ssDNA base editors, the cytidine base editors (CBEs) and
adenine base editors (ABEs), where different deaminases are used
as the ssDNA mutating enzyme (215). CBEs accomplish the
Frontiers in Immunology | www.frontiersin.org 13
conversion of C:G to T:A using cytidine deaminases (i.e., AID/
APOBEC family members) while ABEs perform the reverse
mutation using adenine deaminases (e.g., TadA). The specificity
of the CBE complexes is defined by the protospacer adjacent motif
(PAM) which is recognized by the Cas enzyme, the activity-
window which is defined by the target sequence incorporated
into the single-guide RNA (sg-RNA), and the substrate specificity
of the ssDNA mutating enzyme. Since the sequence content of the
target dC is defined by the target genomic regions, diversifying the
substrate specificity of the ssDNA editing enzymes are of a great
interest. To accomplish this goal, different members of the AID/
APOBEC family, such as AID, APOBEC1, A3A, 3B, 3C, 3D, 3F,
3G, 3H, and CDA1 from human, rat, and sea lamprey, and their
variants have been tethered to Cas. Deamination of methylated dC
was also accomplished by using A3A variants as the ssDNA editing
enzyme (216). Given the observed diversity in the biochemical
properties of AID orthologs, using AID from different species,
especially bony fish, would assist in expanding the specificity of the
CBEs arsenal. A recent study acts as evidence for this; the study did
a screen of 153 in vitro-evolved cytidine deaminases (APOBECs,
AIDs, CDAs, etc.), led to ones that exhibited the lowest unguided
off-target DNA and cellular RNA deamination events along with
the highest on-target deamination events. Using this screening
approach to choosing a ssDNA editing enzyme, it became
possible to reduce the unguided off-target DNA deamination
events by 45-fold and transcriptome-wide deamination events by
12- to 69-fold, all while maintaining a similar DNA on-target
editing frequency (212). Others and we who have been studying
cytidine deaminase structure:function and evolution have also
generated libraries of chimeric and mutant enzymes, bearing
different motifs exchanged between orthologs in order to
pinpoint enzyme functionality to structural parts (Figure 2,
arrow 2, top right). In so doing, these libraries often contain
engineered enzymes with variable targeting and substrate
specificity profiles that could also prove as useful tools in the
field of base-editing.

In conclusion, molecules involved in human health and disease
are typically studied in only a handful of well-characterized model
species. Here, using the example AID, a DNA-editing enzyme
involved in immunity and cancer, we have reviewed how the few
studies that have examined this molecule in evolutionarily distant
species have brought forth important and unexpected insights in
structural biology, immunology, and cancer research. For other
DNA-damaging enzymes involved in immunity and cancer, such
as RAGs, the case is parallel, with less than a handful of hundreds of
studies probing non-mouse/human species; however, the studies
that have ventured into the evolutionary past have brought forth
intriguing ideas that have changed our understanding of RAG
function and evolution (217–221). This, taken together with the
fact that by far the greatest window of evolutionary diversity in
these DNA-editing proteins, and indeed in all proteins, lies in
earlier-evolved species that have remained unstudied, would make
it reasonable to conclude that much fundamental and applicable
biological insights can be uncovered by large-scale evolutionary
studies. The case of understudied orthologs discussed here
(Figure 1B) is made even more glaring considering that unlike
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the field of evolutionary immunology which is a recognized
subfield of immunology with its own research groups, journals
and scientific meetings, other disciplines such as DNA repair,
cancer research, neurodegenerative diseases, and many others do
not have a formal evolutionary sub-discipline. We have also
discussed how, in addition to generating novel fundamental
knowledge on biology, the evolutionary comparative approach
for studying protein structure:function is a valuable tool
to complement the emerging AI-guided protein folding
methodologies as well as protein engineering in the field of
base-editing and beyond.
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