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Autophagy is a vital conserved degradative process that maintains cellular homeostasis
by recycling or eliminating dysfunctional cellular organelles and proteins. More recently,
autophagy has become a well-recognized host defense mechanism against intracellular
pathogens through a process known as xenophagy. On the host-microbe battlefield
many intracellular bacterial pathogens have developed the ability to subvert xenophagy to
establish infection. Obligately intracellular bacterial pathogens of the Anaplasmataceae
family, including Ehrlichia chaffeensis, Anaplasma phaogocytophilium and Orientia
tsutsugamushi have developed a dichotomous strategy to exploit the host autophagic
pathway to obtain nutrients while escaping lysosomal destruction for intracellular survival
within the host cell. In this review, the recent findings regarding how these master
manipulators engage and inhibit autophagy for infection are explored. Future
investigation to understand mechanisms used by Anaplasmataceae to exploit
autophagy may advance novel antimicrobial therapies and provide new insights into
how intracellular microbes exploit autophagy to survive.
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INTRODUCTION

Autophagy is a well characterized host defense mechanism in which invading microbes are tagged
for degradation in a selective autophagic process known as xenophagy (1–7). Although xenophagy
is a known host defense mechanism against invading microbes, various intracellular pathogens
including obligately intracellular rickettsial pathogens in the family Anaplasmataceae can induce
autophagy as a survival mechanism (2, 5–8). In contrast, evasion of the autophagic pathway is also a
strategy utilized by intracellular pathogens for infection. Accumulating evidence provides insight
regarding the dichotomous interplay that occurs between obligately intracellular bacteria and the
autophagic pathway to promote infection.

In eukaryotic cells, autophagy is a highly conserved catabolic, lysosomal-dependent process that
delivers long-lived proteins and damaged cytoplasmic components to the lysosome (9–12). At basal
levels, autophagy plays an important role as a response to cellular stress and maintaining
homeostasis through quality control of essential cellular components. Cellular homeostasis is
maintained by degrading excessive, damaged, and/or aged proteins, peptides and organelles.
Macroautophagy, the best described autophagy subtype, works to sequester damaged cytoplasmic
org April 2021 | Volume 12 | Article 6427711
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components in a double-membrane vesicle known as the
autophagosome (13). Macroautophagy can be further
categorized into nonselective autophagy which randomly
engulfs cellular components within the cytoplasm into
autophagosomes for degradation upon fusion with a lysosome,
and selective autophagy which degrades a specific type of cargo
tagged for degradation (14). Below, we will summarize the major
steps of the autophagic process and the major autophagy protein
groups that regulate each step of the autophagic process.
Furthermore, we will discuss critical findings linking these
proteins with Anaplasmataceae-induced autophagy.

The autophagic process can be divided into distinct stages,
including autophagy induction, phagophore formation and
elongation, cargo recognition, autophagosome maturation,
lysosomal fusion and autophagosome degradation (13, 15). In
coordination with these steps are several major signaling
pathways and autophagy-related genes (ATGs). mTOR kinase is
a major player in the regulation of the autophagic process (16, 17).
Wnt and phosphoinositide 3-kinase (PI3K)/ATP dependent
tyrosine kinase (Akt) signaling pathways regulate mTOR (18, 19).
TheWnt pathway plays an essential role in inhibition of autophagy
by regulating activation of the mTOR pathway. mTOR activation
occurs downstream of PI3k/Akt signaling to inhibit autophagy (20,
21). Additionally, glycogen synthase kinase-3 (GSK3) inhibits the
mTOR pathway by phosphorylating tuberous sclerosis complex 2
(TSC2) in a manner dependent on AMPK phosphorylation (22).
Importantly, TSC2 is a Rheb GTPase-activating protein, a Ras
family GTPase and an mTOR activator (23).

mTORC1 inhibition leads to autophagy induction due to
activation of AMPK signaling (24). Upon decreased mTORC1
activity, the initiation of phagophore formation is stimulated by
activation of the class III phosphatidylinositol 3-kinase (PtdIns3K)
complex. The Ulk1 protein complex signals the formation of the
PtdIns3K complex, which includes, Beclin-1 (Atg6/Vps30), Vps34
(vacuolar protein sorting 34), Vps15 (p150, a myristoylated serine/
threoninekinase),Ambra-1 (Autophagy/Beclin-1Regulator 1), and
ATG14 (13, 25, 26). Together, the ULK1 protein complex and the
PtdIns3K complex integrate nutrient status (ULK1) with
autophagosome formation (PtdIns3K) (25).

Beclin-1, an orthologue of the Atg6/vacuolar protein sorting
Vps30 protein in yeast, plays a central role in autophagy. Beclin-1
is important for localization of autophagic proteins to the PAS to
regulate the lipid kinase Vps34 protein and promote formation of
Beclin-1/Vps34/Vps15 core complexes (13, 26). The formation of
the Beclin-1/Vps34/Vps15 complex marks the initiation
of autophagy (27). The PtdIns3K complex, along with other Atg
proteins, also recruits two ubiquitin-like conjugation systems,
Atg12/Atg5/Atg16 and Atg8-phosphatidylethanolamine (PE), to
the phagophore to recruit Atg8-PE machinery and regulate
membrane elongation and expansion of the autophagosome (26,
28, 29).

Atg5/Atg12/Atg16 conjugation complex has been shown to
lead to conjugation of microtubule-associated protein 1 light
chain 3 (LC3), to the membrane of the autophagosome (29). This
leads to the conjugation of LC3-I to phosphatidylethanolamine
(PE) to form LC3-II. The p62/SQSTM1 (sequestosome 1)
Frontiers in Immunology | www.frontiersin.org 2
protein acts as a cargo receptor for ubiquitinated targets which
are transported to the autophagosome for degradation (30, 31).
Following phagophore expansion, the phagophore is completely
sealed, forming the double membrane autophagosome
containing all targeted components. Maturation of the
autophagosome involves fusion with both early and late
endosomes, which requires GTP bound small G protein Rab5,
Rab7, and presenilin protein (32). The autophagosome fuses with
the lysosome to form an autolysosome for degradation of
engulfed components.

LC3-II and p62/SQSTM1 are also utilized as markers for
autophagosome formation due to its degradation within the
lysosome along with damaged and recycled components (33).
Products, along with some of the autophagy cargo, are degraded
by lysosomal hydrolases and recycled as amino acids
supplements within the tricarboxylic acid cycle (TCA) cycle or
as fatty acids, sugars, and proteins to increase energy for cell
survival (9, 13).

Autophagy as an Intracellular Innate
Defense Pathway
Although studies have demonstrated autophagy as a host defense
mechanism against bacterial pathogens, many intracellular
pathogens have evolved strategies to subvert autophagy for
survival (34–36). Autophagy is considered a downstream
effector mechanism that plays an integral role in both innate
and adaptive immunity to various pathogens (9, 37). Xenophagy
is a selective autophagy whereby intracellular pathogens are
tagged by ubiqui t in and subsequent targe t ing to
autophagosomes for degradation in autolysosomes. Autophagy
receptors such as p62/SQSTM1, nuclear domain 10 protein 52
(NDP52) and neighbor of BRCA1 gene 1 (NBR1) have been
shown to bind ubiquitinated intracellular pathogens for
autolysosome destruction and clearance (31). Autophagy plays
an important role in both innate and adaptive immunity to
various intracellular pathogens including Mycobacterium
tuberculosis, Streptococcus pyogenes, Listeria monocytogenes,
and Salmonella enterica (38–42).

This review presents the current knowledge regarding the
dichotomous interplay between rickettsial pathogens in the
family Anaplasmataceae, namely Ehrlichia chaffeensis,
Anaplasma phaogocytophilium and Orientia tsutsugamushi,
and the autophagic pathway during infection. These rickettsial
pathogens utilize secreted effector proteins and host signaling
pathways to hijack the autophagic pathway for survival.
ANAPLASMATACEAE: INTRACELLULAR
PATHOGENS OF LIFE-THREATENING
HUMAN INFECTIONS

Members of Anaplasmataceae are a-proteobacteria in the order
of Rickettsiales that include genera Anaplasma, Ehrlichia,
Neorickettsia, and Orientia (43–46). Anaplasmataceae family
includes obligately intracellular bacteria that reside in
membrane bound cytoplasmic vacuoles mainly within
April 2021 | Volume 12 | Article 642771
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phagocytic cells and are transmitted primarily by arthropod
vectors that acquire the infection from persistently infected
vertebrate hosts. These pathogens are master manipulators of
the host cells (arthropod and mammalian) in which they infect.
Successful intracellular infection occurs by hijacking conserved
cellular signaling pathways, reprogramming host cell gene
transcription, and by exploitation of other cellular processes to
subvert host defense mechanisms including autophagy.

Anaplasmataceae members are best recognized for causing
tick borne emerging life-threatening zoonotic diseases in the
United States. Human monocytotropic ehrlichiosis (HME) and
human granulocytic anaplasmosis (HGA) are group I NIAID
tick-borne zoonoses caused by E. chaffeensis and A.
phagocytophilum, respectively (47, 48). E. chaffeensis is
maintained in nature by persistent infection of white-tailed
deer, which is the primary mammalian reservoir. E. chaffeensis
is transmitted by the lone star tick, Amblyomma americanum,
which maintains the infection transstadially (1–3). Anaplasma
phagocytophilum transstadially infects Ixodes scapularis ticks and
other Ixodes spp. after acquiring the infection from infected small
mammal reservoirs such as the white-footed mouse. In contrast,
O. tsutsugamushi the etiologic agent of scrub typhus, a disease
endemic to the Asian continent and present throughout
Indonesia and northern Australia, is transmitted mainly by the
bite of larva life stage-infected Leptotrombidium mites (49, 50).
HME, HGA and scrub typhus have similar clinical presentations
characterized by initial symptoms including fever, headache,
myalgia, nausea, confusion, conjunctival injection (red eyes),
and chills within the first two weeks following infection (1, 3, 15).
Common laboratory abnormalities include thrombocytopenia,
leukopenia, anemia, and elevated hepatic transaminases (2, 14,
16–18). Disease severity ranges from mild to life-threatening
complications such as toxic shock-like syndrome, kidney failure,
meningoencephalitis, and acute respiratory distress (1, 2, 4).

Members of the Anaplasmataceae family have small genomes
but have evolved complex molecular strategies that enable them
to create a permissive intracellular niche within professional
phagocytes and other cells. Due to the obligately intracellular
existence, Anaplasmataceae genomes have been shaped by a
process known as reductive evolution resulting in loss of
metabolic pathway genes that are no longer required for
intracellular survival (51, 52). They replicate in membrane-
bound cytoplasmic vacuoles within the host cell cytoplasm and
undergo different developmental phases during infection. There
are two well-defined ultrastructural forms, the dense-cored cell
and reticulate cell, which have been identified by electron
microscopy (53–56). The infectious dense-cored non
replicating cell is small (0.4-0.6 µm), more electron dense, and
has tightly coiled nucleoid DNA. In contrast, the reticulate cell is
the replicative form and is larger (0.4-1.9 µm) with a dispersed
nucleoid DNA. Dense-cored organisms interact with host cell
receptors and enter the host cell by receptor-mediated
endocytosis. After entry, dense-cored ehrlichiae transition into
intermediate then full reticulate cell forms that replicate by
binary fission, forming microcolonies known as morulae
within host derived membrane-bound vacuoles. The ehrlichial
Frontiers in Immunology | www.frontiersin.org 3
replication cycle takes approximately 48 h, then the replicating
reticulate cells transition into infectious dense-cored ehrlichiae
which are released from the host cell by cell lysis or exocytosis to
infect other cells (57, 58).

Secretion Systems and Effectors
As with some Gram-negative bacteria, Anaplasmataceae have well
known secretion systems that secrete effector proteins into the host
cell. Type I, II and IV secretion systems have been identified in
Anaplasmataceae. Notably, the type III secretion system found in
some obligately intracellular bacteria (i.e., chlamydiae), is absent
(59–61). These macromolecular secretion nanomachines are
distinctly different in secretion mechanisms and the secreted
effectors. Several bacterial effectors are known to regulate selective
autophagy throughvariousmechanisms for survival (62–69).Below
are listed some of the secreted effector proteins by members of
Anaplasmataceae that play a significant role in the subversion
of autophagy.

TheT1SS iswell characterized inmanyextracellular bacteriaand
is known to secrete a number repeat-containing pore-forming
toxins known as the Repeats in Toxin Family (RTX) (70, 71). The
T1SS is widespread in Gram-negative bacteria and transports
substrates in a one-step process across two membranes without
any periplasmic intermediate into the extracellular space (72–75).
Several T1SS substrates have been identified that are secreted by
members of Anaplasmataceae, including ankyrin repeat (AR) and
tandem repeat effector proteins. There are currently four
characterized T1SS tandem repeat protein (TRP) effectors that
have been identified in E. chaffeensis-infected cells including
TRP32, TRP47, TRP75 and TRP120 (60, 76–78). TRPs are
nucleomodulins and TRP120 has also been shown to activate
host cell signaling pathways (Notch and Wnt) to downregulate
innate defensemechanisms (79–82). Several of the TRPs have been
shown to play a role in inhibiting TFEB nuclear localization and
autolysosome generation during E. chaffeensis infection by
reprogramming signal transduction pathways, including the Wnt
signaling pathway (21). E. chaffeensis Ank200 is a nucleomodulin
secreted by the T1SS that binds adenine-rich Alu elements in host
promoter and intron regions (83, 84). O. tsutsugamushi secrete
T1SS AR family members that traffic to diverse subcellular
localizations including the endoplasmic reticulum (61). The O.
tsutsugamushi (Ikeda strain) genome encodes 38 Ank-containing
ORFs, each of which display characteristics consistent with T1SS
effectors (LDAVTSIF residues found in 37-63% in their final 60
amino acids, acidic pI values and very few cysteines) (85). O.
tsutsugamushi Anks modulate NF-kb to enhance infection;
however, there is no evidence that O. tsutsugamushi T1SS
substrates manipulate the autophagic pathway (86). Notably, A.
phagocytophilum T1SS effectors have not been identified to date.

The T4SS is a well characterized ATP-dependent, double
membrane-spanning multiprotein secretion nanomachine
found in both Gram-negative and -positive bacteria (87–90).
The archetypal Gram-negative T4SS is defined by the plant
pathogen Agrobacterium tumefaciens VirB/D4 system (91). In
Rickettsiales, a homologous but structurally different T4SS
system is present with vir genes organized in three genome
April 2021 | Volume 12 | Article 642771
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locations (92). To date, there have been a total of six T4SS
effector proteins identified between E. chaffeensis and A.
phagocytophilum; however, functions for only five of these
effectors have been reported (67, 93–97). Anaplasma
translocated substrate 1 (Ats-1) and ankyrin repeat domain-
containing protein A (AnkA) have been functionally
characterized. Ats-1 is an orthologue of the E. chaffeensis T4SS
effector protein, Etf-1. Both Ats-1 and Etf-1 play roles in
subverting apoptosis and host autophagy for intracellular
survival (66, 67, 94, 98). Etf-2 delays endosomal maturation to
avoid routing E. chaffeensis to phagolysosomes (95). Another E.
chaffeensis effector, ECH0825, is highly upregulated during early
stages of infection during exponential growth in THP-1 human
monocytic leukemia cells and has been shown to translocate to
mitochondria where it inhibits reactive oxygen species
production and host cell apoptosis by upregulating MnSOD,
an essential mitochondrial antioxidant enzyme (93).
PATHOGEN-HOST INTERACTIONS

E. chaffeensis
Utilizing TRP and other effectors, E. chaffeensis avoids host
immune defenses of the mononuclear phagocyte making it a
remarkable model organism for examining novel host-pathogen
interactions involved in cellular reprogramming. E. chaffeensis
TRP effectors are secreted by the T1SS and translocate the
vacuole membrane by an unknown mechanism to access the
host cell. During infection, TRPs interact with a multitude of
host proteins and elicit strong protective antibody responses to
molecularly defined linear epitopes (99–102). TRPs are
nucleomodulins that translocate to the host cell nucleus
through a noncanonical NLS-independent mechanism (79–81).
In addition, TRP120 has other defined functional roles during
infection, and thus, is considered a moonlighting protein. These
roles include promoting ehrlichial entry (103, 104), activation of
host signaling pathways through ligand mimicry (99, 105),
nucleomodulin activity (106–108), and as a HECT E3
ubiquitin ligase that targets host substrates for degradation
(106, 107, 109, 110). The ability of E. chaffeensis to interface
with the host cell is known to involve post-translation
modifications including sumolyation (104), ubiqiuitination
(109) and others (104). E. chaffeensis appears to exploit host
cell machinery to acquire post translational modifications
(PTMs) in some instances, but ehrlichial encoded ubiquitin
ligases such as TRP120 are involved in creating PTMs that
play a role in host-pathogen interplay (109). E. chaffeensis gene
knockout studies have shown that TRP120 is essential for E.
chaffeensis survival in vivo which can be attributed to the many
defined functions of TRP120 and highlights the major role
TRP120 plays in infection and survival (58).

A. phagocytophilum
A. phagocytophilum utilizes an array of bacterial proteins for
adherence, invasion, and survival within the host cell. Infection is
known to depend on numerous type IV secreted effector
Frontiers in Immunology | www.frontiersin.org 4
proteins, transmembrane proteins, surface proteins, and A.
phagocytophilum-occupied vacuole membrane (AVM) proteins.
These proteins include major surface protein 4 (MSP4),
nucleomodulin AnkA, adhesin protein Asp14, and heat shock
protein 70 (HSP70). The nucleomodulin AnkA binds host DNA
and protein complexes within the nucleus of neutrophils to alter
gene transcription (111). Ats-1 plays a role in preventing
apoptosis by stabilizing mitochondria through the disruption
of Bax-induced apoptosis to promote A. phagocytophilum
infection (94).

PTMs are also involved in pathogen-host interactions.
Effector protein APH0032 decorates the AVM interface and is
a sumoylated by co-opting host SUMO machinery during
infection. Similarly, A. phagocytophilum protein A (AmpA) is a
critical effector protein that is also sumoylated to promote
infection. AmpA localizes to the AVM throughout infection
colocalizing with SUMO 2/3 and SUMO1 as the infection
progresses (112). The nucleomodulin AnkA binds host DNA
and protein complexes within the nucleus of neutrophils to alter
gene transcription (111).

O. tsutsugamushi
O. tsutsugamushi encodes multiple T1SS ankyrin-repeat-
containing effector proteins (Anks), known to interact with
host cells and largely target the endoplasmic reticulum (113).
Notably, Ank9 was the first effector shown to function during
infection whereby a unique Ank9 motif mimics the GRIP
domain of the host golgins, supporting O. tsutsugamushi
localization to the host Golgi. Ank9 binds host protein COPB2
to hijack the endoplasmic reticulum via retrograde trafficking
from the Golgi. Following its translocation, Ank9 activates the
transcription factor 4-dependent unfolded protein response to
support O. tsutsugamushi infection (114). Studies have revealed
O. tsutsugamushi nucleomodulins Ank1 and Ank6 abrogate NF-
kB-activated transcription utilizing exportin-1 independent
mechanisms to decrease TNFa-induced p65 nuclear levels (86).
ANAPLASMATACEAE-MEDIATED
EXPLOITATION OF CONSERVED HOST
CELL SIGNALING PATHWAYS

Conserved signaling pathways Wnt and Notch which play an
important role in regulating innate host defenses, including
phagocytosis, autophagy, and toll-like receptor (TLR)
expression are exploited by E. chaffeensis for intracellular
survival (20, 115–117). The Wnt/b-catenin signaling pathway
regulates both basal and stress-induced autophagy (20). b-
catenin suppresses autophagosome formation and directly
suppresses p62/SQSTM1 through T-cell factor 4 (TCF4), one
of the transcriptional factors in the Wnt signaling pathway (20).
Autophagy has also been shown to inhibit Notch signaling
though modulation of the PTEN-PI3K/Akt/mTOR pathway
(115). Inhibition of Wnt and Notch signaling dramatically
reduces E. chaffeensis infection demonstrating the importance
of the conserved cell signaling pathways for persistent infection
April 2021 | Volume 12 | Article 642771
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and survival (105, 118). Notably, E. chaffeensis hijacks the
canonical and non-canonical Wnt signaling pathways via
effector proteins to promote infection (58). In addition,
nucleomodulins TRP32, TRP47, and TRP120 bind DNA
motifs within the promoter regions of Wnt target genes and
may modulate Wnt gene transcription (118). Furthermore,
yeast-two-hybrid (Y2H) analysis has identified protein-protein
interactions between E. chaffeensis effector proteins (TRP32 and
TRP120) and host proteins involved in Wnt signaling and
transcriptional regulation of Wnt genes (99, 101). Of those
identified, were interactions with Wnt signaling negative
regulators (CEP164, KLHL12, ILF3 and LMO2) and positive
regulators (PPP3R1 and VPS29) (99, 101).

TRP120 interaction with the host cell facilitates entry and this
appears to occur via activation of non-canonical Wnt signaling
resulting in Ca2+ signaling and triggering uptake through
phagocytosis (118). Wnt signaling has been shown to enhance
infection as RNA silencing of Wnt signaling components,
including b-catenin, NFAT, CK1, and CAMKII significantly
reduces E. chaffeensis infection, indicating that Wnt signaling is
required to maintain infection (118). RNA silencing of the
ubiquitously expressed Fzd5 and Fzd9 Wnt receptors, as well
as the Wnt co-receptor LRP6 also results in reduced infection,
indicating a possible role of the receptors for E. chaffeensis entry
into the host. More specifically, RNA silencing of Fzd5 or its
ligand Wnt5a results in a highly significant reduction of
infection, suggesting the necessity of Wnt5a-Fzd5 signaling for
E. chaffeensis entry and survival.

The Notch signaling pathway is an evolutionarily conserved
pathway with critical roles in cellular homeostasis, cell proliferation
and differentiation; however, Notch activation has also been shown
to have significant roles in MHC class II expansion, B and T cell
development, and regulation of innate immune mechanisms such
as autophagy and apoptosis (119). Recently, Notch activation by E.
chaffeensis was shown to downregulate TLR2/4 expression (105).
Interestingly, TRP120 was identified as a Notch ligand mimic
resulting in Notch activation as shown by nuclear translocation of
the Notch intracellular domain (NICD), a hallmark for Notch
activation. TRP120 is also a HECT E3 ubiquitin ligase that
ubiquitinates Notch negative regulator FBW7 for proteasomal
degradation resulting in increased oncoproteins levels
including induced myeloid leukemia cell differentiation
protein (MCL1) and NICD (107). Collectively, the data
demonstrate that exploitation of conserved signaling pathways,
such as Wnt and Notch is a major strategy involved in ehrlichial
survival and possibly other members of the Anaplasmataceae
family by modulating autophagy and other innate host
defense mechanism.
ANAPLASMATACEAE EFFECTOR-
INDUCED AUTOPHAGY FOR NUTRIENT
ACQUISITION

Anaplasmataceae are auxotrophic with a limited capacity to
synthesize required nutrients for survival, and thus, obtain
Frontiers in Immunology | www.frontiersin.org 5
essential nutrients from the host cell. Both A. phagocytophilum
and E. chaffeensis survive by replicating within a host cell-derived
membrane bound vacuole. Autophagosomes are induced by E.
chaffeensis and A. phagocytophilum secreted T4SS effector
proteins, Etf-1 and Ats-1, respectively (67, 94) (Figures 1 and
2). Etf-1 and Ats-1 are secreted into the host cell cytoplasm
where they nucleate autophagosome formation. This effector-
induced autophagosome formation is independent of mTOR
activity. Ultimately, the effector generated autophagosomes fuse
with the pathogen occupied vacuoles to deliver host-derived
components. Ats-1 and Etf-1 induce autophagy in a class III
PtdIns3K-dependent manner and localize to inclusions with
autophagosomal markers. A. phagocytophilum inclusions
colocalize with early autophagosomal markers Beclin 1 and
Vps34-Atg14 and are enveloped by double‐lipid bilayer
membranes (Figure 1) (94). Furthermore, Ats-1 directly binds
to Beclin 1 and induces autophagosome formation in an ATG14
dependent manner (53); however, no interaction appears to
occur with Ats-1 and UVRAG, an autophagy protein that
regulates autophagosome maturation.

Studies have shown that E. chaffeensis autophagosome
nucleation is dependent on Rab5-GTP and Rab5-regulated
trafficking for the biogenesis of E. chaffeensis vacuoles (Figure
2) (89). Etf-1 is known to bind Rab5, Beclin 1 and
phosphatidylinositol 3-kinase (PI3KC3) to induce Rab5-
regulated autophagy. Furthermore, E. chaffeensis ATG5 and
Etf-1 were shown to localize to the membrane of inclusions
and are essential for infection (54). Importantly, Etf-1 activates
class III PtdIns3K, localizes with ATG5 and LC3, and interacts
with RAB5-GTP, PI3CK and Beclin 1 to form a multimeric
complex that fuses with E. chaffeensis inclusions. Collectively,
these findings show that Etf-1 facilitates induction of RAB5-GTP
autophagy through PI3CK and Beclin 1 recruitment, as well as
class III PtdIns3K and ATG5 localization to E. chaffeensis
inclusions. Importantly, Ehrlichia-containing vacuoles contain
the late endosomal marker RAB7, as shown by mass
spectrometry and confocal microscopy, but do not fuse with
lysosomes (Figure 2) (120, 121).

O. tsutsugamshi induces autophagy during infection but
actively escapes from autophagic destruction in dendritic cells
(122).O. tsutsugamshi significantly increased endogenous LC3-II
protein levels in phagocytic and nonphagocytic cells during early
infection, however no significant colocalization of the bacteria
and LC3-postive autophagosomes occurs (122, 123). Autophagy
induction does not affect growth of O. tsutsugamshi as
demonstrated by 3MA or rapamycin (autophagy inducer)
treatment or use of atg3-knockout mouse embryonic
fibroblasts (Atg3-/- MEFs) (123). Therefore, unlike E.
chaffeensis and A. phagocytophilum, O. tsutsugamshi induces
autophagy; however, evades autophagosomal degradation by
actively escaping from host autophagosomes. Currently, the
mechanism of evasion is unknown, but is predicted to be
mediated by bacterial gene expression or bacterial
effector proteins.

While some pathogens hijack the autophagic pathway to
replicate intracellularly, pathogens of the Anaplasmataceae
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family exploit autophagy and specific ATG proteins to acquire
nutrients.However, exactly howpathogens of theAnaplasmataceae
family manipulate autophagy proteins for exploitation is still
unknown. Ats-1 and Etf-1 are orthologous proteins that may
subvert autophagy through a similar sequence to exploit specific
autophagy proteins important for nutrient acquisition (124).
Additionally, some bacteria escape host autophagy through
inhibition of autophagy induction. For example, S. Typhimurium
inhibits autophagy initiation through regulation of the AMPK-
dependent activation pathway of mTOR, while M. tuberculosis
inhibits autophagy induction by disruption of JNK-ROS (reactive
oxygen species) signaling pathway to avoid destruction (34, 36). In
comparison, both A. phagocytophilum and E. chaffeensis, induce
autophagy independent ofmTOR to acquire nutrients and remodel
their vacuoles. This mechanism is regulated by T4SS effector
proteins regulating key host autophagy proteins involved in the
initiation step of autophagy.
ANAPLASMATACEAE PREVENT
ENDOSOMAL MATURATION TO AVOID
LYSOSOMAL FUSION

E. chaffeensis occupied vacuoles have features of early endosomes
including RAB5, transferrin receptor (TFRC), early endosome
antigen 1 (EEA1), annexins I, II, IV and VI, clathrin heavy chain
and a-adaptin (67, 121, 125). A. phagocytophilum selectively
recruits Rab GTPases to avoid endosomal maturation and
subsequent destruction by lysosomes (Figure 1) (126). A.
phagocytophilum selectively recruits Rab GTPases that are
primarily associated with recycling endosomes, including
Rab4a, Rab10, Rab11A, Rab14, Rab22A and Rab35. Rab1
which mediates endoplasmic reticulum to Golgi apparatus
trafficking, is also recruited to the A. phagocytophilum vacuoles
(ApV). Selectivity of Rab GTPases is shown to be dependent on
A. phagocytophilum protein synthesis, allowing the ApV to
disguise itself as a host recycling endosome. Importantly, the
ApV does not mature along the endocytic pathway or resemble
early endosomes due to the lack of endosomal markers including
RAB5, transferrin receptor (TFRC), early endosome antigen 1
(EEA1), annexins I, II, IV and VI, clathrin heavy chain and a-
adaptin (127). Additionally, A. phagocytophilum inclusions are
not acidic and do not acquire the late endosomal markers,
including myeloperoxidase, CD63, LAMP-1 and V-type H+
ATPase. Therefore, A. phagocytophilum hijacks Rab GTPases
and host cell membrane traffic pathways to disguise the ApV as a
recycling endosome to avoid endosomal maturation and
subsequent lysosomal fusion.

Etf-2, another T4SS E. chaffeensis secreted protein effector,
localizes to E. chaffeensis vacuoles, binds to RAB5-GTP and
delays endosome maturation (Figure 2) (21). Etf-2 contains a
Tre2-Bub2-Cdc16 (TBC) domain lacking Rab-GTPase activity,
as well as an Arg and a Gln finger motif required for Etf-2
localization to the endosomal membrane, resulting in delayed
maturation of phagosomes to phagolysosomes. EtpE is an E.
chaffeensis outer membrane protein that functions as an invasion
Frontiers in Immunology | www.frontiersin.org 6
to mediate host cell entry. The C-terminal fragment of EtpE
(EtpE-C) appears to be primarily responsible for E. chaffeensis
binding and entry. The phagocytosis of EtpE-C-coated latex
beads in Etf-2-GFP transfected cells was significantly reduced
in comparison to GFP-transfected control cells. RAB5, but not
RAB7, was shown to localize to a significant amount of EtpE-C-
coated latex bead containing phagosomes for a prolonged period,
and no late endosomes and phagolysosomes were detected in
Etf-2-GFP transfected cells, indicating delayed endosomal
maturation. Etf-2 also prevents RABGAP5 localization to
endosomes (95). Therefore, Etf-2 participates in blocking
endosomal maturation and fusion with lysosomes to promote
ehrlichial infection. Other pathogens have been shown to
selectively block maturation of autophagosomes through
various mechanisms, including avoidance of RAB7 recruitment
(69, 128–131). Importantly, studies have indicated that Rab7 is
essential for autophagosome maturation in general (132).
Selective modulation of RAB5 function by E. chaffeensis Etf-2
leading to alterations in the autophagosome explains the
selectivity in autophagosome maturation. In comparison, how
the ApV recruits and hijacks specific Rab-GTPases is still
unknown. Identification of A. phagocytophilum effector
proteins that interact with Rab-GTPases associated with the
ApV is critical.

Preventing lysosomal fusion is a commonstrategy that underlies
pathogen survival. A. phagocytophilum and E. chaffeensis vacuoles
fuse with autophagosomes to form intermediate organelles. E.
chaffeensis intermediate organelles have been described as
amphisomes (Figures 1 and 2) (21, 98). Autophagosome markers
Beclin 1 and LC3/GABARAP were found to colocalize with
ehrlichial vacuoles indicating the fusion between autophagosomes
and inclusions. Curiously, differences in LC3II localization to E.
chaffeensis vacuoles have been reported. Rikihisa et al. reported no
LC3II localization to ehrlichial vacuoles in RF/6A cells; however,
others have detected ehrlichial vacuole localization with LC3/
GABARAP in both THP-1 and RF/6A E. chaffeensis-infected cells
(95). Moreover, significant increases in LC3II levels were observed
during infection and consistent with those reported for A.
phagocytophi lum . Notably , colocal izat ion of the A.
phagocytophilum and E. chaffeensis inclusions with lysosomal
markers, including LAMP-1 and LAMP-2 were not detected.
Increased p62/SQSTM1 levels were also detected in E. chaffeensis-
infected cells in comparison to control cells, as another indicationof
inhibited lysosomal fusion. Collectively, Anaplasmataceae
pathogens induce autophagy for nutrient acquisition but inhibit
lysosomalmaturation through selective recruitment and avoidance
of specific Rab GTPases.
EHRLICHIA-EXPLOITATION OF WNT
SIGNALING TO INHIBIT AUTOLYSOSOME
GENERATION AND AUTOPHAGIC
DESTRUCTION

Wnt and PI3k/Akt pathways are important for ehrlichial
survival, and regulation of autophagy by Wnt signaling has
April 2021 | Volume 12 | Article 642771
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been documented. E. chaffeensis utilizes TRP effectors to exploit
both the Wnt and PI3k/AKT pathways to activate mTOR
signaling and regulate TFEB nuclear translocation to inhibit
lysosomal biogenesis and autolysosomal fusion with the
pathogen occupied vacuole. E. chaffeensis activates the PI3k/
Akt pathway, a regulator of mTOR (Figure 2) (21). PI3K/Akt
phosphorylates various proteins involved in regulation of cellular
processes such as proliferation, apoptosis, and autophagy (133).
Phosphorylated PI3K and Akt levels increase in E. chaffeensis
infected cells, while phosphatase and tensin homolog (PTEN), a
PI3K/Akt pathway inhibitor, levels decrease (21). The role of
mTOR signaling in ehrlichial infection was also confirmed by
siRNA knockdown of Rheb, a GTPase that activates mTOR.
siRNA knockdown of both Rheb and phospho-p70 S6 kinase
Frontiers in Immunology | www.frontiersin.org 7
decreased E. chaffeensis infection (21). Thus, the mTOR activity
is required for E. chaffeensis survival.

TheWnt signaling also regulates the PI3K/Akt pathway. GSK3-
b is as a commonprotein andmediates crosstalk betweenPI3K/Akt
and Wnt signaling pathways. More specifically, GSK3-b regulates
mTOR by induction of Tuberous Sclerosis 2 Protein (TSC2)
through phosphorylation and is also a negative regulator of Wnt/
b-catenin (22, 134–136). Increased levels of GSK3-b were detected
in -infected cells. These effects were abrogated with treatment of a
Wnt-Dvl inhibitor (21). Additionally, inhibition of Akt and
induction of GSK3 resulted in a significant decrease in infected
cells at early and late infection intervals. Increased levels of
phospho-GSK3-b were shown to be stimulated by T1SS effectors
TRP120 and TRP32 (21). Therefore, TRP effectors activate the
FIGURE 1 | A. phagocytophilum interplay with the autophagic pathway. (1) A. phagocytophilum selectively recruits Rab GTPases Rab4A, Rab10, Rab11A, Rab14,
Rab22A, Rab35 which regulate endocytic recycling and Rab1 which regulates vesicular protein transport from the endoplasmic reticulum (ER) to the Golgi
compartment. (2) T4SS effector Ats-1 is translocated from the ApV into the host cell cytoplasm and (3) directly interacts with autophagsome initiation complex
(Atg14-Beclin 1-Vps34) to initiate omegasome formation in the ER. (4) Isolation membrane elongates and (5) double-membrane autophagosome decorated with LC3
form. (6) Autophagosomes are recruited to the ApV that fuse to release autophagic body content. (7) A. phagocytopilum blocks lysosomal fusion potentially by
preventing endosomal maturation and/or through other unknown mechanisms.
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PI3K/Akt pathway and inhibit GSK3 activity by phosphorylation.
Decreased levels of TSC2were also shown in E. chaffeensis-infected
cells. Collectively, these findings demonstrate activation of the
PI3K/Akt pathway, phosphorylation and inactivation of GSK3
and inhibition of TSC2 during E. chaffeensis infection.

Phosphorylation and inactivation of GSK3, as well as
inhibition of TSC2, results in activation of mTORC1 and
subsequent phosphorylation and inhibition of TFEB nuclear
translocation. TFEB is a transcription factor that coordinates
Frontiers in Immunology | www.frontiersin.org 8
expression of lysosomal hydrolases, membrane proteins and
genes involved in autophagy signaling (Figure 2). TFEB was
demonstrated to remain localized in the cytoplasm during E.
chaffeensis infection and was confirmed to be mediated by E.
chaffeensis Wnt activation. These finding support the
conclusion that E. chaffeensis exploits Wnt-PI3K-/mTOR
signaling in part to regulate mTOR signaling and TFEB
nuclear localization to inhibit autolysosomal generation and
promote ehrlichial survival.
FIGURE 2 | E. chaffeensis interplay with the autophagic pathway. (1) E. chaffeensis dense-cored cells express effectors important for Wnt signaling including T1SS
effectors TRP120 and TRP32. E. chaffeensis stimulates phagocytosis for entry through interaction between TRP120 and the Fzd receptor/co-receptor complex.
(2) E. chaffeensis-mediated Wnt-PI3K/Akt signaling stimulates increased levels of phospho-GSK3-b reducing TSC2 and increasing Rheb activity leading to mTOR
activation. (3) E. chaffeensis T4SS effector Etf-1 is secreted into the host cell cytoplasm and interacts with Beclin1, PI3CK complex and Rab5-GTP to stimulate
phagophore formation. (4) ATG5 and LC3 engage to induce autophagosome formation in a class III PtdIns3K-dependent manner. (5) E. chaffeensis T4SS effector
Etf-2 localizes to E. chaffeensis vacuole membrane and binds to RAB5-GTP to delay endosome maturation. (6) Autophagosomes displaying Beclin1, LC3II and p62/
SQSTM1 fuse with E. chaffeensis inclusions to form amphisomes. (7) mTOR activation leads to TFEB phosphorylation and inhibition of TFEB nuclear translocation.
Inhibition of TFEB nuclear translocation prevents transcription of genes involved in lysosomal biogenesis and (8) increased phospho-p70 S6 kinase activity inhibits
autolysosome formation.
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Various studies have demonstrated the inhibition of
autolysosome generation and autophagic destruction. M.
tuberculosis inhibits Rab7 recruitment on Mtb-containing
autophagosomes, while other pathogens neutralize lysosomal
pH (69, 131, 137). This is the first study to elucidate the
mechanism of E. chaffeensis inhibition of lysosomal fusion and,
ultimately, destruction in the autolysosome. E. chaffeensis
modulating conserved signal transduction pathways, including
Wnt and Notch, to inhibit autolysosome generation may be
applicable to other Anaplasmataceae bacterial pathogens.
EHRLICHIA SELECTIVE AUTOPHAGIC
DESTRUCTION MEDIATED BY
ANTIBODY-TRIM21 COMPLEX

Antibody-mediated immunity to E. chaffeensis is well documented
involving the classical antibody Fc receptor-dependentmechanism
(Figure 3).However, intracellular antibodyopsonizedE. chaffeensis
Frontiers in Immunology | www.frontiersin.org 9
complexes engage TRIM21, an intracellular Fc receptor (138).
Antibody opsonized ehrlichiae-TRIM21 complexes recruit
autophagy regulators, ULK1, Beclin 1 and autophagy effectors
LC3/GABARAP and p62/SQSTM1 resulting in proinflammatory
responses and localized selective autophagic degradation of the
ehrlichiae-antibody complexes. These findings demonstrate the
importance of autophagy engagement of adaptive immune
mechanisms and provide the first example of autophagic
elimination of an intracellular pathogen by a TRIM21-
mediated mechanism.
CONCLUSIONS AND FUTURE
DIRECTIONS

Obligately intracellular pathogens of the Anaplasmataceae family
have evolved highly sophisticated strategies to circumvent host
immune response during infection. Autophagy is a cellular
process targeted by microbial pathogens to promote infection.
FIGURE 3 | Degradation of E. chaffeensis by antibody-TRIM21-mediated selective autophagy. Ehrlichiae opsonized with E. chaffeensis-OMP-1 specific antibody are
internalized by unknown uptake mechanism. Intracellular antibody-opsonized ehrlichiae are recognized by cytosolic Fc receptor TRIM21. (1) Induction of TRIMosome
formation and selective autophagy occurs through recruitment of autophagy regulators, ULK1, Beclin 1, ATG16L and autophagy effectors LC3/GABARAP and p62/
SQSTM1. (2) E. chaffeensis-Ab/TRIM21 complex stimulates rapid immune signaling and a proinflammatory response through accumulation of K48 and K63 polyUb
chains and activation and nuclear translocation of NF-kB and IRF.
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Mechanisms used by Anaplasmataceae for dichotomous
engagement and subversion of autophagy for intracellular
survival provides insight into the interplay that exists between
the autophagic pathway and intracellular pathogens. Common
amongst members of Anaplasmataceae are effector-mediated
initiation of autophagy and the ability to hijack autophagy
(ATG) proteins responsible for initiation and activation of the
autophagic process. In contrast, effector interference with
endosomal maturation contributes to pathogen survival. The
ability to inhibit lysosomal destruction is a common theme
demonstrated by Anaplasmataceae. This mechanism involves
activation of cellular pathways such as Wnt and altering the
pathogen vacuole to prevent lysosomal biogenesis and
autolysosome generation. Studies to understand how
Anaplasmataceae exploit the autophagic process may provide
new insight; however, it is still unclear how intracellular
pathogens out-compete the host for autophagy by-products
and how autophagy by-products are obta ined by
Anaplasmataceae pathogens. It is also important to note that
autophagy is an anti-inflammatory process, and it is therefore
possible that Anaplasmataceae bacterial pathogens may strive to
inhibit inflammation through activation of the autophagic
pathway. Furthermore, very few details on the specific
mechanisms that enable A. phagocytophilum and O.
tsutsugamshi escape destruction by autophagy have been
elucidated and need further investigation. Understanding
mechanisms involved in autophagy induction and inhibition
Frontiers in Immunology | www.frontiersin.org 10
will inevitably help define how intracellular microbes exploit
autophagy and could lead to nove l ant imicrobia l
therapeutic approaches.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material. Further inquiries can be
directed to the corresponding author.
AUTHOR CONTRIBUTIONS

LP and JM conceptualized the work. LP gathered information
and contributed all sections. CB contributed to sections
pertaining to O. tsutsugamushi and exploitation of Wnt
signaling. LP performed artwork. All authors contributed to
the article and approved the submitted version.
FUNDING

This work was supported by the National Institutes of Health
grants AI149136, AI137779, and AI123610 awarded to JM, NIH
1F31AI152424-01 fellowship to LP, and T32AI007526-20
biodefense training fellowship to CB.
REFERENCES
1. Huang J, Brumell JH. Bacteria-autophagy interplay: a battle for survival. Nat

Rev Microbiol (2014) 12(2):101–14. doi: 10.1038/nrmicro3160
2. Ravenhill BJ, Boyle KB, von Muhlinen N, Ellison CJ, Masson GR, Randow F,

et al. The Cargo Receptor NDP52 Initiates Selective Autophagy by
Recruiting the ULK Complex to Cytosol-Invading Bacteria. Mol Cell
(2019) 74(2):320–29.e6. doi: 10.1016/j.molcel.2019.01.041

3. Thurston TL,Wandel MP, vonMuhlinen N, Foeglein A, Randow F. Galectin 8
targetsdamagedvesicles for autophagy todefend cells against bacterial invasion.
Nature (2012) 482(7385):414–8. doi: 10.1038/nature10744

4. Xu Y, Jagannath C, Liu XD, Sharafkhaneh A, Kolodziejska KE, Eissa NT. Toll-
like receptor 4 is a sensor for autophagy associated with innate immunity.
Immunity (2007) 27(1):135–44. doi: 10.1016/j.immuni.2007.05.022

5. Yuk JM, Yoshimori T, Jo EK. Autophagy and bacterial infectious diseases.
Exp Mol Med (2012) 44(2):99–108. doi: 10.3858/emm.2012.44.2.032

6. Gomes, Ligia C, Dikic I. Autophagy in Antimicrobial Immunity. Mol Cell
(2014) 54(2):224–33. doi: 10.1016/j.molcel.2014.03.009

7. Mao K, Klionsky DJ. Xenophagy: A battlefield between host and microbe,
and a possible avenue for cancer treatment. Autophagy (2017) 13(2):223–4.
doi: 10.1080/15548627.2016.1267075

8. Mitchell G, Isberg RR. Innate Immunity to Intracellular Pathogens:
Balancing Microbial Elimination and Inflammation. Cell Host Microbe
(2017) 22(2):166–75. doi: 10.1016/j.chom.2017.07.005

9. Klionsky DJ, Cuervo AM, Dunn WAJr, Levine B, van der Klei I, Seglen PO.
How shall I eat thee? Autophagy (2007) 3(5):413–6. doi: 10.4161/auto.4377

10. Levine B, Kroemer G. Biological Functions of Autophagy Genes: A Disease
Perspective. Cell (2019) 176(1-2):11–42. doi: 10.1016/j.cell.2018.09.048

11. Mizushima N. Autophagy: process and function. Genes Dev (2007) 21
(22):2861–73. doi: 10.1101/gad.1599207

12. Mizushima N. A brief history of autophagy from cell biology to physiology
and disease. Nat Cell Biol (2018) 20(5):521–7. doi: 10.1038/s41556-018-
0092-5
13. Nakatogawa H. Mechanisms governing autophagosome biogenesis. Nat Rev
Mol Cell Biol (2020) 21(8):439–58. doi: 10.1038/s41580-020-0241-0

14. Wen X, Klionsky DJ. An overview of macroautophagy in yeast. J Mol Biol
(2016) 428(9 Pt A):1681–99. doi: 10.1016/j.jmb.2016.02.021

15. Guo H, Yang Y, Feng M, Liu B, Ren X, Zhou H. Autophagy modulation in
bladder cancer development and treatment (Review). Oncol Rep (2019) 42
(5):1647–55. doi: 10.3892/or.2019.7286

16. Yuan HX, Russell RC, Guan KL. Regulation of PIK3C3/VPS34 complexes by
MTOR in nutrient stress-induced autophagy. Autophagy (2013) 9(12):1983–
95. doi: 10.4161/auto.26058

17. Ma X, Zhang S, He L, Rong Y, Brier LW, Sun Q, et al. MTORC1-mediated
NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and
autophagy. Autophagy (2017) 13(3) :592–607. doi : 10 .1080/
15548627.2016.1269988

18. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell
(2007) 129(7):1261–74. doi: 10.1016/j.cell.2007.06.009

19. Ma T, Tzavaras N, Tsokas P, Landau EM, Blitzer RD. Synaptic stimulation of
mTOR is mediated by Wnt signaling and regulation of glycogen synthetase
kinase-3. J Neurosci (2011) 31(48):17537–46. doi: 10.1523/JNEUROSCI.
4761-11.2011

20. Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard
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