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Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive disease harboring
significant morbidity and mortality despite recent advances in therapy. Regardless of
disease severity acute exacerbations (IPF-AEs) may occur leading to considerable loss of
function and are the leading cause of death in IPF. Histologic features of IPF-AE are very
similar to acute respiratory distress syndrome (ARDS), but the underlying mechanisms are
incompletely understood. We investigated the role of the NLRP3 inflammasome in IPF and
IPF-AE. Bronchoalveolar lavage (BAL) cells were sampled from patients with IPF (n = 32),
IPF-AE (n = 10), ARDS (n = 7) and healthy volunteers (HV, n = 37) and the NLRP3-
inflammasome was stimulated in-vitro. We found the NLRP3 inflammasome to be hyper-
inducible in IPF compared to HV with increased IL-1ß and pro-IL-1ß levels on ELISA upon
stimulation as well as increased caspase-1 activity measured by caspase-1p20
immunoblotting. In IPF-AE, IL-1ß was massively elevated to an extent similar to ARDS.
To evaluate potential mechanisms, we co-cultured BAL cells with radiated A549 cells (a
model to simulate apoptotic alveolar epithelial cells), which led to increased NLRP3 mRNA
expression and increased caspase-1 dependent IL-1ß production. In the presence of a
reactive oxygen species (ROS) inhibitor (diphenyleneiodonium) and a cathepsin B inhibitor
(E64D), NLRP3 expression was suppressed indicating that induction of NLRP3 activation
following efferocytosis of apoptotic A549 cells is mediated via ROS and cathepsin-B. In
summary, we present evidence of involvement of the NLRP3 inflammasome-caspase
pathway in the pathogenesis of IPF-AE, similarly to ARDS, which may be mediated by
efferocytosis of apoptotic alveolar epithelial cells in IPF.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is the most common of the
idiopathic interstitial pneumonias and is characterized by its
progressive nature and considerable mortality despite recent
advances in antifibrotic therapy (1, 2). A severe complication
of IPF may occur in the form of an acute exacerbation (IPF-AE),
defined as unexplained worsening of the condition with new
bilateral ground glass opacifications on chest computer
tomography (CT) without evidence of pulmonary edema or
lung embolism, overall sharing many features with acute
respiratory distress syndrome (ARDS) (3, 4). Known triggers
include lung injury due to thoracic surgery, chest trauma,
invasive ventilation but also aspiration and infections (3).
Notably, IPF-AE may occur irrespectively of disease severity
and harbors a poor prognosis with in-hospital mortality of 50%
(3). The most common histopathological pattern found in these
patients is diffuse alveolar damage which is also found in ARDS
(5, 6). The underlying pathomechanisms of IPF-AE are however,
still poorly understood.

The NLRP3-inflammasome has been associated with various
pulmonary diseases, including sarcoidosis (7), asbestosis and
silicosis (8), rheumatoid arthritis associated interstitial lung
disease and also IPF (9), but has not been studied in IPF-AE.
Inflammasomes are multiprotein complexes which include a
sensor, the adapter protein apoptosis-associated speck-like
protein containing a CARD domain (ASC) and caspase-1 (10).
Sensors include among others the nucleotide-binding
oligomerization domain-like receptor (NLR) family, pyrin
domain-containing 3 (NLRP3) (10). For the activation of
caspase-1, two signals are necessary: signal 1 induces activation
of pattern-recognition receptors (PRR) for example Toll-like
receptors (TLRs) by pathogen associated molecular patterns
(PAMPS) including lipopolysaccharides (LPS). This leads to
nuclear factor kappa-light-chain-enhancer of activated B cells
(NF-kB) regulated transcription of inflammasome components:
pro-caspase-1, pro–IL-1b and NLRP3 (10). Signal 2 includes a
magnitude of stimuli, including ATP and nigericin, which
activate NLRP3 inducing inflammasome assembly via the
oligomerization of ASC. This results in the activation of pro-
caspase-1, which is spliced into its active forms caspase-1p10 and
caspase 1p20 which in turn activate pro-IL-1b via proteolytic
cleavage into the active cytokine IL-1b (10, 11). In ARDS, key
cytokines include the caspase-1 dependent IL-1ß and IL-18 and
the involvement of the NLRP3-inflammasome has been recently
demonstrated (12, 13).

IPF pathogenesis is driven by dysfunctional repair mechanisms
to microinjuries of the alveolar epithelium and especially of type II
alveolar epithelial cells (AECs) (14). In the presence of persistent
stress, the AEC-II dysfunctional response lead to cell apoptosis
(15). These apoptotic cells are then ingested by alveolar
macrophages (AMs), a process which is called efferocytosis (16),
capable of providing a pro-fibrotic macrophage response which
can induce pulmonary fibrosis (17). Dysregulated efferocytosis
observed in IPF (18) can lead to increased production of reactive
oxygen species (ROS). Interestingly also activation of the NLRP3
inflammasome by many trigger factors was shown to rely on ROS
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production (19–25) and cathepsin B leakage into the cytoplasm
(26), suggesting a link between efferocytosis in IPF and NLRP3-
inflammasome activation.

We aimed to examine the inducibility of the NLRP3-
inflammasome in IPF, IPF-AE, and ARDS and the potential
role of apoptotic epithelial cells in promoting NLRP3-
inflammasome inducibility. We provide evidence of a hyper-
inducible NLRP3-inflammasome-caspase 1 pathway which can
be triggered by efferocytosis of apoptotic AECs.
MATERIAL AND METHODS

Patient Population and Bronchoalveolar
Lavage Sample Preparation
BRONCHOALVEOLAR Lavage (BAL) sampling was performed
in patients with acute respiratory distress syndrome (ARDS),
idiopathic pulmonary fibrosis (IPF) with and without acute
exacerbation (IPF-AE), and healthy volunteers (HV) at the
University Medical Center in Freiburg im Breisgau (Germany)
and at Hannover Medical School (Germany). Healthy volunteers
were screened for pulmonary abnormalities by thorough medical
history, physical examination, and pulmonary function testing.
Diagnosis of ARDS was made in accordance with the Berlin 2012
definition (4), and a diagnosis of IPF was established per the
practice guidelines issued by the American Thoracic Society and
European Respiratory Society (1). The definition criteria of AE
were: deterioration of dyspnoea >20% in <3 weeks, occurrence of
new opacities, and absence of alternative cause (including
infection, heart failure, or pulmonary embolism) (27). All IPF
patients with suspicion of acute exacerbation received chest
computed tomography.

All patients provided written informed consent, and
collection of bio-samples was registered at the German Clinical
Trials Register (DRKS00000017 and DRKS00000620). The
respective institutional review boards approved of the bio-
sampling (Freiburg 47/06 March 10th 2006, Hannover, #2923-
2015 and #2516-2014, Nov 2nd 2015).

BAL was performed in the middle lobe or lingula. After BAL
sampling, macro-impurities were removed by sample filtration
through sterile gauze. Differential BAL total cell number was
counted using May–Grunwald–Giemsa stain (Merck) on native
sample. BAL samples were centrifuged at 500g for 10min at 4°C
(28) and subsequently resuspended in Macrophage SFM
Medium or DMEM medium. BALs were performed between
2010 and 2013 at the University Medical Center Freiburg and in
2017 and 2021 at Hannover Medical School.

Cell-Culture and NLRP3-Inflammasome
Stimulation Protocol
The NLRP3 inflammasome was activated in accordance to our
recently described protocol (7). In brief, 1 × 105 BAL cells derived
from HV, IPF, and ARDS patients, were incubated with 100 µl of
Macrophage SFM/Gibco Medium (Life Technologies, USA) with
1% penicillin and streptomycin (Biochrom, Germany) at 37°C
and 5% CO2 in a flat-bottom 96 well plate (Figure 1A). Two
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steps are needed for the activation of inflammasome-dependent
caspase-1 activation: a first signal 1 such as an Toll-like-receptor
agonist (LPS) and a second tissue damage signal such as ATP or
Nigericin (29). BAL-cells were primed with 1 µM LPS (Fluka
Biochemika, Switzerland) initially for 4h. Thereafter, 1 mM ATP
(Sigma Aldrich, USA) or 10 µM Nigericin (Sigma Aldrich, USA)
was added with incubation of another 2h. Supernatants were
sampled and stored at −80°C until analysis. Cells were lysed with
lysis buffer [PBS (Life Technologies, USA) with 0.5% triton X
(Sigma Aldrich, USA) and 10% FCS (Biochrom, Germany)] for
pro-IL-1ß ELISA and with 200 µl Trizol (Thermo Fisher
Scientific, USA) for RNA isolation and stored at −80°C
until analysis.

Cell Culture and Stimulation With
Co-Culturing BAL Cells With Radiated
A549 Cells
Since chronic cellular stress has been demonstrated to induce AEC
apoptosis and consequently efferocytosis by alveolar macrophages,
which is believed to contribute to IPF pathogenesis, we examined
the effects of co-culturing alveolar macrophages with apoptotic
A549 cells on NLRP3-inflammasome activation (15, 16). A549
cells were cultured in DMEM/Gibco medium (Life Technologies,
USA) with 10% FCS and 1% penicillin/streptomycin at 37°C/5%
CO2 and radiated with 10 Gy and then incubated for additional
Frontiers in Immunology | www.frontiersin.org 3
72h (30–32). Harvesting after 72h resulted in highest rate of
apoptotic cells on viability testing. Viability was assessed via
trypan blue staining and the FACS annexin V apoptosis
detection Kit (BD, USA) as per manufacturer’s instructions. 1 ×
106 BAL-cells were then co-cultured w/wo 1 × 105 radiated A549
cells in 500 µl of macrophage/Gibco medium (serum free) in a 24-
well cell culture plate and incubated for 1h at 37°C/5% CO2 to
allow for efferocytosis and consequently stimulated as
described above.

To evaluate the effects of efferocytosis on NLRP3 mRNA
expression, we co-cultured radiated, apoptotic A459 with normal
BAL-cells for 1h. Following that, we stimulated BAL cells with
1 µM LPS in a 24-well cell culture plate for 2h at 37°C.
Supernatants were discarded, and cells were lysed with 200 µl
Trizol. In some experiments, we assessed the effect of the
NADPH-Oxidase inhibitor [ROS-inhibitor; DPI; 20 µM (Sigma
Aldrich, USA)] and of the cathepsin B inhibitor E64D (10 µM)
(MCE, USA). Both compounds were added with the radiated
A549 cells at baseline, and DMSO 0.2% was added as vehicle
(both E64D and DPI were suspended in DMSO). Cell lysates
were again sampled in 200 µl Trizol following 2h incubation at
37°C/5% CO2. In another set of experiments, the effects of the
selective NLRP3 inhibitor (MCC950) (33) and caspase-1
inhibitor VX-765 (both Invivogen, France) on IL-1ß and
TNF-a production following inflammasome stimulation were
A B

C D

FIGURE 1 | The ability to activate the NLRP3 inflammasome is significantly increased in BAL cells from IPF patients. For NLRP3 stimulation, bronchoalveolar lavage
(BAL) cells were incubated and stimulated with LPS at 0h, following Nigericin or ATP stimulation after 4h (A). In both healthy volunteers (HVs) and idiopathic
pulmonary fibrosis (IPF) there was a significant increase in IL-1ß production following NLRP3-inflammasome stimulation protocol (B), with significant higher
responses in IPF compared to HV. Caspase-1 activation is demonstrated by representative immunoblotting of cleaved caspase-1p20 (representative blot shown;
total of n = 15 immunoblots performed). (C). Pro-IL-1ß concentration in cell lysates was elevated in IPF patients compared to HV following stimulation with LPS, ATP,
Nigericin, and LPS + ATP (D). IL-1ß and Pro-IL-1ß values were compared using unpaired t-tests; *p < 0.05; ***p < 0.001; ****p < 0.0001, N.S. non-significant.
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evaluated. Two different concentrations (1 + 10 µM and 25 + 75 µM,
respectively) were added 30min before addition of radiated
A549 cells.

Efferocytosis Assay
To demonstrate efferocytosis of radiated A549 cells by alveolar
macrophages, 1 × 105 control BAL cells were incubated with
2 µM cytochalasin D (Sigma Aldrich #250255, USA), a known
cytoskeletal disruptor of phagocytosis in macrophages, for
30min at 37°C. Radiated A549 cells were incubated with
pHrodo (Red AM Intracellular pH Indicator, Thermo Fisher
Scientific #P35372, USA) at a 1:100,000 dilution for 30min.
Engulfment of A549 cells leads to a pH-shift in the alveolar
macrophages inducing an increased pHrodo light emission
(34). Afterwards 1 × 105 BAL cells were incubated with and
without 3 × 105 pHrodo-labeled radiated A549 cells for 2h in a
96 well plate. All BAL cells with and without A549 cells were
harvested with 100 µl PBS, and nuclear staining was performed
with 1 µg/ml Hoechst-33342 dye solution (Thermo Fisher
Scientific #H3570, USA) for 30min at RT. Immediately
afterwards, a cytospin with 2 × 104 cells in 100 µl PBS was
performed, and efferocytosis of macrophages was analyzed by
fluorescence microscopy using Axio Observer Inverted
microscope and ZEN navigation software (Zeiss, Germany).
Percentage of pHrodo+ and Hoechst-33342+ cells was counted
using ImageJ V.1.53e (NIH, USA) (35).

Immunoblot Analysis of Caspase-1p20
Activity
Supernatants collected after NLRP3-stimulation protocol were
precipitated with methanol/chloroform. After initial
centrifugation, the upper phase was discarded and methanol was
added to the lower phase, followed by another centrifugation step.
The supernatant was discarded, and the pellet was incubated at 55°C
for 5min and resuspended in 20 µl Laemmli-buffer (Bio-Rad, USA).
Samples were consequently cooked for 5min at 95°C. Samples
were separated using 15% SDS-PAGE gels and transferred to
polyvinylidene difluoride membranes. Cleaved caspase-1 (p20)
was detected using primary antibody rabbit mAb cleaved
caspase-1 (Asp297) (Cell Signaling Technology, USA) with the
secondary antibody goat anti-rabbit (H + L) HRP conjugate
(1:3,000) (Bio-Rad, USA). Enhanced chemiluminescence
(Clarity™ Western ECL Substrate, Bio-Rad, USA) was used for
detection with ChemiDoc™ MD Imaging System (BioRad, USA).

IL-1ß, pro-IL-1ß and TNF-a Measurement
by ELISA
The concentration of both pro-IL-1ß and IL-1b was measured by
ELISA (Human IL-1b/IL-1F2 DuoSet, R&D, USA) in the cell
lysate and culture supernatant, respectively. (36). TNF-a
concentration from culture supernatant was measured by
ELISA (Human TNF-alpha DuoSet #DY210, R&D, USA).

RT-PCR for NLRP3
RNA was isolated via Trizol method (ThermoFisher Scientific,
USA). 1 × 106 cells were lysed with 200 µl of Trizol. Extracted
Frontiers in Immunology | www.frontiersin.org 4
RNA was reverse-transcribed to cDNA using the iScript cDNA
Synthesis kit (Bio-Rad, USA) as per manufacturer’s instructions
(7). The obtained cDNA was analyzed by Real-Time PCR (Light
Cycler/Roche, Switzerland) with the following primers:
huNLRP3 (5′-AGAATGCCTTGGGAGACTCA-3′ and 5′-
CAGAATTCACCAACCCCAGT-3′), resulting in a 93 bp
product, exon 6/7 overlapping; GAPDH (5′-ACAGTCAGCC
GCATCTTCTT-3′ and 5′-GTTAAAAGCAGCCCTGGTGA-
3′) as reference (7). The expression of huNLRP3 was
normalized to GAPDH expression. A cycle threshold value was
calculated and used to ascertain the relative level of huNLRP3
messenger RNA by the following formula: relative expression =
[2 (cycle threshold of glyceraldehyde 3-phosphate
dehydrogenase- ycle threshold of huNLRP3)] × 10,000 for each
complementary DNA sample.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism 9
Software (La Jolla, USA) and RStudio version 1.3.1093 (RStudio
Inc., USA). Variables were compared by unpaired t-test. All data
are expressed as mean + SD unless stated otherwise. A two-tailed
p-value of <0.05 was considered to statistically significant.
RESULTS

Study Population
A total of 86 BALs were used in this study from patients with IPF
(n = 32), IPF/AE (n = 10), ARDS (n = 7), and HV (n = 37) with
demographics, pulmonary function tests (in IPF), and BAL cell
counts shown in Table 1. All patients were naïve to antifibrotic
therapy, since the majority of patients were recruited prior to the
widespread introduction of antifibrotics. At the time of BAL, 41% of
IPF and 60% of IPF-AE patients were receiving triple-therapy with
n-acetylcystein, prednisolone, and azathioprine. In 2021, additional
BALs in three IPF patients were performed (two female; mean age
71 years, mean forced vital capacity 70% of predicted, mean
diffusion capacity for carbon monoxide 52% of predicted; mean
alveolar macrophages in BAL 87%, mean neutrophils in BAL 4%).

The NLRP3 Inflammasome Activation Is
Significantly Increased in AM From IPF
Patients Compared to HV
In a first step, the IL-1ß production of normal BAL cells
derived from HV was tested following NLRP3-inflammasome
stimulation (Figure 1A). Normal BAL cells did not
spontaneously produce IL-1ß, which production is tightly
regulated (37). Mean basal IL-1ß production without
stimulation was increased with LPS alone (p = 0.002),
Nigericin alone (p = 0.0002), and with ATP alone (p =
0.0005) (Figure 1B). Most pronounced IL-1ß production was
seen with co-stimulation of LPS + ATP (p < 0.0001) and LPS +
Nigericin (p < 0.0001). Evidence of caspase-1 activation by
NLRP3 inflammasome was seen by increased protein band
intensity of the caspase-1p20 fragment by immunoblot with
stimulation by LPS + ATP and LPS + Nigericin (Figure 1C).
April 2021 | Volume 12 | Article 642855
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Compared to BAL cells from IPF patients, basal
(unstimulated) IL-1ß production was similar compared to HV.
Of note, there was a consistently higher IL-1ß production in BAL
cells from IPF patients after stimulation with LPS (p = 0.0002),
Nigericin: (p = 0.0001), and ATP (p = 0.0002). With the
combined stimulation with LPS + ATP and LPS + Nigericin,
discrepancies were even more pronounced (both p < 0.0001).

In line with this, there was a significant increase in caspase-1
activation determined by caspase-1p20 protein-band intensity
after co-stimulations in IPF patients compared to HV
(Figure 1C).

Intracellular Pro-IL-1ß Protein Expression
Following Stimulation Is Increased in BAL-
Cells From IPF Patients Compared to HV,
but Not Without Stimulation
In order to test whether the NLRP3 inflammasome is already
primed (signal 1 activated) in BAL cells derived from IPF
patients, we analyzed intracellular pro-IL-1ß levels. Notably,
baseline (unstimulated) pro-IL-1ß levels were not statistically
significantly elevated in IPF compared to HV, indicating that
NLRP3 inflammasome is rather hyper-inducible than primed. As
expected, intracellular pro-IL-1ß levels increased following
priming with LPS; LPS + ATP and LPS + Nigericin, but not
with ATP and Nigericin alone (Figure 1D). Compared to HV,
pro-IL-1ß production was significantly increased following
stimulation with LPS + ATP (p < 0.0001) and LPS alone (p =
0.0003), as well as ATP (p = 0.03) and Nigericin (p = 0.005) in
IPF (Figure 1D).

NLRP3 Inflammasome Is Markedly
Upregulated in Patients With Acute
Exacerbation of IPF to Similar Extent as
Patients With Primary ARDS
To see how the NLRP3 inflammasome contributes to IPF/AE, we
stimulated BAL cells from patients with IPF/AE (n = 10) with the
same protocol as described above. As shown in Figure 2, there
was a markedly elevated IL-1ß production of BAL cells from
patients with both IPF/AE and ARDS following singular and
combined stimulation and without stimulation (compared to
Frontiers in Immunology | www.frontiersin.org 5
HV). With IPF/AE and ARDS, the fold-change for IL-1ß
production compared to IPF (without AE) for the combined
stimuli was 3–4 and 15–20 compared to HV (Figure 2F).

Co-Culturing BAL Cells From HV With
Radiated A549 Cells Results in
Efferocytosis and Increases NLRP3-
Inflammasome Activation. Selective
NLRP3 and Caspase-1 Inhibition
Suppresses IL-1ß Production Following
Co-Incubation
To further investigate potential mechanisms behind the
increased NLRP3 inflammasome activation in IPF patients vs
HV, AECs (A549) were radiated with 10 Gy and harvested 72h
after radiation (Figure 3A). Radiation induced apoptosis in the
majority of cells, while a small proportion was double positive for
annexin V and propidium iodide (Figure 3C). To verify if
efferocytosis was actually performed, we labeled radiated A549
cells with pHrodo before co-incubation with BAL cells.
Following co-incubation with A549 cells, alveolar macrophages
became pHrodo+ in 83% of all Hoechst-33342+ cells, indicating
efferocytosis of A549 cells. Following pre-treatment with
cytochalasin-D (2 µM), this effect was almost completely
inhibited (9% pHrodo+/H-33342+ cells) (Figure 4).

BAL cells of HV were co-incubated with radiated A549 cells
for 1h before running the NLRP3 stimulation protocol. There
was a significant 2.2-fold increase in IL-1ß production in BAL
cells co-cultured with radiated A549 at baseline (without
stimulation; p = 0.031) and following stimulation with LPS +
Nigericin (3.5-fold; p = 0.025) (Figure 3B). With the other
stimulations, IL-1ß production was increased but did not reach
statistical significance. Equally, on immunoblotting there was an
increased protein band both with caspase 1-p20 with co-
culturing of radiated A549 (Figure 3D). There was no
difference in pro-IL-1ß concentration in the cell lysates with or
without co-culturing of A549 (Figure 3E).

To evaluate if the IL-1ß response was mainly mediated via the
NLRP3 inflammasome, we pre-treated BAL cells with a selective
NLRP3-inhibitor (MCC-950) or caspase-1 inhibitor (VX-765)
before co-culturing the A549 cells (Figure 3A). Both agents
TABLE 1 | Study population and BAL differential cell counts.

Characteristics IPF (n = 32) IPF/AE (n = 10) ARDS (n = 7) HV (n = 37)

Age, years (SD) 68 ± 10 68 ± 10 52 ± 15 29 ± 8
Sex (male), N (%) 30 (94) 9 (90) 6 (86) 20 (54)
Forced vital capacity, % of predicted, mean (SD) 64 ± 16 – – –

Diffusion capacity for carbon monoxide (single breath), % of predicted, mean (SD) 36 ± 20 – – –

Invasive ventilation, n (%) 0 2 (20) 7 (100) 0
Received n-acetylcysteine, prednisolone, and azathioprine 13 (41) 6 (60) 0 0
BAL cell count,
× 106/100ml (SD)

14.6 ± 7.8 18.0 ± 7.5 32.4 ± 30.7 7.0 ± 3.2

Alveolar macrophages, % (SD) 65.1 ± 21.2 59.1 ± 15.5 32.7 ± 19.5 86.0 ± 5.2
Lymphocytes, % (SD) 12.1 ± 12.8 4.0 ± 3.0 8.5 ± 3.6 10.5 ± 5.2
Neutrophils, % (SD) 18.9 ± 22.0 30.8 ± 17.3 56.2 ± 20.9 2.3 ± 1.8
Eosinophils, % (SD) 3.4 ± 4.7 6.3 ± 4.4 2.0 ± 3.9 0.3 ± 0.7
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suppressed IL-1ß production >90% (Figure 3H), while TNF-a
production remained largely (Figure 3I). These results indicate
the increased IL-1ß response following efferocytosis of A549 cells
is primarily mediated via the NLRP3/caspase-1 pathway.

NLRP3-Gene Expression Is Increased by
Co-Culturing With Apoptotic A549 Cells
and Attenuated by Inhibition of ROS and
Cathepsin B
Acute lung injury and consecutive epithelial cell death trigger
AE-IPF and ARDS. On this background we got interested in the
role of efferocytosis in NLRP3 inflammasome activation. We
therefore induced apoptosis of the AEC line A549 using
radiation. Indeed, 72h after radiation 67% of A549 cells were
apoptotic and only 14% necrotic (Figure 3C). These apoptotic
A549 cells were then co-cultured with normal BAL cells for 1h
and resulted in their phagocytosis by AM (Figure 4). Co-
culturing with radiated A549 cells induced NLRP3 mRNA
expression relative to GAPDH in a similar magnitude
compared to stimulation with LPS and was significantly
increased compared to baseline NLRP3 expression (Figure 3F).
Combined stimulation with radiated A549 and LPS induced high
Frontiers in Immunology | www.frontiersin.org 6
NLRP3 gene expression. To evaluate possible mechanisms for
the increased NLRP3 mRNA expression via radiated A549 cells,
we tested a ROS and cathepsin B inhibitor. In the presence of a
ROS inhibitor (DPI) or a cathepsin B inhibitor (E64D), the
NRLP3 mRNA expression in response to co-culturing with
radiated A549 cells was completely suppressed (Figure 3G),
while GAPDH expression was maintained.
DISCUSSION

Although IPF-AE is the leading cause of death in IPF, underlying
mechanisms are poorly understood (38). In this study we
demonstrate that the NLRP3-inflammasome is hyper-inducible
in BAL cells from IPF patients compared to HV. BAL cells
harvested during IPF-AE produced extraordinarily high IL-1ß
levels in a similar range as BAL cells of ARDS patients. We found
that one potential mechanism driving NLRP3 hyperactivation in
IPF-AE may be efferocytosis of apoptotic cells which led to
increased NLRP3 expression and caspase-1 activation. The IL-1ß
response could be almost completely suppressed by specific
inhibition of NLRP3 and caspase-1-activity. Inhibition of ROS
A B C

D E F

FIGURE 2 | IL-1b production after NLRP3 inflammasome stimulation is highest in BAL cells from patients with an acute exacerbation during IPF and BAL cells from
patients with ARDS. IL-1ß production was detected by ELISA and is inducible by NLRP3 stimulation in alveolar macrophages of patients with acute exacerbation of
idiopathic pulmonary fibrosis (C) and acute respiratory distress syndrome (D). IL-1ß values for healthy volunteers (HVs) and IPF are shown for comparison (A, B). IL-1ß
production in these two cohorts is significantly increased compared to healthy volunteers (HVs) to a similar extent at baseline and following stimulation (E, F). IL-1ß
levels with stimulation compared to baseline and unstimulated IL-1ß levels between groups and LPS/Nigericin stimulation were compared using unpaired t-tests;
*p < 0.05; **p < 0.01; *** p < 0.001; ****p < 0.0001, N.S. non-significant.
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FIGURE 3 | Efferocytosis of apoptotic alveolar epithelial cells activates the NLRP3 inflammasome in AM. BAL cells were co-cultured with the radiated (rx) A549 cells,
and the NLRP3 inflammasome was additionally stimulated (A). A549 cells were radiated with 10 Gy and incubated for 72h, following which the majority of the cells
were apoptotic demonstrated by Annexin-V staining (C). There were increased IL-1ß levels with all stimulations, which were statistically significant at baseline and
following LPS + Nigericin (Nig) stimulation (B). Increased caspase-1 activation with A549(rx) co-culture was demonstrated by immunoblotting of cleaved caspase-
1p20 subsegment (representative blot shown; total of n = 3 immunoblots performed) (D). Pro-IL-1ß levels in cell lysate were not different between BAL cells and BAL
cells co-cultured with A549(rx) cells (E). NLRP3 mRNA expression was assessed after 2h of stimulation, w/wo the presence of A549(rx). BAL cells cocultured with
A459(rx) expressed NLRP3-mRNA in a similar range as BAL cells stimulated with LPS alone (F). Combined stimulation of LPS and A549(rx) resulted in a marked
increase in NLRP3-mRNA expression. The effect on NRLP3-mRNA expression (relative to GAPDH) by efferocytosis was inhibited by either a NADPH-Oxidase
inhibitor (ROS-inhibitor; DPI) or a cathepsin inhibitor (E64D) (G). IL-1ß production could be inhibited by inhibition of NLRP3 (MCC950) and also caspase-1 (VX-765)
(H), while TNF-a levels were largely retained (I). IL-1ß levels and NLRP3 mRNA levels were compared using unpaired t-tests; *p < 0.05; **p < 0.01;
N.S. non-significant.
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or cathepsin B signaling blocked the effect of co-culturing with
radiated A549 cells on NLRP3-mRNA transcription in BAL cells.

Our data indicate that the NLRP3 inflammasome is hyper-
inducible in IPF BAL cells and especially during acute exacerbation.
BAL cells harvested at the time of IPF-AE produced tremendously
high levels of IL-1ß and in a similar range as AMs of patients with
ARDS. While the role and significant involvement of the NLRP3-
inflammasome in ARDS are well documented, activation of the
NLRP3 inflammasome pathway in IPF-AE is a novel finding. Our
observations in BAL cells from IPF patients are in line with previous
observations of elevated IL-1ß and IL-1ß mRNA in IPF (10, 35–37).
Activation of the NLRP3-inflammasome pathway has been
demonstrated to induce IL-1ß and IL-18 production of BAL cells
and is tightly regulated (11). Although we have not purified
macrophages from BAL prior to inflammasome stimulation
protocol and therefore cannot exclude contribution of other cell
types, we think, in line with the literature, that our experiments
mainly reflect inflammasome activation of alveolar macrophages. In
addition, the relatively short incubation time of 6h used in this study
render cell–cell contact dependent mechanisms unlikely as the
primary driver for increased NLRP3 activation and IL-1ß
production. Furthermore, the neutrophil count between IPF
Frontiers in Immunology | www.frontiersin.org 8
patients with and without AE was relatively small owing to
inclusion of IPF patients with advanced disease (39), while the
changes in NLRP3-inflammasome inducibility between these
groups were considerable.

Several factors have been shown to activate the NLRP3
inflammasome such as phagocytosis of crystalline substances
such as silicates or cholesterol but is also triggered by viral and
bacterial infection releasing LPS and other TLR ligands as well as
DNA and RNA (12, 40). Of note, mechanical ventilation and
ventilation induced lung injury also activated the NLRP3-
inflammasome in murine models (41, 42). These triggers are
also commonly reported to precede acute exacerbation in IPF (3,
27), and it is thus conceivable that elevated inflammasome
inducibility in IPF patients (such as the increased pro-IL-1ß an
IL-1ß production shown herein upon signal 1 or signal 2
stimulation) predisposes them to increased risk of acute
exacerbation when exposed to these stimuli. Notably, in a
multicentric BAL gene expression analysis in IPF, a gene set
was identified to carry poor prognosis, among which the IL-1ß
gene and the NLRP3 gene were included (43). Thus, our data
indicate a role of NLRP3 inflammasome signaling in acute
exacerbation of IPF.
FIGURE 4 | Co-incubation of alveolar macrophages with pHrodo-labeled radiated A549 cells leads to efferocytosis of A549 cells. Nucleolar staining with
Hoechst-33342 of BAL cells was performed. Following co-incubation with pHrodo labeled radiated A549 cells, pHrodo positive alveolar macrophages were
detected, indicating efferocytosis of A549 cells. Following pre-treatment with cytochalasin-D (2 µM), this effect was almost completely inhibited. Exemplary
fluorescence microscopy images (5× magnification) of BAL cells with and without co-incubation and pre-treatment of cytochalasin D are shown, and the
percentages of Hoechst+/pHrodo+ cells of all Hoechst+ cells are shown in the right hand panel. Bronchoalveolar lavages from three patients were used and
measured in triplicates for each condition.
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The NLRP3 inflammasome and IL-1ß signaling are closely
linked to neutrophil influx and represent a key pathway in
response to cell injury (44–46). IL-1ß and the NLRP3
inflammasome activation also are part of an acute injury
response and promote fibrosis and pro-fibrotic pathways such
as transforming growth factor (TGF)-ß signaling in animal
models (47–50). Inflammation caused by bleomycin induced
lung injury is triggered by NLRP3 inflammasome activation,
while the resulting inflammation and fibrosis were completely
prevented by NLRP3 inhibitors (48). Moreover, asbestos and
silica, which are known inducers of pulmonary fibrosis, are
capable of activating the NLRP3 inflammasome with
subsequent IL-1ß production (51). IL-1ß itself can promote
TGF-ß responses, considered as a key driver in pulmonary
fibrosis via fibroblast activation (52). Interestingly, both
approved antifibrotic agents for the treatment of IPF
(nintedanib and pirfenidone) have been shown to reduce IL-1ß
expression in lung tissues (53, 54), which might be a mechanism
for the reduced risk of acute exacerbation in patients receiving
antifibrotic treatment (55, 56).

Another key finding of our study is that co-incubation of BAL
cells with apoptotic AEC (A549) and their phagocytosis increase
inflammasome-dependent caspase-1 activation. Our model for
inducing apoptosis in A549 AECs is well accepted (30–32), and
we demonstrated apoptosis in the majority of cells via annexin-V
expression, and we also demonstrate their efferocytosis by
alveolar macrophages. Phagocytosis and generation of
phagolysosomes are linked to ROS production and lysosomal
stress. Interestingly also activation of the NLRP3 inflammasome
by many trigger factors was shown to rely on ROS production
(19–25) and cathepsin B leakage into the cytoplasm (26). Based
on these findings we tested the effects of ROS or cathepsin B
inhibition and found that both of them completely attenuated
NLRP3 expression in the context of efferocytosis (16). Studies
suggest that ROS, among other direct effects on inflammasome
assembly, also upregulates NLRP3 gene expression via TLR-4
signaling (57), providing a potential mechanisms for the
reduction in NLRP3-mRNA expression observed in this study.
A recent murine model showed that apoptotic AEC-II induce a
pro-fibrotic gene expression signature in AM following
efferocytosis, which on repeated exposure can induce
pulmonary fibrosis (17), a process which may be equally
important in IPF. Previous animal studies have also implicated
that impaired autophagy mechanisms in IPF and aging result in
deranged mitochondrial turnover resulting in mitochondria-
generated reactive oxygen species (ROS) leading to caspase-1
activation (19–25, 50). Equally, recent reports demonstrated a
dependency on cathepsin B (which is also induced by nigericin
used in our model) for NLRP3-inflammasome assembly (58, 59).
Cathepsin B is released into the cytoplasm upon lysosomal
membrane permeabilization (26). Thus, efferocytosis triggers
NLRP3 inflammasome activation in alveolar macrophages.
While ROS inhibitors convey multifactorial effects, the
possibility to suppress the observed IL-1ß response by the
specific NLRP3-inhibitor MCC950 (33) carries potential
treatment options for IPF-AE and other forms of acute
Frontiers in Immunology | www.frontiersin.org 9
respiratory failure such as COVID-19 (60), which remain to be
clinically studied.

Our study has significant limitations to consider: Our data
derived from human samples demonstrates evidence for an
increased activation of the NLRP3 inflammasome, but given a
limited number of measured inflammasome components, we
cannot exclude that additional inflammasome subtypes may
have equally been activated. Age, comorbidities, and
respiratory failure in patients with IPF-AE often preclude these
patients from undergoing bronchoscopy which primary function
lies in exclusion of infection, rendering these bio samples
available only in few cases recruited in the era before
antifibrotic treatment was available. The considerable younger
age of the recruited healthy volunteers also limits comparability
to IPF patients since inflammasome activation may also occur
with aging alone (61). Although the differences observed in the
present study appear unlikely to be explained solely by age, at
least a contributory effect can be assumed. Another important
limitation of this study is that we did not purify macrophages
prior to the described in vitro experiments. On one side this
experimental protocol leaves cells untouched since methods for
cell purification have been shown to activate macrophages. On
the other hand, because we studied BAL cells in complete, we
cannot exclude a major contribution of other cell types such as
neutrophils (62). Neutrophils have been recently shown to
activate NLRP3 inflammasome upon respiratory infections
(63) which can be achieved via production of neutrophil
extracellular traps (44, 45). Compared with macrophages,
neutrophils are however short-lived and difficult to study in
vitro because most of the neutrophils are lost within 2h of
cell culture.

In conclusion, our study demonstrates in human BAL cells
the hyper-inducibility of the NLRP3-inflammasome in IPF and
particularly at acute exacerbation. We identified efferocytosis of
apoptotic cells caused by lung injury as one responsible
mechanism. The activated NLRP3 inflammasome in IPF-AE
may be of potential therapeutic value, and compounds
blocking NLRP3-inflammasome activation might be of
potential benefit for this fatal condition (53). Future research is
needed to explore the clinical role of inflammasome inhibitors on
the course of pulmonary fibrosis and acute exacerbation
in particular.
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