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Cytokine storm (CS), an excessive release of proinflammatory cytokines upon

overactivation of the innate immune system, came recently to the focus of interest

because of its role in the life-threatening consequences of certain immune therapies

and viral diseases, including CAR-T cell therapy and Covid-19. Because complement

activation with subsequent anaphylatoxin release is in the core of innate immune

stimulation, studying the relationship between complement activation and cytokine

release in an in vitro CS model holds promise to better understand CS and identify

new therapies against it. We used peripheral blood mononuclear cells (PBMCs) cultured

in the presence of autologous serum to test the impact of complement activation

and inhibition on cytokine release, testing the effects of liposomal amphotericin B

(AmBisome), zymosan and bacterial lipopolysaccharide (LPS) as immune activators and

heat inactivation of serum, EDTA andmini-factor H (mfH) as complement inhibitors. These

activators induced significant rises of complement activation markers C3a, C4a, C5a, Ba,

Bb, and sC5b-9 at 45min of incubation, with or without ∼5- to ∼2,000-fold rises of IL-

1α, IL-1β, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13 and TNFα at 6 and 18 h later. Inhibition

of complement activation by the mentioned three methods had differential inhibition, or

even stimulation of certain cytokines, among which effects a limited suppressive effect

of mfH on IL-6 secretion and significant stimulation of IL-10 implies anti-CS and anti-

inflammatory impacts. These findings suggest the utility of the model for in vitro studies

on CS, and the potential clinical use of mfH against CS.

Keywords: factor H, complement activation/inhibition, cytokine release syndrome, whole blood assay, COVID-19,
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INTRODUCTION

Cytokine storm (CS), the most intense manifestation of
cytokine release syndrome (CRS), is a dysregulated hyperactive
immune response characterized by the release of a variety of
mediators including but not limited to interleukins, chemokines,
interferons, tumor-necrosis factor and other white blood cell
(WBC) mediators which, unlike in physiological inflammatory
responses, can damage the host. They are also produced as
a consequence of severe adverse effect of some monoclonal
antibodies and CAR-T-cell therapies (1, 2), and came to the focus
of world-wide attention as a contributor to the acute respiratory
distress syndrome (ARDS) in Covid-19, as the major mechanism
of severe, often fatal outcome of SARS-CoV-2 infection (3–5).

For these reasons modeling CRS/CS in vitro is important for
better understanding of these adverse conditions and screening
of medications against them. It is with this goal that we
carried out the studies described here, using a PBMC-culture
model of CRS/CS that was found to correlate with in vivo
features of the disease (6–8). Activation of the first line of
immune defense, the complement system, has been known
to be a critical contributor to cytokine release by activated
immune cells in blood (9, 10). However, the current PBMC-based
immunoassays usually utilize culture media supplemented with
heat inactivated serum, which excludes getting insights into the
role of complement in cytokine release. To fill this gap in in vivo
relevance, wemodified the traditional protocol by supplementing
the culture medium with autologous serum. As presented
below, this “complement-sensitized” test system enabled the
assessment of the role of complement activation in CS/CRS,
also highlighting the possible utility of mini-factor H (mfH)
against these conditions. In particular, our data suggest that the
latter protein, a truncated, recombinant version of the natural
complement inhibitor, factor H (fH) (11–15), may have three
independent beneficial actions against CS/CRS; suppression
of complement activation and complement-dependent IL-6
production, and, stimulation of IL-10 production, a cytokine with
anti-inflammatory properties (16–19).

MATERIALS AND METHODS

Materials
For the experiments Dulbecco’s phosphate-buffered
saline (D-PBS), ethylenediaminetetraacetic acid (EDTA),
lipopolysaccharide from Escherichia coli (LPS), Zymosan
A from Saccharomyces cerevisiae and the components of
complete Growth Medium (cGM, consisting of RMPI-1640
with glutamine, 0.1mM non-essential amino acids, 50µM
β-mercaptoethanol, 1mM pyruvate and penicillin/streptomycin)
were from Sigma-Aldrich Ltd. (Budapest, Hungary). Ficoll-
Paque was obtained from GE Healthcare Bio-Sciences AB
(Uppsala, Sweden). AmBisome was purchased from Gilead
Sciences Ltd. (Paris, France). The content of the vial, after
reconstituting with 12ml sterile water for injection, contained
hydrogenated soy phospholipid (HSPC), 17.75 mg/mL;
distearoyl-phosphatidylglycerol (DSPG), 7 mg/ml, amphotericin

B, 4.2 mg/ml; cholesterol, 4.3 mg/ml; tocopherol, 0. 05 mg/ml;
Sucrose, 75 mg/ml; Sodium succinate, 2.3 mg/ml. The 96-well
cell culturing plates (U plate) were obtained from Sarstedt
(Nümbrecht, Germany).

Preparation of Mini-fH
Mini-fH, a polypeptide construct consisting of the 4 N-
terminal, ∼60 amino acid-containing complement control
protein modules (also known as short consensus repeats (SCRs
or Suchi repeats) and the two C-terminal SCRs of factor H, was
produced in insect cells as described in Refs. (20, 21).

Mononuclear Cell and Serum Preparation
From Blood
Blood was collected from healthy volunteers under ethical
protocol TUKEB 15576/2018/EKU and the National
Cancer Institute-at-Frederick protocol OH9-C-N046 (in
the Nanotechnology Characterization Lab., NCL). Blood
anticoagulated with EDTA or Li-heparin (at NCL) was
used to purify PBMC using Ficoll Paque gradient density
centrifugation according to the procedure described previously
(8). Serum was separated by centrifugation of the whole blood
at 4◦C. Part of the serum was heated at 56◦C for 30min to
inactivate complement.

PBMC Culture
After removing the residual Ficoll and the majority of
thrombocytes by washings, PBMCs were washed again with
cGM, and 50% autologous serum which was used in the final
step for cell suspension. Culturing of PBMCs were done in
250 µl volume in the inner wells of 96-well cell culturing
plates (Sarstedt U plate for suspension cells), and each well
composed of PBMCs (11-times more concentrated than the
original blood, 2.5–5 × 106 cells/well), 50% of normal or
heat-inactivated autologous serum and the specified immune
activators and complement inhibitors. Plates were incubated
in a CO2 incubator at 37◦C, (except 0-min samples) and
samples were obtained in three time points (45min.: 60 µl,
6 h: 50 µl and 18 h: 140 µl) to prepare supernatants by
centrifugation. Aliquots of cell culture supernatants were stored
at −80◦C until complement or cytokine measurements. For
0-min sampling, cells in cGM and 50% autologous (auto-SE)
or heat-inactivated sera (Hi-SE) were immediately processed
without any incubation, after diluting them by the solvents
of activators (D-PBS) and complement inhibitors (cGM). In
another, independent experiment (done at NCL according to
the protocol NCL ITA-10 (22) PBMC from 10 healthy donors
were incubated for 24 h in cGM supplemented either with 10%
heat-inactivated fetal bovine serum (Hi-FBS) or 20% autologous
human serum (auto-HS) obtained from the same donor. Cells
were stimulated with 20 ng/ml E. coli K12 LPS (PBS served
as negative control) and culture supernatants were analyzed
by multiplex ELISA for the presence of cytokines (Quansys
Biosciences, Logan, UT, USA).
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Complement/Cell Activators and
Complement Inhibitors
AmBisome, zymosan and LPS were applied at 2mg
phospholipid/mL, 0.5 mg/ml and 0.5µg/ml, respectively. To
inhibit complement activation EDTA was applied at 20mM and
mfH at 1 µM. Heat inactivation of complement in sera was done
by incubation at 56

◦

C for 30min. In the independent experiment
presented in Supplementary Figure 1, in addition to the above
stimulants, liposomal doxorubicin (Doxil), phytohemagglutinin
and phorbol myristate acetate (PMA)/Ionomycin were applied
at 2 mg/ml, 0.1 mg/ml, 5 and 500 ng/ml, respectively.

Complement and Cytokine Measurements
Complement activation in PBMC supernatant was assessed
at 45min, 6 h and 18 h after starting the incubation by
measuring C3a, C4a, C5a, Ba, Bb, and sC5b-9 by a 8-
plex chemiluminescence immunoassay (CLIA) (Quansys
Biosciences Inc., West Logan, UT, USA), or by individual
ELISAs. The levels of IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-
6, IL-8, IL-10, IL-12, IL-13, IL-15, IL-17, IL-23, IFNγ,
TNFα and TNFβ at 6 and 18 h was measured in the
same supernatants by a 16-Plex Human Cytokine kit also
from Quansys Biosciences Inc. (West Logan, UT, USA),
according to the recommendation of the manufacturer.
Data collection was done by “Imager LS” from Quansys,
using Q-View Software 3.11 for analysis. The C5a, Bb
and sC5b-9 ELISA kits were from TECOMedical Inc.
(Sissach, Switzerland).

Data Analysis
The 18-h cytokine values (mean ± SD for n=3 different donors)
were either given in absolute, or relative terms, by dividing
the final concentrations with the respective (0min) baselines.
If values of 0min measurements were below the quantification
limit, the Lower Limit of Quantification (LLOQ) were used
for normalization after correction with the dilution. The choice
of statistical analyses was based on the fact that the immune
activators we used showed substantial differences in activation
levels, thus, although the assays were done at the same time,
they had to be considered as independent experiments. This
ruled out pooling data from the different activator groups for
ANOVA. The application of ANOVA was also problematic
within the treatment groups because the independent variables
were “manipulated within the subjects” inasmuch as cytokine
suppression by EDTA could result both from direct cytokine
inhibition and indirect complement blockage. Also, we were not
“interested” in comparing the complement inhibitors to each
other but asked the question of whether the inhibition of cytokine
induction was correlating with inhibition of complement, one by
one. For these reasons, and because of the low n, we used paired t-
test wherein the dependent variable was compared to baseline for
each individual analyte and inhibitor within an activator group.
The use of one or two-tailed t-tests depended on whether the
direction of changes was predictable or not and is specified in
the figure legends. The analysis was performed using GraphPad
Prism software (San Diego, CA, USA).

RESULTS

Complement Activation by AmBisome,
Zymosan, and LPS
We analyzed complement activation in 2 experimental series,
applying individual ELISAs in the first and an 8-plex CLIA in
the second. Figure 1A shows the results of the first experiment,
indicating significant rises of C5a, Bb and sC5b-9 after 45min
incubation with zymosan, AmBisome and LPS. The simultaneous
and correlating rises of C5a and Bb (Figure 1B) indicates that
formation of the most effective anaphylatoxin is primarily due
to complement activation via the alternative pathway in the case
of zymosan and AmBisome. The second series confirmed these
changes for zymosan (Figure 1C) and AmBisome (Figure 1D)
with the additional information that C3a, C4a and Ba also
increased and that the levels ofmost activationmarkers decreased
after 6 h incubation, except C4a. The effect of 20mM EDTA is
shown for AmBisome (Figure 1D, dashed curves), indicating full
suppression of the rise of all activation byproducts, except C4a.

Inhibition of C Activation in PBMC Cultures
Figure 2 shows the effects of heat inactivation, EDTA and mini-
fH on complement activations by AmBisome, Zymosan and LPS
in PBMC cultures, using C5a, Bb and sC5b-9 as endpoints.
All these inhibition methods caused major reduction of all
activation markers, most efficiently those triggered by zymosan
(Figures 2C,G,K). Mini-fH in this case was equally effective as
EDTA or heat inactivation (Figures 2C,G,K), exerting > 90%
inhibition of complement activation in all three donor PBMC.
Interestingly, heat inactivation tended to increase spontaneous
C5a and Bb formation in the absence of complement activators
(Figures 2A,E).

Cytokine Release by AmBisome, Zymosan,
and LPS in PBMC Cultures: Time Course
and Relative Differences
Among the tested cytokines (see section Methods) IL-2, -4, -15,
-17, -23, IFNγ , and TNFβ did not show measurable response
to the applied immune stimulations (not shown) even after 18h
incubation, while 9 cytokines shown in Figure 3 did respond
with significant elevations to one or more stimulators. As shown
in Figure 3A, the responses relative to 0min baseline varied
between∼5 to∼2,000-fold. Because the 6 h values were generally
significantly lower than the 18 h values for all cytokines except
TNFα (Figure 3B), 6 h was in the window of dynamic changes
for most cytokines, while TNFα could reach plateau already at
6 h. On the other hand, the lack of difference between LPS and
zymosan in inducing maximal increase of some cytokines at
18 h (Figure 3A) suggest that the rise of these cytokines reached
plateau at this time.

While the cytokine inducing effects of LPS and zymosan
were known from previous studies, the effect of AmBisome was
surprising since non-PEGylated, highly negative phospholipid
vesicles, such as AmBisome, have been known to activate
complement but not immune cells for cytokine release. On the
other hand, amphotericin B per se, can induce cytokines in innate
immune cells (23), thus, the membrane-associated antifungal
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FIGURE 1 | Complement activation by liposomal Amphotericin B (AmBi, 1.98mg PL/ml), Zymosan (0.5 mg/ml) and LPS (0.5µg/ml) in PBMC cultures supplemented

with autologous serum. (A) Columns and error bars represent mean ± SD (n=3); * and ** indicate statistically significant differences comparing to appropriate control

(No Act. or baseline) groups, P<0.05 or 0.01, respectively. (B) Correlation between the individual relative rises (related to 0min) of C5a and Bb in the samples plotted

in (A). Different groups of treatments are represented by different colors (empty: no activation, yellow: AmBisome, blue: Zymosan, red: LPS). Slope shows significant

correlation (P=0.0002). (C) and (D), Similar experiments as in (A), except that the complement activation byproducts were measured by a

chemiluminescence immunoassay.

agentmight have played a role in the observed cytokine induction
by AmBisome, particularly IL-6 and IL-8.

Interestingly, IL-10 was at baseline at 6 h during incubation
with LPS (Figure 3B), although it rose to near maximum level at
18 h (Figure 3A). This implies retarded induction of a cytokine
that has a negative feedback on the production of inflammatory
cytokines (24). As discussed later, this effect may contribute
to the strong proinflammatory effect of other stimulants. A
further notable observation in Figure 3A is that LPS, whose
complement activating effect was the smallest under these
conditions, also led to robust cytokine release, just as zymosan,
the strongest complement activator. This observation suggests
that complement activation was not rate limiting in LPS-induced
cytokine release, which is in keeping with differential influence of
other controlling factors on the two processes, such as sCD14 and
LPS-binding protein (LBP) in serum (25).

To explore the performance of our in vitro model at a
lower level (10%) of autologous serum, we conducted an
additional experiment using PBMCs of 10 healthy donors
and tested their cytokine responses to the assay positive
control (LPS). As control, we used complete cell culture media

supplemented with 10% heat inactivated fetal bovine serum.
This study also demonstrated variable, complement-independent
induction of most cytokines by LPS except IL-1α and IL-1β,
whose production was increased by 10% autologous serum
(Supplementary Figure 1).

Taken together, these observations suggest differential
regulation of cytokine secretion by complement activation
byproducts, which can be studied by adding autologous serum
to PBMC cultures. Another important finding in the present
study is that PBMC cultures supplemented with autologous
serum allow for analysis of cytokines that are known to rise in
CRS/CS, including the syndrome observed in severe Covid-19
and immunotherapies such as CAR-T cells (26–28). Moreover,
the in vitro system affords screening of inhibitory approaches,
such as complement inhibition, as shown by the results below.
The performance of this model is verified in two laboratories and
demonstrates consistent results despite of the use of different
percentages of autologous serum. Our study also contributes to
the existing knowledgebase emphasizing the predictive capability
of PBMC cultures in individualized screening of cytokine
responses in human blood donors (29).
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FIGURE 2 | Inhibition of AmBisome-, zymosan- and LPS-induced complement activation (ordered in columns) by different inhibition methods specified on the X axis.

No act. and no inh. mean no added activator or complement inhibitor, respectively. On the X axes “Heat i.a.” “EDTA” and “mfH” mean heat-inactivation of autologous

serum at 56◦C for 30min, addition of 20mM EDTA or 1µM mfH, respectively. Different symbols specify the donors, the bars show the mean ± SD (n=3); *(P<0.05)

and ** (P<0.01) indicate statistically significant differences using one-tailed T-test comparing the values to the No Act. group.

Differential Inhibition of Immune
Activator-Induced Release of Cytokines by
Different Approaches of Complement
Inhibition
Figure 4 shows dot plots of individual responses of each
responder cytokines following activation with 3 activators
(stapled columns) for 18 h at 37◦C with or without complement
inhibition (inhibitors specified on the bottom axes). In order
to show that the individual variation of cytokine responses,
when ever seen, is due to differences in individual sensitivity
of blood donors rather than measurement (random) error,
the three PBMC donors are distinguished by different shapes
and colors.

These data provide evidence that inhibition of complement
activation can entail inhibition of some cytokines’ release. This
also means that complement activation contributes to the release
of these cytokines, thus, the test system reproduces the clinical
observations on the beneficial effects of complement inhibition
in CRS/CS, including that observed in Covid-19. A repeat
experiment using only AmBisome as stimulant and EDTA, as

inhibitor, confirmed the complement-dependent response of
IL-1α, IL-1β , IL-6, IL-10 and TNFα, as well as the lack of such
response of IL-2 (Supplementary Figure 2).

Enhancement of Zymosan and
LPS-Induced IL-10 Production by Mini-fH
at 6 h
Figure 5, focusing on the inhibition of zymosan and LPS-
induced cytokine release by mfH at 6 h, presents an unexpected
significant stimulatory effect of this complement inhibitor on
IL-10 induction on top of the effects of zymosan and LPS
at this time.

DISCUSSION

Approaches of Complement Activation and
Inhibition
The complement inducers used in this study represent different
types of immune stimulants that act both in the humoral and
cellular arms of the innate immune response. The liposomal
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FIGURE 3 | Cytokine induction by immune stimulants that also activate complement. AmBisome, zymosan and LPS were applied at 1.98mg phospholipid/ml, 0.5

mg/ml and 0.5µg/ml, respectively, and the PBMC supernatants were analyzed for cytokine levels after 6 and 18 h incubation. (A) Shows the cytokine levels

expressed as ratios, relative to 0min baseline at 18 h, while (B) shows the ratios of 6 h readings relative to 18 h only for zymosan and LPS. Other details are the same

as described for Figures 1 and 2. The bars show the mean ±SD (n=3); * and ** indicate statistically significant increases comparing to D-PBS; P<0.05 or 0.01,

respectively; #, undetectable rises. (B), * and # indicate statistically significant decrease using one-tailed T-test comparing to 1, or between the two columns,

respectively (P<0.05); ∧ indicates higher real value since data point(s) was/were out of the detection range of the assay.

drug AmBisome and the yeast glucan zymosan are potent
complement activators whereas LPS is a weak trigger of
complement. Both zymosan and LPS are also known for
their ability to trigger cell activation via pattern recognition
receptors expressed on the surface of immune cells. Specifically,
zymosan has been described as a stimulant of TLR 2/6 (30,
31) and another transmembrane signaling receptor, Dectin-1,
which collaborates with TLR-2 in NF-κB-mediated cytokine
production (32, 33), whereas LPS activates proinflammatory

signaling via the TLR4/MD2/CD14 receptor complex (25).
It is currently unknown whether AmBisome can trigger the
activation of pattern recognition receptors on the surface of
the immune cells, although amphotericin B, alone, can do
that (23).

Since there was a major difference between the complement
activating powers of AmBisome and zymosan, using these two
activators enabled us to dissect the significance of complement
activating power in inducing cytokines.
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FIGURE 4 | Cytokine levels in PBMC culture supernatants after 18 h activation without any activator (No act.) or with AmBisome, zymosan or LPS, as specified on the

top of the figure. No complement inhibition (No inh.), or complement inhibitions of sera by heat inactivation (Heat i.a.), 20mM EDTA (EDTA), 1mM mfH are shown on

the X axes. Each panel presents data for different cytokines (Y axis labels). The colored spheres, triangles and rectangles specify the three different blood donors. N.D.,

(Continued)
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FIGURE 4 | (non-detectable) means values below the limit of detection (< LLOQ). *(P<0.05), **(P<0.01), or ***(P<0.001) imply significant inhibition compared to

control (No inh.) by pairwise two-tailed T test, # indicates significant inhibition calculated with the LLOQ of the assay.

FIGURE 5 | Cytokine levels in PBMC culture supernatants after 6 h activation with zymosan and LPS in the presence and absence of mfH. Each panel presents data

for different cytokines (Y axis labels). The colored spheres, triangles and rectangles specify the three different blood donors. The significant stimulatory effect of mfH on

IL-10 is enlarged in the middle of the figure. *(P<0.05), **(P<0.01) imply significant enhancement compared to control (No inh.) by pairwise two-tailed T test.

Among the tested complement byproducts, C5a, a cleavage
product of C5, is a potent proinflammatory anaphylatoxin in
the fluid phase; Bb, a cleavage product of factor B whose rise in
the fluid phase indicates the involvement of alternative pathway
in complement activation; and sC5b-9, also in the fluid phase,

provides an indirect measure of membrane attack complex
(C5b-9) deposition on cell membranes, entailing cytotoxic
pore formation.

The inhibition of complement activation in our study was
achieved by EDTA, heat inactivation and mfH, each having
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different mechanism of action. EDTA prevents the Ca++/Mg++-
dependent buildup of classical and alternative pathway C3
convertases, heat treatment entails the formation of IgG and
other protein aggregates and anti-complementary C1 and C1s
(34–36) and mFH is a clinically relevant complement inhibitor,
a ∼373 amino acid-containing, ∼42 kDa MW recombinant
protein that contains 6 SCRs from fH, the most effective inhibitor
of alternative complement activation in plasma (37). The first 4
SCRs on its N-terminal bind to C3b and exert decay accelerating
activity on the alternative pathway C3 convertase (C3bBb) and
cofactor activity for the C3b cleavage by factor I. The C-terminal
2 SCRs, corresponding to fH 19, 20, bind to C3b fragments
(iC3b and C3d) and polyanions (glycosaminoglycans or sialic
acid) on host cell membranes. This triple targeting provides
a unique, therapeutically valuable defense against complement
activation on host cells. Despite a 70% reduction in size relative
to fH, mfH extends the functional spectrum of fH outperforming
it in a model of paroxysmal nocturnal hemoglobinuria (12).
Mini-fH was also shown to protect against experimental
glomerulopathy (13, 14) and its phosphatidylinositol-derivative,
anchored to endothelial cells, mitigates organ rejection in a
porcine xenotransplantation model (11).

Complement Activation and Inhibition in
PBMC Cultures
As expected, we obtained significant rises of all complement
activation markers in the supernatant of PBMC cultures
incubated with AmBisome, zymosan and LPS, validating the
approach of supplementing the tissue culture mediumwith intact
serum. The power of activation decreased in the order zymosan
> AmBisome > LPS, although this order does not reflect on
biological potency to activate complement since, being a pilot
study, the concentrations of activators were chosen on the basis
of literature data without attempt to achieve equipotency either
in complement activation or cytokine release. Accordingly, the
fact that LPS was the least effective complement activator at 0.5
µg/ml is in keeping with earlier data showing major complement
activation by LPS (in rat serum) only at 0.5 mg/ml (38).

The effective suppression of all these complement cleavage
products by all three approaches of complement inhibition also
validates the model inasmuch as it shows that the applied 50%
serum provided sufficient dynamic window for the changes
to allow statistical analysis of inhibition. The comparison of
the effect of 10% autologous serum vs. 50% for the case of
LPS-induced IL-1α and IL-1β (Supplementary Figure 1) also
confirmed the essential role of intact serum in cytokine release,
and the increase in absolute amounts of these cytokins following
LPS stimulation is consistent with the 5-fold greater amount
of serum in the case of 50% serum (Supplementary Figure 1

vs. Figure 3A). This proportionality suggests that cytotoxicity
by intact (non-heat inactivated) autologous serum does not
interfere with quantitative evaluation of cytokine induction,
a presumption consistent with that heat inactivation of fetal
calf serum is not required for in vitro measurement of
lymphocyte functions (35).

There were also some unexplainable findings in our
complement studies. One was the stimulation by heat-inactivated
serum of Bb rise in LPS-treated serum (Figure 2D) and
C5a rise in untreated serum (Figure 2E). These observations
need confirmation and further studies to understand, just as
the massive rise of Ba by zymosan (Figure 1C) and Ca++-
independent rise of C4a by AmBisome (failure of 20mM EDTA
to block it, Figure 1D). The biological relevance of the latter
observations is not clear at this time, but based on available
information, some of these changes may be beneficial, since
C4a, the third anaphylatoxin (39) was shown to interfere with
C5a actions and to have antimicrobial activity (71, 72), and
Ba, too, has been shown to have indirect anti-inflammatory
properties (40–42).

Complement-Dependent Cytokine
Production in PBMC Cultures
PBMC is known to consist of lymphocytes, monocytes and
dendritic cells, all expressing anaphylatoxin receptors (ATRs).
Unstimulated T cells express C5a receptor (C5aR) only at a
low basal level; the expression of this receptor is strikingly
up-regulated upon activation of T-cells (43). It has also
been shown that there is strong interaction between TLR
and ATR signaling (43), mutually enhancing each other’s
cytokine inductive effects. In one example of such cooperation,
Zhang et al. reported striking rise of plasma IL-6, TNFα
and IL-1β in decay-accelerating factor (DAF)-deficient mice
treated with LPS and zymosan. In this model, the lack of
membrane complement inhibitor, DAF, sensitized the animals
for anaphylatoxin liberation, and, hence, C3a-C5aR signaling
(31). In another example, wild-type mice co-treated with
TLR ligands and cobra venom factor, a potent complement
activator, significantly increased cytokine production, which
was accompanied by increased mitogen-activated protein
kinase and nuclear factor-κB (NF-κB) activation in the
spleen. These in vivo results suggest therefore synergistic
ATR and TLR stimulation as an underlying mechanism of
cytokine storm.

The efficacy of complement inhibition in attenuating cytokine
induction in the present study was shown by near full suppression
of IL-1β , IL-5, IL-6 and TNFα by EDTA and/or heat treatment.
In case of IL-6 these results are in keeping with earlier
observations on major IL-6 response to the infusion of liposome-
encapsulated hemoglobin in rats (45), a treatment that led to
massive complement activation under the applied conditions
(46). Although Ca++ binding by EDTA could inhibit cytokine
production independently from complement inhibition, the
paralleling, and mostly correlating inhibition of these cytokines’
secretion by the two fundamentally different approaches of
complement blockade can most easily be rationalized by their
common effect, complement inhibition.

The scheme in Figure 6 illustrates the above delineated
relationships among different activation pathways via which
zymosan, AmBisome and LPS might have triggered the release of
cytokines from responsive immune cells via ATRs and TLRs and
other pattern recognition or danger signal receptors (47–49). The
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FIGURE 6 | Schematic illustration of activation of PBMC by zymosan, AmBisome and LPS via simultaneous engagement of anaphylatoxin and Toll-like receptors

(ATR, TLR). The intracellular signaling of activator-receptor binding merges into NF-κb-mediated de novo transcription of inflammatory cytokines, explaining the

complement inhibition-sensitive production of cytokines. The figure also reminds that the SARS-CoV-2 may also induce cytokine release via additive, or synergistic

stimulation of both the ATR and Toll-like receptors, making the process complement- dependent.

fact that inhibition of complement also inhibited or reduced the
production of some cytokines suggests that the ATR-mediated
activation cooperates in these cytokines’ release, permitting
adding upon or synergizing with cell activation via other
channels. However, if a trigger mechanism is overwhelming,
there is no need for collaboration with other activation
channels. In other words, the efficacy of signal transduction
via these channels may represent a spectrum, depending on
a variety of factors, and the cells’ response may reflect a
summation of all concurrent input signals. This “double hit”
hypothesis, developed for nanoparticle-induced hypersensitivity
reactions (50, 51), is illustrated in Figure 6. It shows that all
three immune activators tested in this study trigger at least
two activation channels with varying efficacy one being the
ATR channel.

Relevance for COVID-19
Considering the mounting evidence of a critical role of
complement activation and anaphylatoxins in the CS in Covid-
19 and the efficacy of complement inhibitors in attenuating
the disease (52–65), the complement dependence of cytokine
release in our PBMC assay highlights the possible clinical
relevance of the model for Covid-19 therapy. Infact, the
cytokines that were found to be induced by the complement
activators, particularly IL-6 and TNFα, are among those typically
elevated in Covid-19 (66–69). The inhibitory effect of mfH
on IL-6 release (Figure 4) looks promising, as mfH is a
druggable protein. The finding is consistent with that mfH
is an alternative pathway inhibitor and SARS-CoV-2 activates
complement via the alternative pathway (65). The observation
that AmBisome was an effective activator of cytokine release is
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notable because it mimics viruses in terms of bilayer structure
and size [80–90 nm], and it too activates complement via the
alternative pathway (44). Therefore, it may represent a safe
and simple model for studying the innate responses to CS-
inducing viruses, such as SARS-CoV-2. Figure 6 highlights the
hypothesis that the SARS-CoV-2 may induce cytokine storm via
additive, or synergistic induction of both ATR and TLR-mediated
intracellular signaling.

OUTLOOK

Our experiments suggest the utility of non-heat inactivated
autologous serum-containing PBMC assay in studying the
mechanism and pharmacological sensitivity of CS in general, and,
in Covid-19, in particular. Observations in thismodel point to the
possible use of mfH, or similar SCR-based complement inhibitors
against pathologies triggered by the excessive cytokine release.
Although the inhibition of IL-6 by mfH was relatively small,
this study was a pilot exploration of efficacy without attempt
to establish dose-effect relationship or pursue other aspects of
drug development. It should be noted in this regard that the
stimulating effect of mfH on IL-10 at 6 h is another promising
observation, since IL-10 is an anti-inflammatory cytokine known
to limit tissue damage in chronic severe inflammations (16,
18, 19). Furthermore, the clinical efficacy of convalescent
plasma has been suggested not to be due only to neutralizing
antibodies, but also to the presence of innate inhibitors of
inflammation, including soluble complement inhibitors, such as
fH (70).

Being a small recombinant protein with proven efficacy
in other diseases (11–15, 20), mfH offers a new strategy
against CS in combination with other drugs and treatment
modalities, obviously after intense preclinical analysis
of efficacy and safety. Its use also draws attention to
the potential use of fH and/or other SCR constructs in
overcoming the fatality of diseases associated with CS, such
as Covid-19.
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