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The growing world population (7.8 billion) exerts an increased pressure on the cattle
industry amongst others. Intensification and expansion of milk and beef production
inevitably leads to increased risk of infectious disease spread and exacerbation. This
indicates that improved understanding of cattle immune function is needed to provide
optimal tools to combat the existing and future pathogens and improve food security.
While dairy and beef cattle production is easily the world’s most important agricultural
industry, there are few current comprehensive reviews of bovine immunobiology. High-
yielding dairy cattle and their calves are more vulnerable to various diseases leading to
shorter life expectancy and reduced environmental fitness. In this manuscript, we seek to
fill this paucity of knowledge and provide an up-to-date overview of immune function in
cattle emphasizing the unresolved challenges and most urgent needs in rearing dairy
calves. We will also discuss how the combination of available preventative and treatment
strategies and herd management practices can maintain optimal health in dairy cows
during the transition (periparturient) period and in neonatal calves.
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INTRODUCTION

Early fetal and neonatal calf mortality is a major contributor to increased production costs. Also,
during the transition period (~3 weeks prior to and ~3 weeks after calving), dairy cows experience
immune and metabolic dysregulation, that makes them very vulnerable to various infectious and
non-infectious diseases. Despite the widespread availability of vaccines and antimicrobial
compounds, several infectious diseases continue causing substantial morbidity, mortality, and
economic loss to the cattle industry. To maintain optimal health in a cattle herd it is critical to
understand mechanisms of natural anti-infectious immunity and how vaccination, biosecurity,
nutrition, husbandry and calf management practices should be used to maintain and enhance
immune protection. The advent of new high-throughput sequencing technologies and the
publication of the complete bovine genome (in 2009) have boosted research that significantly
enhanced our knowledge of the immune response in cattle. While this novel knowledge is being
used actively for breeding and selection of cattle with desired performance and health traits,
methods to genetically improve infectious disease resistance do not exist yet (1).

Mycobacterium and mammary gland (mastitis) infections represent two major threats impacting
global cattle production and reaching $35 billion in annual costs globally (2, 3). Respiratory
infections are commonly associated with multiple pathogens and therefore referred to as bovine
org June 2021 | Volume 12 | Article 6432061
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respiratory disease (BRD) complex (4). They are the principal
source of significant economic losses for the North American
beef and dairy industries. A number of bacteria and viruses are
known to be associated with BRD in combination with other
stress factors including heat, cold, fatigue, inadequate hydration
or nutrition, injury or environmental dust contamination (4, 5).
Similarly, several viral and bacterial pathogens are known to
cause severe enteric diseases in calves and adult cattle. The major
pathogens associated with scours are bovine coronavirus, bovine
rotavirus, bovine viral diarrhea virus, salmonella spp. (multiple
serotypes Dublin, Heidelberg, and Newport), Escherichia coli
K99, cryptosporidia and Clostridium perfringens (6–8). With
majority of vaccines against enteric pathogens having low
efficacy or lacking broad protection, the threat of antimicrobial
resistance (AMR) and ensuing decrease in the use of
antimicrobials and often multi-agent nature of scours,
maintaining a healthy herd can become a challenge.

Other pathogens of significance to the cattle industry include
foot and mouth disease virus (FMDV) – one of the most
contagious and wide-spread viruses known that can infect
multiple species including humans (9); bovine leukemia virus
(BLV), paratuberculosis, cryptosporidiosis, leptospirosis and
brucellosis (10–12). Besides impacting cattle production, a
large number of bacterial (leptospirosis, brucellosis) and some
viral (BCoV, BRV) pathogens are associated with zoonoses that
can cause diverse and sometimes severe diseases in humans (13).

Thus, maintaining cattle health is of utmost importance for
national and global food security and human well-being. Dairy
cows and calves are most significantly impacted by the industry
demands whereby the young are separated from the cows almost
immediately after birth and cows are bred as frequently as
possible to increase milk production. Such practices lead to
physiological stress and suboptimal immune function in cows
and high vulnerability of their calves. Thus, an in-depth and
comprehensive understanding of the immune function of these
important livestock animals in the context of the current herd
management practices is needed.
INNATE IMMUNITY

In cattle, like in many other animals, the first line of defense is
represented by physical barriers and mechanisms including skin
and mucosal membranes, as well as elimination of invading
microorganisms by coughing, sneezing, vomiting and diarrhea.
Besides forming mechanical barriers of the respiratory,
gastrointestinal and urogenitary tracts, epithelial cells secrete a
number of antimicrobial factors, including antimicrobial
peptides and defensins, and thus play an important role in the
innate immune response. The other known critical cellular
components of the innate immune system in cattle include
neutrophils; natural killer cells, NK; dendritic cells, DC;
gamma delta T cells (gdT); mucosa-associated invariant T cells
(MAITs); macrophages, Mf, and granulocytes. While the
majority of information on their development and function
comes from human and mouse studies, the available data for
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cattle were derived from studies on mastitis, tuberculosis, BVDV,
FMDV, BHV-1, and BRSV (9, 14–16). Unique to cattle, newborn
calves have unusually high numbers of circulating gdT cells (up
to 60% of the lymphocyte pool), and gdT cells of ruminants
express WC-1 antigen whose function is unknown [may act as
microbial/pathogens pattern recognition (PPR)] (14). This can
be a compensatory response that balances out the immaturity of
neutrophil, macrophage and DC functions in neonatal
calves (17). With the exception of NK cells, the presence of
innate lymphoid cells (ILCs) – another important subset of the
innate immune cells - has not been confirmed in cattle thus
far (9).

These diverse immune cell subsets are equipped with PPR
molecules that interact with pathogen-associated molecular
patterns (PAMPs) during the initial stages of the immune
response (14). The best characterized among PPRs are toll-like
receptors (TLRs). Ten TLRs with diverse and sometimes
overlapping PAMP affinities have been confirmed in cattle
(18). TLR1 recognizes triacyl lipopeptide of mycobacteria;
TLR2 - peptidoglycans of gram-positive organisms and
lipoarbinomannan of mycobacteria and zymosan of fungi;
TLR3 - dsRNA; TLR4 – lipopolysaccharide, LPS; TLR5 -
flagellin; TLR6 – diacyl-lipopeptides of mycoplasma; TLR7 and
8 - single-stranded RNA (ssRNA); TLR9 - CpG; while TLR10
function and affinity have not yet been fully assessed (18). Prior
to binding to TLR4, LPS, a bacterial component of H. somni, M.
haemolytica, and P. multocida, interacts with LPS binding
protein, soluble CD14, and the TLR4 cofactor MD2. TLR4 also
recognizes and binds the F protein of RSV. In addition to
TLR3,7-9, BHV-1, PIV-3, BRSV, and BVDV can recognize and
interact with cytosolic viral pathogen recognition receptors,
retinoic acid–induced gene-I (RIG-I), and melanoma
differentiation associated gene-5 (MDA-5). These interactions
lead to TLR-independent activation of NF-kappa B and IRF-3
and -7 via mitochondrial antiviral signaling adaptor (MAVS),
interferon-beta promoter stimulator (IPS-1), virus-inducing
signaling adaptor, and Cardif (14).

Upon activation of the local effector cells (endothelial cells,
epithelial cells, Mf, and DCs) of the innate immune system by
inflammatory cytokines [IL1, tumor necrosis factor alpha
(TNFa), and IL6], they produce a number of cytokines and
chemokines that attract migration of neutrophils and monocytes
into the affected area. They in turn signal to recruit to DCs and
NK, T, and B cells. In contrast, IL4, IL10, and IL17 actively
promote the resolution of the inflammatory cascade (19).

Bovine mast cells – a heterogenous group of cells in mucosa,
skin, mammary gland and other organs that play a pivotal role in
allergic and inflammatory responses by secreting biologically
active substances including histamine, leukotrienes, platelet-
activating factors (PAF) and prostaglandins (20–22). While
immunohistochemical and functional heterogeneity of mast
cells in bovines is poorly characterized, it is known that their
distribution and frequency vary per anatomical site, with age and
animal health. Evaluation of mast cell functions associated with
chymase and tryptase production has further confirmed their
anatomical compartmentalization (20).
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Inflammatory chemokines include IL8 (CXCL8), GCP-2
(CXCL6), ENA-78 (CXCL5), Gro (CXCL1-3), IP-10
(CXCL10), I-Tac (CXCL11), RANTES (CCL5), MIP-alpha
(CCL3) and -beta (CCL4), MCP 1-5 (CCL7, 8, 12, 13), and
eotaxins 1-3 (CCL24, 26) depending on the stimulus with
receptors that include CXCR1, 2, and 3 and CCR1, 2, 3, and 5.
Lymphocytes that home to mucosal tissues use a different set of
chemokines (e.g., naïve cells express CCR1-10, CSCR1-3 and
memory cells express CCR8-10, CSCR1, 2, 4, and 5). Chemerin
acts as a chemotactic factor for DCs and macrophages.

Oxylipids are another important class of immune molecules
derived from cellular lipids that regulate the onset, magnitude,
duration and resolution of the inflammatory response. Oxylipids
are synthesized from polyunsaturated fatty acids [n-6 (omega-6)
linoleic and arachidonic acids or the n-3 eicosapentaenoic and
docosahexaenoic acids] (23). These fatty acid substrates are
oxidized non-enzymatically by reactive oxygen species (ROS)
or enzymatically by different cyclooxygenases, lipoxygenases,
and cytochrome P450 producing a variety of oxylipids
including prostaglandins, thromboxanes, leukotrienes, and
lipoxins (24).

Natural Abs (NAbs) are an important humoral component of
innate immunity. They are mostly IgM (and some IgG and IgA)
Abs produced without antigenic stimulation by B1-B cells and
play an essential role in primary immune response (25). A high
proportion of NAbs binds to PAMPs with relatively low affinity.
Complement activation by the classical pathway is one of the
most important NAb functions.

Complement is another significant mechanism of innate
immune defense. It consists of a group of proteins (C1-C9)
present in serum in an inactive form that is activated by antigen-
Ab complexes (classical pathway) or by some carbohydrates
(lectin pathway) or by a variety of surfaces that are not
protected by natural inhibitors (alternative pathway). The
classical pathway is initiated by the activation of C1, and the
alternative pathway by the C3, in an enzyme cascade order (26).
Coating of bacteria or virus infected cells with fragments of the
components C3 and C4 lead to their ingestion by phagocytic cells
that possess receptors for these opsonins (27). Apart from its
direct antimicrobial effects, complement maintains Igs in soluble
form by limiting the formation of harmful immune complexes
and Ig precipitation.

Thus, while sharing numerous similarities with other species,
the bovine innate immune system possesses some unique
features that likely together with the distinct anatomy of
ruminants contributes to their resistance (rumen) or increased
susceptibility to bacterial and metabolic diseases.
ADAPTIVE IMMUNE RESPONSE

Bovine plasma cells produce at least five heavy chain classes (IgM,
IgG, IgA, IgD and IgE), with three IgG subclasses (IgG1, IgG2
and IgG3), two IgM subclasses (IgM1 and IgM2) and two light
chain types (l and k) (28). While the functions of IgM, IgA, IgG1
and IgG2 molecules are well-studied, those of IgG3 and IgD have
Frontiers in Immunology | www.frontiersin.org 3
not been evaluated in depth due to their later discovery. In
contrast to many other animals, cattle only express a limited
number of variable Ig gene segments, and it is thought that Ig
diversity is achieved via frequent recombinations and
endogenous mutations in the CDR3 region (29). Additionally,
an unusually long CDR3 results in “microfolds” allowing bovine
Igs to bind antigens that would otherwise be inaccessible (30).
Immunoglobulin functions include neutralizing antibody (Ab,
complement activation, Fc receptor-mediated phagocytosis, and
Ab-dependent cellular cytotoxicity. Differences exist between
different cattle breeds in relation to immunoglobulin quantities
(31). IgG1 and IgG2 are highly important, with IgG1 being the
most abundant in cow colostrum. IgG is important for virus and
toxin neutralization and bacterial agglutination and opsonization.
In cattle, IgG1 is known to be a less potent opsonin than IgG2
(32). IgM is a pentameric molecule important for bacterial
agglutination, complement fixation and opsonization and is
more restricted to intravascular spaces because of its size. IgA
is predominant in many secretions, but present in low quantities
in bovine serum (31). It is important for antiviral defense in the
upper respiratory and gastrointestinal tracts.

Although methods for analysis of the clonal composition of T
cells have been used extensively to gain a better understanding of
the mechanisms of T cell responses in humans and mice, this
knowledge is more limited for bovine T cells (33). The antigen
specificity of CD4+ and CD8+ T cells is determined by the ab T
cell receptor, which binds to peptides in association with MHC
class II and class I molecules, respectively (34). Most CD4+ T
lymphocytes function to promote cell-mediated immunity and
Ab production, while certain CD4+ Th lymphocytes are capable
of lysing appropriately sensitized target cells. Most CD8+ T
lymphocytes function as effector cells of direct target cell lysis
and are known as classical cytotoxic T lymphocytes (CTL), but
some may function as non-lytic suppressor cells (35, 36). Major
a/b T cell subsets found in other species were also identified in
cattle. They include: T killer (CD8+), T helper (CD4+, Th1, Th2
ad Th17) and T regulatory (CD4+/CD8+CD25+) cells, and their
functions have been studied in relation to some infections and
post-vaccine immune responses (37, 38). Earlier data suggested
that cytokine-mediated regulation of Th1/Th2 cell responses in
bovids may be more complex and distinct from that observed in
mice (39). Specifically, parasite-specific bovine Th cells produce
IL4 and IFNg, while IL2 and IL10 expression is not restricted to
IFNg or IL4-producing cells, respectively. Also, IL4/IL10 and
IL12 do not selectively exert their suppressive or stimulatory
effects on Th1-like cells. Nevertheless, some studies
demonstrated that development and maintenance of a Th1
IFNg response can be associated with a greater control of some
infections (M. bovis) (40).

Besides their critical role in shaping B cell responses, several
studies emphasize the importance of bovine T cell responses
that contribute to clearance of infections (for example
Cryptosporidium parvum) in the absence of humoral/Ig
responses (41). Of interest, memory CD4+, CD8+, and gd T
cells are detected in calves in the presence of maternal Abs even
in the absence of an active Ab response (38).
June 2021 | Volume 12 | Article 643206
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Thus, the bovine adaptive immune responses are driven by a
combination of common and unique aspects that need to be
considered when developing age- and herd-specific preventative
and therapeutic strategies.
MUCOSAL IMMUNE SYSTEM

The mucosa includes 4 distinct major components: (1)
microbiome; (2) mucous layer, (3) mucosal epithelial barrier,
and (4) immune cells of the mucosa-associated lymphoid tissues
[MALT; lamina propria (LP), Peyer’s patches (PP) in the gut and
diffuse mucosal lymphocytes] (42, 43). The microbiome is
critical for immune development of young calves as well as
immune defense and health maintenance of cattle of all ages (43).
While the role of the rumen in mucosal immunity has not been
yet clarified, it is established that bacterial richness and diversity
were the highest compared with all other gut sections (42, 44).
Bile acids (BA) in the small intestine represent another
important mechanism of intestinal defense (45) and the gut
microbiota plays a role in their metabolism. Bile acids inactivate
enveloped viruses and some enteropathogenic bacteria; however,
enterococci and Bacteroides spp. can degrade them, while
commensal bacteria metabolize BA in the colon (45). The
mucous barrier consists of the mucous and mucins (secreted
by Goblet cells), antimicrobial peptides (AMPs; defensins,
REGIII, lactoferricin), as well as IgG and secretory IgA
(transported from LP). Epithelial cells (ECs; enterocytes in the
gut and ciliated ECs in the lung) line the gastrointestinal (GIT),
reproductive (RepT), urinary (UT) and respiratory (RespT)
tracts and express tight junction proteins forming the mucosal
epithelium (ME). If the tight junctions break down, the
epithelium becomes leaky leading to systemic inflammation.
This condition is best known as “leaky gut” but can be
observed in RepT and RespT. Besides providing mechanical
segregation, the ME functions include secretion and absorption
(in the gut), fetal development (in the uterus), oxygen exchange
and clearance of foreign substances and pathogens (in the
RespT), and innate immune response. Bovine ECs express the
whole repertoire of TLRs (1–10, 46). Based on luminal stimuli,
ECs can produce pro-inflammatory (IL1a, IL8, and TNFa) or
regulatory cytokines (IL10 and TGFb) (42, 47). The microbial
components stimulate ME to produce serum amyloid A, which
stimulates DCs to activate other important mucosal Treg cell,
Th17 cells that produce high amounts of IL17A and ILnd
moderate amounts of IL22 and IFNg (48, 49). The latter are
critical for mucosal protection and repair as well as for defensin
production (e.g., REGIIIg and REGIIIb) (42).

While the information regarding rumen-associated lymphoid
tissues is limited, rumen fluid leukocyte populations (including
monocytes, T and B cells) are likely to play a significant role in
regulation of cattle immune and biochemical parameters (50).
So, CD45 gene expression in rumen fluids (indicative of
leukocyte infiltration) negatively correlated with ruminal pH,
while the frequencies of B cells (as well as numbers of total IgG
and IgM) were negatively affected by ruminal pH and high
Frontiers in Immunology | www.frontiersin.org 4
concentrations of volatile fatty acids. Additionally, rumen
health disorders (e.g. subacute ruminal acidosis), were shown
to cause ruminal dysbiosis breaching the epithelial barrier and
leading to inflammation (51).

Organized MALT – the induction site of mucosal immunity -
is widely distributed in the mucosa throughout the body allowing
for antigen sampling from mucosal surfaces. It is composed of
gut-associated lymphoid tissues (GALT), bronchus-associated
lymphoid tissues (BALT), nasal (nasopharynx)-associated
lymphoid tissues (NALT) and lymphoid tissues in the RepT,
UT, mammary gland(s), lacrimal glands and salivary glands.
These lymphocyte aggregates or follicles (also known as
lymphoid follicles [LF] or PP in the gut) of B cells, T cells, and
DCs and macrophages antigen presenting cells (APCs) are
covered by specialized epithelial cells called dome or M cells
[found in BALT, GALT and in uterus] (52–54). The GALT is the
largest lymphoid organ and the largest body surface in contact
with a great diversity of food and microbial antigens. The M cells
(present in MALT) pinocytose antigens and transport them
across the ME, where they are processed by APCs and
presented to T and B lymphocytes (54, 55). Then, antigen-
stimulated mature T cells and B cells act together to produce
IgA. Some of them express special molecules in their membranes
(homing receptors) and leave the submucosal lymphoid tissue
and enter the bloodstream; they can further exit the bloodstream
through high endothelial venules and translocate to LP.
Ultimately, this local stimulation results in memory T and B
cells that can migrate to the nearby and distant mucosal and
other tissues, which is known as “common mucosal immune
system” (42). A part of this “commonmucosal immune system” -
the bovine entero-mammary link (or gut-mammary axis) is
critical for neonatal calf survival and health (45). This
endogenous entero-mammary pathway not only allows
lymphocytes to traffic to the mammary gland, but also
transports some bacterial components during lactation in the
cow (56).

A better understanding of the mucosal immune response and
systematic evaluation of bovine vaccine efficacy based on
immunization route will help to identify the pathogens that may
be cleared more efficiently with mucosal vs. parenteral vaccines.
SYSTEMIC IMMUNITY

While the mucosal immune responses are more important for
the clearance of most pathogens (especially enteric and
respiratory), for a number of viral and bacterial agents
associated with systemic, chronic or lymphoid organ
infections, protective immunity and pathogen clearance are
unachievable without a robust systemic immune response.
These pathogens include (but are not l imited to) :
Staphylococcus aureus, FMDV, BRSV, Haemophilus somnus
and Mycoplasma bovis (57–60). Studies of immune responses
to these pathogens identified some commonalities as well as
distinct systemic responses. IgG1 and IgG2 Ab responses
predominant in serum (in contrast to IgA in various mucosal
June 2021 | Volume 12 | Article 643206
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secretions), as well as potent and balanced CD4+ and CD8+ T
cell and IFN type I responses in systemic immune organs and
blood, were associated with improved protection. Another
pathogen common in cattle, Leptospira interrogans (L.
interrogans) enters the hosts through chafed skin or mucosa
and then is disseminated in blood, potentially leading to renal
infection (61). At the disease onset, symptoms are non-specific
leading to it being underdiagnosed and poorly controlled by
vaccines. Intraperitoneal priming with a TLR2/NOD2 agonist
was shown to induce a sustained protective systemic innate
immune response characterized by enhanced pro-inflammatory
cytokine, chemokine and nitric oxide production by
macrophages independent of the presence of B and T cells (62).

While most recent data suggest the importance of the
systemic immune responses in some infections, it is also
evident that tissue-specific immune responses may play
important roles specific for each pathogen which requires
further evaluation.
PATHOGENS ASSOCIATED WITH
IMMUNOPATHOLOGY

Several important bovine pathogens have evolved mechanisms
allowing them to subvert the immune system and establish
persistent infections. These mechanisms are diverse and not
completely understood which makes the use of classical
vaccination and other approaches to control these pathogens
challenging and sometimes impossible. Below we will summarize
the strategies used by some of these pathogens to suppress host
immune responses, as well as the mechanisms they use to modify
themselves or their location in the host to block the recognition
by the host immune system.

BVDV has evolved unique mechanisms to establish persistent
infection characterized by immune tolerance of the non-
cytopathogenic (ncp) variant (63). Due to its immunosuppressive
effects on both the innate and adaptive immune systems, BVDV
acts as a major predisposing factor for BRD. Interestingly,
ncpBVDV suppresses production of IFN type I and pro-
inflammatory cytokines in bovine alveolar macrophages whereas
its cytopathogenic counterpart triggers this response. This
suppression leads to the decreased phagocytic activity.
Additionally, cells infected with ncpBVDV are also resistant to
induction of interferon by dsRNA, a potent inducer of IFN type I.
Further, in vitro infection of monocyte-derived macrophages with
both cytopathic and ncpBVDV suppresses responsiveness to TLR2,
TLR3, TLR4 but not TLR7 ligands (64). Because IFNa production
is critical for initiation of the adaptive immune response, its
inactivation by ncpBVBDV may represent the key mechanism
affecting both innate and adaptive immunity. Similar to in vitro
findings, in vivo BVDV infection also modulates the capacity of
monocytes and macrophages to respond via TLR4 (65).

Another example of immunopathological response associated
with bovine viral pathogens is bovine leukemia virus (BLV). It is
characterized by increased numbers of CD4+CD25+Foxp3+ Treg
cells that produce higher levels of TGFb resulting in reduced
Frontiers in Immunology | www.frontiersin.org 5
production of IFNg and TNFa by CD4+ T cells and impaired NK
cell function (12, 66). These immunological impairments lead to
increased susceptibility to opportunistic infections. Additionally,
the production of antiviral cytokines (including IFNg, IL2 and
IL12) by lymphocytes and their proliferative ability in response to
BLV was also significantly reduced in cattle with persistent
lymphocytosis (67). In contrast, it was demonstrated that the
protective Th1 response against Mycobacterium avium subsides
later in the course of the infection, while the non-protective Th2
response becomes prominent. Recent data demonstrated that T
cell unresponsiveness, rather than Treg activity, is driving this
Th1-to-Th2 immune shift (68).

Recent studies have improved our understanding of
exhaustion and dysfunction of antigen-specific T cells in
chronic infectious diseases of cattle. They demonstrated that
up-regulation of surface expression of immunoinhibitory
receptors, such as programmed death 1 (PD-1), lymphocyte
activation gene 3 (LAG-3), T-cell immunoglobulin and mucin
domain-containing protein 3 (Tim-3) and cytotoxic T-
lymphocyte antigen 4 (CTLA-4) by bovine T cells play a
critical role in immune exhaustion and disease progression in
the case of BLV infection, Johne’s disease (caused by
Mycobacterium avium) and bovine anaplasmosis (11, 69–72).

Of interest, while some FMDV infected ruminants can clear
the virus within 1-2 weeks, some remain persistently infected for
up to 3 years (73). This dichotomy and how FMDV evades
cytotoxic T cell responses are not completely understood. Thus,
further studies to understand this and to determine how the
carrier status and FMDV-associated immune modulation can
affect cattle susceptibility to other pathogens are warranted.

These pathogens can further compromise cattle health
predisposing them to secondary infections due to immune
suppression. Strict biosecurity measures (whenever possible)
combined with vaccines and nutritional interventions need to
be implemented to reduce prevalence of these pathogens.
IMMUNE SYSTEM AND MICROBIOME

As in most other mammals, bovine fecal microbiota is
dominated by the 5 following phyla: Firmicutes (the most
prevalent, 63.84%-81.90%), Bacteroidetes (8.36%-23.93%),
Proteobacteria (3.72%-9.75%), Fusobacteria (0.76%-5.67%), and
Actinobacteria (1.02%-2.35%) (74). Similar to findings from
other species, fecal microbial diversity in cattle is associated
with diet, age, disease status and growth rates, and increased
abundance of Faecalibacterium spp. is suggested to promote
health and growth (74).

The development and establishment of the gut microbiome is
a dynamic process that can be influenced by several internal and
external factors. Internal (=host-related) factors include
functional maturity of the gut and immune system, biliary
secretions and repertoire of bacterial mucosal receptors (75,
76). The list of external factors is broader including everything
in the calf environment including the calf nutritional status,
vaginal, fecal and milk microbial composition of the cow,
June 2021 | Volume 12 | Article 643206
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antibiotic use, etc. (43). As the calf grows, the gut bacterial
composition develops quickly culminating in a “climax”
community maintaining the anaerobic environment (77).

The rumen – an anaerobic and methanogenic forestomach -
houses an abundant and complex microbiota (~1010–1011 cells/
ml and over 200 species) responsible for the remarkable ability of
cattle to transform indigestible plant mass into essential
nutrients (78). Bacteria are the most abundant microbes in the
rumen and their composition is determined by a number of
factors including the diet, energy requirements, and resistance to
certain metabolic byproducts toxic to some species. Several
studies demonstrated that rumen bacteria of animals fed high
forage or high grain diets mainly consisted of Gram negative or
Gram positive bacteria (including Lactobacillus), respectively,
while increased proportion of corn silage resulted in increased
Prevotella and decreased protozoal abundance (79, 80).
Numerous studies demonstrated that a large microbial
component remains uncultured, while fundamental diet-driven
differences were noted in the glycoside hydrolase content (81).
Another recent study emphasized the importance of the ruminal
microbiota and suggested that different breeds of dairy cows have
different metabolic, immunological and performance traits (82).

Central (e.g., bone marrow and thymus) and peripheral (e.g.,
lymph nodes, spleen, and MALT) organs of the calf immune
system develop in prenatal and postnatal periods with maternal
and calf microbiota playing a significant role during both periods
(43, 83). In the first 24-36 hours of life, calf gut permeability
decreases significantly due to the increase in expression of the
tight junction (TJ) proteins (occludin, claudins, zonula
occludens, and junctional adhesion molecules). Although, the
exact mechanisms are not known, interactions between the ME
and some bacteria (e.g., Lactobacillus spp and Bifidobacterium
spp) or bacterial metabolites upregulates TJ expression
promoting intestinal barrier integrity (84). The production of
mucus – another immune defense barrier - is stimulated by the
presence of commensal bacteria (85). As summarized by Gomez
and colleagues, other evidence accumulated in various animal
models indicates that commensal microbiota stimulates
enterocyte turnover and metabolic activity, enhances
production of AMPs by enterocytes and Paneth cells and
secretory IgA production (43). Low levels of secretory IgAs are
associated with bacterial expansion leading to systemic
inflammation and/or diarrhea (86). While over-proliferation of
Enterobacteriaceae spp has been associated with diarrhea in
calves (87), the role of IgA secretion in this condition is
unknown and warrants further investigation. Further,
expression of TLR2 and TLR6 is downregulated with
increasing age in calves which is associated with increased
abundance of digesta and tissue-associated total and lactic acid
bacteria (88). Expression of TLRs in the gut of calves is also
influenced by gut region, which in turn can be due to regional
variations in the density of microbial communities (88). It is also
possible that the colonization of the calf gut by Lactobacillus spp
and Bifidobacterium spp promotes a regulatory immune response
(increased IL10 secretion) thereby avoiding exacerbated
inflammatory responses to commensal microbiota (89). While
Frontiers in Immunology | www.frontiersin.org 6
there are now comparative studies evaluating systemic immune
responses in germ-free and conventional calves, there is growing
associative evidence that the microbiome-associated alterations
in the immune function are observed in the gut and systemically.
For example, the stress of comingling, transportation, weaning
and other abrupt dietary changes also alter microbial
composition in the gut which may lead to intestinal dysbiosis.
Dysbiosis and the associated immune alteration can in turn
predispose calves to various infectious diseases, including Johne’s
disease (paratuberculosis) (90). Another example of systemic
immune modulation by gut bacteria is from a study where
lysozyme, lactic acid and glycopeptide (isolated from
Lactobacillus spp) treatment decreased numbers of T helper,
but not CD8+ cells, numbers of CD25+, CD38+, as well as
CD69+ and CD95+ cells and increased frequencies of IL2
receptor expressing cells in cow blood. Those changes were
associated with a significant elevation of somatic cell counts
and decreased numbers of pathogenic bacteria in the milk of the
treated cows (91).

These data suggest that intestinal dysbiosis and the associated
infectious or metabolic diseases in dairy cattle may represent a
significant challenge that needs to be addressed via nutritional
adjustments or probiotic treatments.
IMMUNE SYSTEM AND NUTRITION

Dairy cow nutritional status and metabolism of specific nutrients
are critical for adequate immune and other cell functions. The
effects of nutrition may be direct through nutrients or indirect via
metabolites. A majority of health problems in dairy cattle occur
around parturition due to the hormonal shifts and the need of
adaption to the increased nutrient demands for lactation resulting
in negative energy balance. Diet-associated uncontrolled
inflammation is considered to be a major contributing factor to
several metabolic diseases common in dairy cattle including
mastitis, retained placenta, metritis, displaced abomasum, and
ketosis (92). Previous studies demonstrated that over- or under-
nourished cows were more susceptible to various infectious
diseases compared to those with adequate nutritional status in
periparturient period (93). Somewhat conflicting evidence of the
associations between transient dietary restrictions, neutrophil
function reduction and various inflammatory diseases in
postpartum dairy cows is discussed by Sordillo (92). Provision
of appropriate antioxidants including omega-3 polyunsaturated
fatty acids, conjugated linoleic acid and vitamin D promotes
anti-inflammatory responses (94). Deficiencies in certain
micronutrients (vitamins and trace elements) are associated
with an increased incidence of mastitis, retained placenta, and
metritis (95). The immunomodulatory and antioxidant effects of
various macro- and micronutrients that influence the incidence of
health disorders in dairy cattle have been discussed in detail in
several previous reviews and are briefly summarized in Table 1
(109–113). These immunological and metabolic disturbances in
lactating cows as well as dairy calf feeding practices may result is
suboptimal nutrition and immune protection of neonatal calves.
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IMMUNE FUNCTION IN PREGNANCY AND
EARLY PARTURITION

The immunemechanisms discussed above play critical roles at the
maternal-fetal interface and in the neonatal periods. Importantly,
pregnancy hormones induce changes in immune cell populations
and functions to promote immune tolerance, reduce expression of
major histocompatability proteins by the trophoblast, tissue
remodeling, and angiogenesis (114). In early pregnancy in cattle,
complex hormonal and immune shifts occur: the conceptus
blocks the luteal regression to maintain progesterone production
that prevents the fetus from destruction by the maternal immune
system. Recent studies evaluated immune regulation of the
maternal uterus, peripheral blood mononuclear leukocytes and
corpus luteum induced by IFNt, the primary pregnancy
recognition signal in cattle (115). Frequencies of endometrial
NK cells, CD8+ T cells, macrophages and DCs as well as IL15
and IL10 cytokine levels are also markedly increased in early
pregnancy (114). The findings suggested that the bovine embryo
triggers an anti-inflammatory response in immune and epithelial
cells. Furthermore, expression of indoleamine 2,3 dioxygenase
(IDO, converts tryptophan to kynurenine altering immune
function) is increased in the first trimester in dairy heifers (114).
IDO activates the aryl hydrocarbon receptor (abundant in bovine
uterus), thus, inducing downstream tolerogenic mediators.
Pregnancy is also associated with increased expression of
proteins inhibiting immune activation and inducing lymphocyte
tolerance, including programed cell death ligand-1, lymphocyte
activation gene-3, and cytotoxic T-lymphocyte associated protein-
4. There is also evidence of enhanced TLR expression
and macrophage recruitment and activation in the cow
endometrium early in pregnancy; however, the reasons for the
Frontiers in Immunology | www.frontiersin.org 7
latter are not fully understood (116). Besides IFNt, placental
lactogen, pregnancy-associated proteins, prostaglandin E2, non-
classical MHC class I, GATA transcription factors, prolactin-
related protein, Cox-2 and IL6 are secreted by the conceptus in
early pregnancy. It was suggested that IFNt (and other conceptus
signaling factors, Figure 1) may be involved in maternal systemic
immune regulation through modifying peripheral blood
mononuclear leukocytes, platelets and cell-free embryonal DNA
by the lymph circulation and blood circulation in the bovine
(Figure 1). Besides its anti-luteolytic function, IFNt also functions
to promote uterine receptivity and embryo development. It
enhances the expression of IFN-stimulated genes (including
TNFa and MCP1) in the endometrial tissue of cattle (117).
Maternal immune responses during embryo elongation in cattle
include increased numbers of monocytes and DCs in the
endometrial stroma, while MCP1/2 serve as a potent
chemotactic factor for monocytes and DCs (117). Further, a
subpopulation (M2) of activated macrophages and several
cytokines [including IFNg, IL4, and Leukemia inhibitory factor
(LIF)] act to decrease the activation of anti-conceptus immune
responses (118–120). These early modifications and consistently
high levels of progesterone (P4, Figure 1) result in an immune
balance shift toward Th2 and its maintenance until periparturient
period (121, 122). At parturition, however, the ratio of Th1/Th2
should increase a rapid transition from tolerance for the fetus
(high Th2) to protection against infectious agents (high Th1)
(123). There is also limited evidence of partial immune
suppression in periparturient cows showing that frequencies of
peripheral blood CD4+, CD8+ and gdT cells and IFNg decline,
while the numbers of CD25+ T cells increase (116). B cell clonal
expansion and antibody production also decrease reaching nadir
around parturition (124). The week prior to and immediately after
TABLE 1 | Role of macro- and micronutrients in the immune function of cattle.

Nutrient Role in immunity References

Fat/energy Regulates cell mediated immunity and Ab response. Fat-derived fatty acid composition of immune cells affects phagocytosis, T cell
signaling and antigen presentation capability

(96, 97)

Protein Protein/amino acids are required for proliferation and maturity of immune cells. Specific amino acids (e.g. tryptophan, arginine, glutamine)
are required for systemic and gut immune function

(98)

Glucose Up-regulation of cell proliferation, differentiation, survival, chemotaxis, phagocytosis (99)
Glutamine Up-regulation of cytokine and reactive oxygen metabolite (ROM) production, cell division, phagocytosis, CD4 T cell proliferation (100)
Tryptophan Activation and maintenance of the immune response (101)
Fatty acids Down-regulation of IgM secretion, cytokine production, cell viability, phagocytosis, diapedesis, antigen presentation. Up-regulation of

oxidative burst, necrosis, phagocytosis, cytokine and ROM production, TLR signaling
(96)

Selenium Maintenance of the antioxidant system, enhancement of neutrophil function and neutrophil and macrophage migration (102, 103)
Zinc Overall immune function, antioxidant activity [integral part of superoxide dismutase (SOD)], epithelial barrier integrity, nucleic acid and

protein synthesis, cell division
(98, 103)

Copper Overall immune function, antioxidant activity [integral part of superoxide dismutase (SOD)], enhancement of interferon production (98, 104)
Iron Antioxidant defense (essential component of catalase), energy and protein metabolism, oxidation–reduction reactions (105)
Manganese Overall immune function, antioxidant protection (integral part of SOD), carbohydrate and lipid metabolism (106)
Chromium Regulation of cell-mediated and humoral immune responses, upregulation of blastogenic response, enhancement of cytokine (IL2, IFN,

and TNFa) production by mononuclear cells, Ab production
(98)

Vitamin A, b-
carotene

Overall immune function, upregulation of lymphocyte proliferation (103)

Vitamin B Antioxidant defense, upregulation of lymphocyte proliferation (98)
Vitamin D Antioxidant defense, down-regulation of inflammation (107)
Vitamin C Antioxidant defense, down-regulation of inflammation (108)
Vitamin E Lipid soluble antioxidant, enhancement of neutrophil function, increase of production of IL1 and major histocompatibility (MHC) class II

antigen expression
(102, 103)
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parturition is also associated with neutrophilia, eosinopenia,
lymphocytopenia and monocytosis. Additionally, cows show a
decrease in phagocytosis and oxidative burst activity (125). These
findings suggest that there is another immunological shift
occurring before calving. Heyland et al. (126) hypothesized that
around parturition multiple external insults can induce a systemic
inflammatory response capable of attenuating the cellular
immune response (126) (Figure 1). Further, some findings
suggest that release of fetal membranes can be an immune/
hormone-mediated process because increased incidence of
retained placenta (RP) is observed in cows sharing MHCI
antigen specificity with their calves (127). It is well established
that daily food intake decreases (~30%) as calving approaches
(128), which coincides with increases in levels of pro-
inflammatory cytokines (50). Dairy cows do not consume
enough nutrients to meet the increased demand to support
lactation which leads to a negative energy balance (NEB). NEB
in turn leads to suppressed immune function or poorly controlled
inflammation which may promote uterine diseases and other
metabolic diseases including milk fever, ketosis, and
displacement of the abomasum (113).

Thus, the immune function and its regulation during
pregnancy, from the conception and through parturition are
very complex and dynamic with selective suppression and up-
regulation of distinct immune responses. These aspects have to
Frontiers in Immunology | www.frontiersin.org 8
be carefully considered in vaccination approaches to maintain
optimal health of periparturient cows and neonatal calves. Other
disease controlling strategies should also be tailored to the stage
of production of dairy cows.
THE BOVINE MAMMARY GLAND
IMMUNE DEFENSES

The ability of lactating cows to resist invading pathogens
(bacterial) and clear them is primarily dependent on the
function of the mammary gland (MG) immune system,
although systemic immunity also plays a role. Also, calves are
born agammaglobulinemic (because there is no transplacental
transport of Igs in cattle) and rely fully on consumption of
colostrum and milk to ensure adequate passive immunity (83).

The bovine MG is equipped with a non-immune anatomical
barrier, and a plethora of immune mechanisms, including
coordinated action of innate and adaptive immune responses
(129). Detailed reviews by Rainard (130), Ezzat Alnakip (131)
and Sordillo (132) summarized the immunobiology of the bovine
MG and the mechanisms of its immune defense that include
common cellular and soluble immune components discussed
earlier as well as some unique biochemical, mechanical and
immune factors (Figure 2). Among the latter is the teat canal
FIGURE 1 | Immune modulation during pregnancy. Early conceptus signaling modulates local and systemic immunity. The peripheral blood mononuclear cells
(PBMC), platelets and cell-free DNA from bone marrow/thymus modulated by high level of P4 from corpus luteum enter blood circulation. Then, the PBMC, platelets
and cell-free DNA while migrating through blood circulation to endometria, are controlled by IFNT and other conceptus immune factors. Then the functionally
changed PBMC, platelets and cell-free DNA re-enter blood/lymph circulation and traffic to effector cells affecting the function of the immune organs and non-immune
organs including ovary. This early signaling shifts immune environment to Th2 to maintain the pregnancy. Inflammatory responses sharply increase, and cellular
immune function is down-regulated around parturition.
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barrier with the following defense factors: contraction of the teat
sphincter muscles to block bacterial penetration; bacteriostatic
activity of keratin and Furstenberg rosette densely populated
with leukocytes. Lactoferrin, a unique soluble secretion of the
MG, is one of the best-characterized antimicrobial proteins and
is the most common iron-binding protein that greatly reduces
soluble ferric iron available to multiplying bacteria. Transferrin,
lysozyme, lactoperoxidase and xanthine oxidase are also found in
the milk of ruminants that play diverse roles in antibacterial
defense (130). Major cell subsets with diverse immune functions,
including epithelial cells, innate immune cells and T and B
lymphocytes (Figure 2) are present in the MG. These cells
interact directly or via soluble components to ensure optimal
protection of the udder against invading bacteria and to provide
passive protection to the calves with colostrum/milk.

Of all TLRs, TLR2 and TLR4 are of particular importance to
MG defense because these receptors recognize PAMPs associated
with gram-positive (peptidoglycans) and gram-negative (LPS)
mastitis-causing pathogens, including Staphylococcus aureus,
Streptococcus uberis, and Escherichia coli (133). While rapid
and robust inflammatory immune responses can efficiently
block or clear infection, their increased duration can lead to
excessive tissue damage. This emphasizes the importance of the
MG immune regulatory function that leads to the cessation of
proinflammatory mediator synthesis and their catabolism.
Cytokines IL4, IL10, and IL17 and oxylipids (regulating
microvasculature and pro-/anti-inflammatory responses) play a
critical role in the resolution of inflammation (19). The
contribution of the complement system to the MG immune
Frontiers in Immunology | www.frontiersin.org 9
defense has been discussed in detail (27, 134). The classical
pathway is not functional due to the lack of C1q, but the
alternative pathway can operate, resulting in: 1) deposition of
opsonic C3b and C3bi on bacteria, and generation of the pro-
inflammatory fragment C5a (130). Natural Abs that cause
bacterial opsonization are another component of innate
humoral defenses. While generally, opsonic Abs belong to the
IgG2 and IgM isotypes, the majority of the opsonic Ab in cow
serum and milk of cows are IgM (130). Virus or bacteria specific
immunoglobulins are the most important soluble humoral
factors of the adaptive immune defense of the MG, linking the
cellular and humoral immune system. Four classes of Igs (IgG1,
IgG2, IgA, and IgM) influence MG antibacterial immune defense
and play distinct roles depending on the lactation stage. IgG1 is
the most abundant Ig class in bovine milk and colostrum (131,
135), while IgG2 levels increase substantially in inflammation
(26) (Figure 2). Immunoglobulins in milk may be blood derived
or produced in situ by antigen activated plasma cells, which
traffic to the udder from the blood (136). Thus, unlike in
monogastric animals, the dominant Ab (IgG1) in bovine
colostrum/milk is actively transported from the peripheral
blood (and not the gut), which allows for the use of parenteral
vaccines in pregnant cows to boost serum IgG1 Abs with their
subsequent transfer into milk and colostrum (137). The active
IgG transport is mediated by neonatal Fc receptor, which is an
intracellular, bidirectional and pH-dependent process (138).

A depression of several immune functions that has been
reported around parturition (in part regulated by increased
level of blood glucocorticosteroids) manifests by a higher
FIGURE 2 | Immune cells of the mammary gland (MG), their functions and cytokines produced.
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prevalence of clinical mastitis and other diseases during this
period (139). An increase in IL2 secretion from late gestation to
parturition emphasizes the immunological function (antiviral
protection) of the bovine MG (140).

These unique aspects of bovine immune responses allow to
provide protection to neonatal calves via parenteral maternal
vaccination. Vaccination strategies should be further optimized
to select optimal vaccination timing, vaccine types, doses
and adjuvants.
PASSIVE IMMUNE PROTECTION OF
NEONATAL CALVES

Dairy calves provide replacement animals critical for the future
of the dairy operation. Passive immunity in calves is assessed by
quantifying the levels of serum IgG or total protein during the
first 7 days of age. Beef and dairy calves feeding is managed
differently, beef calves are allowed to suckle, while dairy calves
are separated from dams at birth or soon after, fed colostrum and
placed on milk replacers. These differences in colostrum
management may affect early immune development of calves.
Whole blood immune transcriptome analyses demonstrated that
there was a surge in pro-inflammatory cytokine expression in
dairy calves, while sucking beef calves had increased expression
of genes associated humoral immunity maturation by 7 days of
age (141). Cow colostrum and milk provide key nutrients and
passive protection to neonatal calves. Colostrum/milk
components also include casein, lactoferrin, whey proteins and
lactoperoxidase as well epithelial and immune cells
(macrophages, T and B lymphocytes). These cells cross the
neonatal intestinal barrier and populate peripheral and central
lymphoid tissues promoting the calf immune development (142).
Bovine colostrum also contains potent bioactive components
that promote growth (EGF and TGFb) and counteract pathogens
(proinflammatory cytokines: IL1b, IL6, TNFa and IFNa),
enhance lymphocyte function and promote maturation of
the neonatal intestinal immune system (143). Cytokine
concentrations in bovine colostrum are much higher than in
mature milk, which contribute to the production of secretory IgA
as well as Th1 and Th2 responses (144). Colostrum also contains
maternal immunoglobulins and immunomodulatory factors that
suppress development of active immunity (145). Thus, in
addition to nutrition, mammary gland secretions play at least
two more important roles: generation of tolerance to food
antigens and commensal microbiota while promoting immune
development and immune response to pathogens.

Because passive transfer of lactogenic soluble and cellular
components from the mother to the calf prior to the gut closure
(cessation of transport of macromolecules across the gut barrier)
is the main means of anti-infectious protection immediately after
birth, its failure (FPT) due to compromised maternal health, late
calf feeding or feeding poor quality colostrum is associated with
>30% of mortality in pre-weaned calves (146). While low
colostrum intake at birth is a risk factor for FPT for all calves,
those from younger (especially primiparous) cows have lower
Frontiers in Immunology | www.frontiersin.org 10
serum Ig concentrations compared to those born to older cows,
which also contributes to increased morbidity and mortality.
Supplementation of commercial colostrum represents a viable
strategy to alleviate the negative effects of the passive transfer
failure (147). A majority of dairy calves are reared on pasteurized
waste milk and milk replacers (148), and they are at higher risk
suffering negative health sequalae due to FPT. Recent studies
demonstrated that 2 vs 1 colostrum feedings after birth have
resulted in decreased risk of FPT, reduced morbidity and
improved growth rate (149, 150). Finally, the protection from
the passive immunity transferred to calves peaks 1–2 days and
then starts declining. Currently available commercial milk
replacers are generally made of skim milk powder, vegetable or
animal fat, buttermilk powder, whey protein, soy lecithin and
vitamin-mineral premix (151). While their nutritional value has
improved over the past decades, they remain deficient in
immunological and growth/development promoting
components leading to higher rates of infectious diseases.

These observations emphasize that the current feeding
practices of pre-weaned dairy calves should be further
optimized, including introduction of multiple colostrum
feedings. Similarly, vaccination strategies of pregnant cows
require in-depth evaluation to ensure optimal maternal health
and passive protection of their offspring.
EXISTING VACCINES AND
THEIR EFFICACY

Vaccination is a critical component of beef and dairy cattle
health management. Effective vaccination programs require in-
depth knowledge of the circulating pathogens, their pathogenesis
and immune responses in cattle, selection of the optimal timing
and consideration of host factors such as age, health status,
reproductive status, and external stressors.

Use of modified live-virus vaccines against respiratory
pathogens in cattle upon feedlot arrival has been consistently
recommended; however, emerging data suggest that it might not
be optimal (152). This is because the stress associated with
transportation leads to increased levels of cortisol and other
pro-inflammatory factors that compromise vaccine efficacy.
Thus, it is likely that giving the required vaccines prior to
cattle shipment would be more beneficial; however, studies are
needed to confirm this. Further, while benefits of maternal
vaccination for improved calf health and survival are
established (153–155); the optimal gestational age is not
determined in cattle. Recent studies in pregnant swine
demonstrated that second (but not first or third) trimester
vaccination against porcine epidemic diarrhea virus resulted in
optimal immune responses and health/survival outcomes in sows
and their piglets (156).

Significant efforts were made in the last two decades to
evaluate the efficacy of cattle vaccination against tuberculosis
using human Bacille Calmette-Guérin (BCG, Mycobacterium
bovis) vaccine, and the results have been promising (157–159). A
meta-analysis of the effectiveness of vaccination of cattle with
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commercially available viral vaccines for mitigation of morbidity
and mortality from BRDC has demonstrated variable results
(160). While BHV-1 and BVDV vaccines decreased the risk of
BRDC mortality/morbidity; experimental trials showed no
differences between BRSV and PI3 vaccinated and control
calves in reducing BRDC morbidity or mortality risk (160).

While many licensed vaccines and preventative therapeutic
products for cattle are available (Table 2), there is still
surprisingly limited, but emerging data on the efficiency of the
existing vaccines for cattle in different production environments.
Thus, the majority of vaccines, while showing some efficacy
require further optimization and a better understanding of the
bovine immune response and health status in different ages and
production groups. Further, the optimal timing for vaccination
of pregnant cows is not determined and coverage for some
vaccines remains insufficient. Additionally, oral vaccination
with attenuated pathogens may provide stronger and more
lasting immunity. Finally, detailed examination of molecular
mechanisms utilized by each pathogen (including immune
suppressive mechanisms discussed below) and environmental
factors is essential.
ANTIMICROBIAL AND ANCILLARY
THERAPIES IN CATTLE

In cattle, the treatment of BRD and scours represents one of the
major uses of antimicrobials (173, 174). Because numerous
bacteria are involved into BRD development, its treatment
normally includes an empirical antimicrobial therapy,
including drugs from a wide variety of classes, with penicillins,
tetracyclines, macrolides, and quinolones being most frequently
used (175). While only a small proportion of animals may show
clinical symptoms, treatment is generally applied to the whole
herd contributing to improved pathogen control and animal
survival (176). However, such an (metaphylactic) approach may
result in contamination of the food chain and the environment
with antimicrobial resistance (AMR) factors (bacteria and genes)
(177). Early detection and treatment of diseased animals allows
use of substantially lower doses of antimicrobial drugs, thus
reducing the AMR concerns; however, methods and tools for
reliable early detection have not been developed (177).
Nonetheless in the age of personalized medicine for humans
and pets, it is anticipated that such technologies will be
forthcoming for livestock as well.

Oxytetracycline and sulfachloropyridiazine administered
parenterally and amoxicillin, chlortetracycline, neomycin,
oxytetracycline, streptomycin, sulfachloropyridazine,
sulfamethazine, and tetracycline administered orally have been
approved by the US Food and Drug Administration (FDA) for
the treatment of E. coli enteritis (colibacillosis) but the evidence
of their efficacy is scarce or absent (174). Optimal therapy of
cryptosporidial infection in calves remains to be identified
with current data suggesting that halofuginone, azithromycin,
and lasalocid can be effective (177). The initial observations
of increased incidence of diarrhea, reduced growth and
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malabsorption in healthy calves treated with penicillin,
chloramphenicol, and neomycin (174), combined with
concerns regarding development of antimicrobial resistance,
suggested that use of antimicrobials should be conservative to
minimize potential negative effects on animal or human health
(178). This and the lack of highly efficient vaccines against most
major bovine pathogens has prompted investigations of ancillary
and comprehensive strategies to improve and maintain
cattle health.

Additional treatments directed at minimizing the effects of
pathogens and improvement of non-specific resistance include:
optimal nutrition and micronutrient supplementation
(nutraceuticals, effects are discussed in the respective section),
provision of sufficient amounts of colostrum/milk and feeding it
in small doses for optimal digestion of scouring calves, analgesic
and anti-inflammatory drugs (including meloxicam and
nonsteroidal anti-inflammatory agents) to alleviate intestinal
inflammation, pro- and pre-biotics and passive immune therapies.

It has become increasingly evident that a damaged intestine
needs nutritional, immune and metabolic/growth factors present
in fresh cow’s milk to optimize intestinal repair. Thus,
concurrent supplementation of milk and oral rehydration
therapy (ORT) solutions resulted in improved intestinal
morphology compared to ORT solutions alone (174).

Another emerging approach – aerosol vaccination using BCG
vaccine to stimulate memory-like factors of the innate immune
system (e.g. ‘trained’ non-specific immunity) was recently
evaluated. This immunomodulatory strategy allowed to reduce
disease burden in juvenile calves before their adaptive immune
system has sufficiently matured (179).

Although not currently recommended as anti-infectious
therapies, probiotics can be supplemented (with or without feed)
to animals in an attempt to improve performance or increase
resistance to enteric pathogens (180). The data on probiotic
supplementation in cattle are extremely scarce and somewhat
controversial. Lactic acid bacteria or Lactobacillus rhamnosus GG
supplementation to calves did not decrease C. parvum or all cause
diarrhea prevalence, respectively (181, 182); whereas E. coli Nissle
1917 (for 10-12 after birth) supplementation to calves resulted
in a significant decrease in the number of calves developing
diarrhea (183).

Chicken egg yolk IgY Abs derived from specific-microbe
immunized chickens were efficient in protecting calves
against several pathogens including BCoV, RV, CoV, BRSV,
enterotoxigenic E. coli, salmonella (184–187). Several IgY Ab
products are commercially available for calves. Furthermore, a
blended treatment using pro-, prebiotics and IgY Abs was
successful in reducing all-cause diarrhea in Holstein calves.
Supplementation with a combination of Lactobacillus
acidophilus, Bacillus subtilis, Bifidobacterium thermophilum,
Enterococcus faecium, and Bifidobacterium longum, prebiotics
(RFC-MOS, FOS), charcoal, and dried egg protein from hens
hyperimmunized with K99+ E. coli antigen, S. enterica var.
Typhimurium and Dublin, CoV, and RV resulted in a
decreased incidence of diarrhea during the first 3 weeks of life
of calves (25.0% vs. 51.1% in the control group) (188).
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TABLE 2 | USDA licensed antiviral and antibacterial vaccines and preventative therapeutic products for cattle.

Vaccine/type Licensed producer Effectiveness

Autogenous vaccine, killed virus, autogenous bacterin SolidTech Animal Health Variable (161)
Autogenous vaccine-autogenous bacterin Biomune Company, Cambridge Technologies, Colorado

Serum Company, Elanco US, Hennessy Research
Associates, Huvepharma, Kennebec River Biosciences,
Newport Laboratories, Phibro Animal Health, Texas Vet Lab

BHV-1 live vaccine; H. somnus, M. haemolytica, P. multocida, S. typhimurium bacterin
toxoid

Texas Vet Lab Variable (160)

BHV-1 - live vaccine; L. interrogans (Hardjo-Pomona) bacterin Boehringer Ingelheim Vetmedica
BHV-1 live vaccine; L. interrogans (Pomona) bacterin Diamond Animal Health
BHV-1, BVDV live vaccine; Campylobacter fetus, L. canicola-grippotyphosa-hardjo-
icterohaemorrhagiae-pomona bacterin

Zoetis

BHV-1, BVDV, PIV-3 live vaccine; L. canicola-grippotyphosa-hardjo-icterohaemorrhagiae-
pomona bacterin

Colorado Serum Company, Diamond Animal Health

BHV-1, BVDV, PIV-3, BRSV live vaccine; C. fetus, H. somnus, L. canicola-grippotyphosa-
hardjo-icterohaemorrhagiae-pomona bacterin

Elanco US

BHV-1, BVDV, PIV-3, BRSV live vaccine; C. fetus, L. canicola-grippotyphosa-hardjo-
icterohaemorrhagiae-pomona bacterin

Boehringer Ingelheim Vetmedica, Elanco US, Intervet,
Zoetis

BHV-1, BVDV, PIV-3, BRSV live vaccine; H. somnus bacterin Boehringer Ingelheim Vetmedica
BHV-1, BVDV, PIV-3, BRSV live vaccine; H. somnus, L. canicola-grippotyphosa-hardjo-
icterohaemorrhagiae-pomona bacterin

Boehringer Ingelheim Vetmedica, Elanco US

BHV-1, BVDV, PIV-3, BRSV live vaccine; L. canicola-grippotyphosa-hardjo-
icterohaemorrhagiae-pomona bacterin

Boehringer Ingelheim Vetmedica, Diamond Animal Health,
Elanco US, Intervet, Zoetis

BHV-1, BVDV, PIV-3, BRSV live vaccine; L. canicola-grippotyphosa-hardjo-
icterohaemorrhagiae-pomona-M. haemolytica bacterin

Boehringer Ingelheim Vetmedica, Elanco US

BHV-1, BVDV, PIV-3, BRSV live vaccine; L. hardjo bacterin Zoetis
BHV-1, BVDV, PIV-3, BRSV live vaccine; M. haemolytica bacterin Boehringer Ingelheim Vetmedica, Elanco US
BHV-1, BVDV, PIV-3, BRSV live vaccine; M. haemolytica toxoid Boehringer Ingelheim Vetmedica, Zoetis
BHV-1, BVDV, PIV-3, BRSV live vaccine; M. haemolytica-P. multocida bacterin-toxoid Diamond Animal Health
BHV-1, BVDV, PIV-3, BRSV live vaccine; L. pomona bacterin Diamond Animal Health
BRV, BCoV killed vaccine; C. perfringens type C, E. coli bacterin-toxoid Elanco US, Zoetis Low (162)
BRV, BCoV killed vaccine; C. perfringens type C and D, E. coli bacterin-toxoid Intervet
BRV, BCoV killed vaccine; E. coli bacterin Zoetis
BVDV live vaccine; C. fetus, L. canicola-grippotyphosa-hardjo-icterohaemorrhagiae-
pomona bacterin

Zoetis Effective (163,
164)

BVDV live vaccine; L. canicola-grippotyphosa-hardjo-icterohaemorrhagiae-pomona
bacterin

Zoetis

BVDV live vaccine; M. haemolytica toxoid Zoetis
Trichomonas foetus vaccine, killed protozoa; C. fetus, L. canicola-grippotyphosa-hardjo-
icterohaemorrhagiae-pomona bacterin

Boehringer Ingelheim Vetmedica, Elanco US

C. botulinum type C bacterin-toxoid United Vaccines Variable (165)
C. chauvoei-septicum-haemolyticum-novyi-sordellii-perfringens types C and D bacterin-
toxoid

Boehringer Ingelheim Vetmedica, Intervet, Zoetis Low-moderate
(166)

C. chauvoei-septicum-haemolyticum-novyi-sordellii-perfringens types C and D, H. somnus
bacterin-toxoid

Intervet

C. chauvoei-septicum-haemolyticum-novyi-sordellii-perfringens types C and D, M.
haemolytica bacterin-toxoid

Zoetis

C. chauvoei-septicum-haemolyticum-novyi-sordellii-tetani-perfringens types C and D
bacterin-toxoid

Intervet

C. chauvoei-septicum-haemolyticum-novyi-tetani-perfringens types C and D bacterin-
toxoid

Intervet

C. chauvoei-septicum-novyi bacterin-toxoid Colorado Serum Company
C. chauvoei-septicum-novyi-sordellii bacterin-toxoid Colorado Serum Company
C. chauvoei-septicum-novyi-sordellii-perfringens types C and D bacterin-toxoid Boehringer Ingelheim Vetmedica, Elanco US, Intervet,

Zoetis
C. chauvoei-septicum-novyi-sordellii-perfringens types C and D, H. somnus bacterin-
toxoid

Boehringer Ingelheim Vetmedica, Intervet, Zoetis

C. chauvoei-septicum-novyi-sordellii-perfringens types C and D, M. haemolytica bacterin-
toxoid

Zoetis

C. chauvoei-septicum-novyi-sordellii-perfringens types C and D, Moraxella bovis bacterin-
toxoid

Boehringer Ingelheim Vetmedica, Intervet

C. perfringens type C, E. coli bacterin-toxoid Elanco US, Intervet, Zoetis Effective (167)
C. perfringens types C and D bacterin-toxoid Elanco US, Intervet, Zoetis
C. perfringens types C and D-tetani bacterin-toxoid Intervet

(Continued)
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Additional therapies have included maintenance of low
abomasal pH to reduce numbers of pathogenic bacteria (such
as salmonella), supplementation of short-chain fatty acids
(acetate and propionate) to inhibit growth of pathogenic
bacteria, homeopathic treatments (such as podophyllum or
oregano), use of intestinal ‘protectants’ and ‘absorbants’ (such
as kaolin, activated attapulgite, pectin, and activated charcoal),
administration of agents that decrease intestinal motility,
such as hyoscine N-butylbromide or atropine. However,
clinical efficacy was very limited and needs further evaluation
(174). Similarly, parenteral administration of mycobacterial cell
wall extracts (189) had some efficacy in treatment of calf
diarrhea, but wide-scale confirmatory evaluation studies have
not been conducted.

Thus, there appears to be no broadly applicable therapeutic
treatments (with the exception IgY, ORT and antibiotics) that
could drastically improve health of dairy cattle. The most
practical approach should likely rely on a combination therapy
utilizing passive immune protection, vaccination and
supplemental treatments using probiotics/probiotic products.
CONCLUDING REMARKS

The insufficient basic knowledge of bovine immune function and
the lack of a developed toolbox for immunological studies hinder
our ability to generate and maintain optimal cattle health. This is
especially challenging for newborn dairy calves (due to immune
immaturity) and dairy cows during the transition period (due to
metabolic and immune dysfunction). Further evaluation and
optimization of the existing vaccines in large-scale field trials are
critical. In-depth studies of the influence of various macro- and
Frontiers in Immunology | www.frontiersin.org 13
micronutrients and commensal and probiotic bacteria on bovine
immune function will likely yield novel and urgently needed
interventions to combat infectious diseases and inflammatory
disorders in cattle. The existing evidence suggests that provision
of cow colostrum and milk in sufficient amounts in the first week
of life and optimization of cattle feeding according to the
production stage and group promote immune development
and help to maintain immune function and should be widely
adopted. Additionally, emerging evidence suggest that a second
colostrum feeding soon after the first one may provide
appreciable health benefits. Routine immunizations of calves,
heifers and pregnant cows against vaccine-preventable diseases
and elimination of the pathogens that subvert or compromise the
immune system and are essential strategies that can help to
maintain a healthy herd. Further, conducting additional research
to determine optimal timing for vaccination and application of
novel vaccines and adjuvants (micronutrients, probiotics, etc)
will allow improved vaccines and vaccination protocols (such as
vaccination of recently transported stressed cattle) to achieve
better protection by new or existing vaccines. Finally, a
combination of available ancillary strategies discussed above,
including pro- and prebiotic feeding, IgY Ab supplementation,
controlling abomasal pH and preserving epithelial integrity as
well as minimizing the use of antimicrobials are expected to have
a positive impact on dairy production.
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TABLE 2 | Continued

Vaccine/type Licensed producer Effectiveness

C. tetani-perfringens type D, Corynebacterium pseudotuberculosis bacterin-toxoid Colorado Serum Company
C. pseudotuberculosis bacterin-toxoid Boehringer Ingelheim Vetmedica, Colorado Serum

Company
Effective (168)

E. coli bacterin-toxoid Merial Variable (169)
H. somnus, M. haemolytica, P. multocida bacterin-toxoid Texas Vet Lab Variable
H. somnus, M. haemolytica-P. multocida, S. typhimurium bacterin-toxoid Texas Vet Lab Variable
M. haemolytica bacterial extract-toxoid Elanco US Moderate

(170, 171)M. haemolytica bacterin-toxoid Boehringer Ingelheim Vetmedica, Elanco US, Zoetis
M. haemolytica, P. multocida bacterin-toxoid American Animal Health, Merial
P. multocida bacterial extract-M. haemolytica toxoid Boehringer Ingelheim Vetmedica Effective (171)
S. typhimurium bacterin-toxoid Immvac Low (172)
S. aureus bacterin-toxoid Hygieia Biological Laboratories Variable (169)
C. botulinum type B toxoid Neogen Variable (165)
C. perfringens type A toxoid Elanco US, Intervet Effective (167)
C. perfringens type C toxoid Colorado Serum Company
C. perfringens type D toxoid Colorado Serum Company
C. perfringens type D-tetanus toxoid Colorado Serum Company
C. perfringens types C and D toxoid Boehringer Ingelheim Vetmedica, Colorado Serum

Company
C. perfringens types C and D-tetanus toxoid Boehringer Ingelheim Vetmedica, Colorado Serum

Company
Tetanus toxoid Boehringer Ingelheim Vetmedica, Colorado Serum

Company, Intervet, Zoetis, Merck, Santa Cruz Animal
Health

Effective (167)
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