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Emerging evidence in clinical and preclinical studies indicates that success of
immunotherapies can be impacted by the state of the microbiome. Understanding the
role of the microbiome during immune-targeted interventions could help us understand
heterogeneity of treatment success, predict outcomes, and develop additional strategies
to improve efficacy. In this review, we discuss key studies that reveal reciprocal
interactions between the microbiome, the immune system, and the outcome of immune
interventions. We focus on cancer immune checkpoint inhibitor treatment and vaccination
as two crucial therapeutic areas with strong potential for immunomodulation by the
microbiota. By juxtaposing studies across both therapeutic areas, we highlight three
factors prominently involved in microbial immunomodulation: short-chain fatty acids,
microbe-associate molecular patterns (MAMPs), and inflammatory cytokines. Continued
interrogation of these models and pathways may reveal critical mechanistic synergies
between the microbiome and the immune system, resulting in novel approaches designed
to influence the efficacy of immune-targeted interventions.

Keywords: microbiome, immune checkpoint inhibitors, vaccines, innate immunity, immuno-oncology,
adaptive immunity
INTRODUCTION: THE MICROBIOME AND THE IMMUNE SYSTEM

Humans are colonized by trillions of microbes collectively termed the microbiome, consisting of
bacteria, archaea, viruses, fungi, and protists (1). Together, these interrelated microbial
communities represent a rich source of metabolites and ligands that broadly influence human
biology, including nutrient digestion, tissue homeostasis, neuroendocrine signaling, and the
development and maintenance of the immune system (reviewed in 2–4). It is becoming clear
that the microbiome modulates diverse immune processes, from defense against infection (5–7) to
antibody production (8, 9), and from inflammation (10–12) to autoimmunity and allergy (13–15).
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Immune-microbe interactions also directly regulate homeostasis
and development of immune cells such as antigen-presenting
cells (16–19) and T cells (20–24). Importantly, the microbiome
significantly influences the host response to immune-targeted
interventions (25–31), which harness the immune system to treat
or prevent diseases including infections, allergy, autoimmunity,
inflammatory disorders, and cancer. Two of the most prominent
immune interventions currently employed in the clinic are
cancer immune checkpoint inhibitors and vaccines, which
together are the focus of this review; key cellular players and
interactions involved in immune checkpoint inhibitor-mediated
tumor killing and vaccine-induced immunity are presented in
Figure 1.

In the past decade, immune checkpoint inhibitors (ICIs) have
become an essential pillar of treatment for numerous cancers
(32–34). Currently employed ICIs are monoclonal antibodies
that block specific immune checkpoint receptors (CTLA-4,
PD-1) or ligands (PD-L1) on the surface of lymphocytes or
tumor cells, respectively (32, 34). Normally, immune checkpoint
signaling prevents development of hyperactive immune
responses and thus damage to healthy tissues (32). However,
these checkpoints are exploited by tumor cells to evade
immunosurvei l lance , block anti- tumor cytotoxic T
lymphocytes (CTLs), and induce immunosuppressive
regulatory T cells (Tregs) (35, 36). By blocking immune
checkpoint receptor-ligand interactions, ICIs can restore
endogenous anti-tumor immune responses and disrupt cancer
progression. However, not all individuals respond to ICIs, and
recent evidence suggests the microbiota may play a role in ICI
responsiveness by modulating the immune system, particularly
Frontiers in Immunology | www.frontiersin.org 2
the abundances and functions of NK cells, CTLs, and Tregs
(37–43).

Equally consequential, vaccines have revolutionized our
ability to prevent a myriad of infectious diseases and have had
a long-standing impact on global human health (44, 45). During
vaccination, individuals are exposed to a foreign antigen,
sometimes in the presence of an exogenous adjuvant, to
activate the immune system. Immunization leads to
development of immune memory: molecules and cells that are
able to recognize and eliminate the corresponding pathogen
before infection can be established (46). Protection is often
mediated by humoral production of antigen-specific antibodies
produced by B cells, though cell-mediated protection by T cells is
also important for protection elicited by certain vaccines (47).
Orchestration of vaccine-specific humoral or cell-mediated
immunity requires finely-tuned interactions between antigen-
presenting cells (APCs), B cells, and T cells (48–51). However,
these cellular interactions may be predisposed to particular
responses, which subsequently influence vaccine outcome,
depending on the underlying immune state. This “immune
tone” comprises the cytokine milieu, basal expression of
surface proteins that mediate cell-cell interactions, and antigen
presentation by APCs, all of which can be influenced by the
microbiome (4, 52–54).

In this review, we summarize key findings in the literature
that demonstrate the effect of the microbiome on outcomes of
immune interventions, with a focus on ICI treatment and
vaccination as the most studied examples. We discuss evidence
that immunotherapies can influence the microbiota and that age
plays a role in the effects of the microbiota on the immune
FIGURE 1 | Cellular players and interactions involved in immune checkpoint inhibitor-mediated tumor killing and vaccine-induced immunity. (Top) ICIs stimulate
cytotoxic lymphocytes, Th1 helper T cells, and DCs to kill tumor cells; Tregs inhibit killing. MAMPs produced by bacteria such as B. thetaiotaomicron and B. fragilis
may interact with TLR2 and TLR4 on DCs and stimulate Th1 polarization and synergize with ICI activity. Microbial metabolites such as inosine (produced by B.
pseudolongum) may also contribute to ICI efficacy by stimulating T cell proliferation. (Bottom) Live, inactivated, or molecular vaccination ultimately activates DCs and
helper T cells to yield humoral immunity (B cell antibodies) and cell-mediated immunity (memory T cells). MAMPs, such as flagellin and peptidoglycan, interact with
PRRs to stimulate B cells and Tfh cells, thereby augmenting vaccine response. Microbially produced SCFAs may also stimulate DCs.
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system, as well as discuss the effects of live biotherapeutic
products and prebiotics. We highlight studies that identify
cellular and molecular mechanisms by which the microbiome
modulates the immune system during immune interventions.
Taken together, these studies reveal common microbial and
immune elements across both ICI treatment and vaccination
that have the potential to shape immune responses across diverse
therapeutic spheres.
LINKING THE MICROBIOME AND
RESPONSE TO IMMUNE CHECKPOINT
INHIBITOR TREATMENT

Immune checkpoint inhibitor (ICI) therapy can improve long-
term outcomes in a number of different cancer types, such as
melanoma, non-small cell lung cancer (NSCLC), and urothelial
cancer. However, the majority of patients experience cancer
recurrence or do not respond to treatment (55). A number of
factors that are partially predictive of ICI responsiveness have
been identified (reviewed in 56, 57). Recently, the gut
microbiome, which is known to play a role in the development
and function of the immune system, has also been suggested as a
determinant of ICI efficacy (58–63). As a result, these studies
have sparked interest in the gut microbiome as both a diagnostic
and therapeutic target in the context of cancer immunotherapy.
In the following sections, we review the body of clinical and
preclinical studies that demonstrate a role for the gut
microbiome in ICI responsiveness. We highlight potential
microbial, molecular, and immune mechanisms by which the
microbiome may influence response to ICI treatment, and
discuss whether ICI treatment reciprocally modulates
the microbiome.

Clinical Findings
Given the role of the gut microbiota in the development and
function of the immune system, it is unsurprising that the
microbiome may influence ICI outcome measurements in the
clinic. Several studies demonstrate that improved patient
responses to ICI are associated with a “healthy” gut
microbiome, as measured by higher diversity (61, 64).
Similarly, antibiotic treatment either shortly before or during
ICI therapy has been shown to influence outcomes (65–69).
Conversely, other studies have found little to no impact of
antibiotics on treatment outcome (70). It is likely that these
discrepancies are due in large part to the wide range of antibiotic
classes, cancer types, and treatment regimens captured by these
clinical studies. Thus, additional work is required to validate
these observations and better understand the impact of
antibiotics and microbiome diversity on ICI efficacy.

A number of recent studies have identified unique microbial
signatures that are associated with ICI treatment outcomes
(Table 1). In particular, metastatic melanoma patients that
respond to ICI therapy tend to have high abundances of
Faecalibacterium prausnitzii (59–61, 64), which comprises a
large proportion of the human gut microbiota and is known to
Frontiers in Immunology | www.frontiersin.org 3
influence immune function via production of short-chain fatty
acids (SCFAs) (72–74). In addition to F. prausnitzii, other
bacteria have been associated with ICI responses in melanoma
patients, including Gemmiger formicilis (63), Dorea
formicigenerans (60), and Ruminococcus bromii (61), all within
the order Clostridia, as well as Bacteroides thetaiotaomicron (60),
Holdemania fi l i formis (60), and the Actinobacteria
Bifidobacterium longum and Collinsella aerofaciens (62), which
have been shown to promote CD4+ T helper cell 1 (Th1)
polarization (75). In contrast to these studies in melanoma
patients, a study in a cohort of patients with non-small cell
lung carcinoma, renal cell carcinoma, and urothelial carcinoma
found that ICI treatment outcome was influenced by abundance
of Akkermansia muciniphilia and Enterococcus hirae, suggesting
that beneficial microbial signatures could be cancer specific (58).
It was recently demonstrated that E. hirae harbors a
bacteriophage encoding a MHC class I-binding protein that
induces a CD8+ T cell response and cross-reacts with cancer
antigens (76), which could explain the influence of E. hirae on
ICI treatment. The presence or absence of key microbial taxa
may enable the stratification of patient populations and predict
potential ICI treatment outcomes based on microbiome
composition. Additionally, these findings suggest that the
identification of key bacterial species may facilitate
development of adjunct therapies to improve ICI outcomes,
such as fecal matter transplants (FMT) or probiotics (77–81).
Together, these approaches may accelerate development of
treatment regimens to improve ICI therapeutic outcomes.

Pre-Clinical Findings
The clinical observation that the microbiome can influence ICI
treatment response is generally recapitulated in pre-clinical
studies of microbiome disruption or supplementation with
fecal material, individual microbes, or microbial metabolites
(Table 2). Mice with different microbial communities, obtained
from different vendors, have been shown to respond differently
to ICI treatment (82). Microbiota depletion via administration of
a cocktail of broad-spectrum of antibiotics containing ampicillin,
streptomycin, and colistin reduces the efficacy of anti-PD-1 and
anti-CTLA-4 mAbs, both alone and in combination (58, 83, 85).
Furthermore, this effect was observed in multiple tumor types
and corresponding models including melanoma (RET), renal cell
carcinoma (RENCA), colon cancer (CT26, MC38), and
fibrosarcoma (MCA-205), suggesting that the microbiota may
contribute to treatment responsiveness in a broad array of
cancers (58, 83, 85).

Fecal microbiome transplant (FMT) from patients into mice
has revealed differential effects of microbiota from ICI
responders and non-responders, demonstrating microbiome-
mediated immunomodulation and impact on ICI outcome. For
example, germ-free (GF) or antibiotic-treated mice receiving
responder FMT accumulated Th1-polarized cells in the tumor
microenvironment following ICI treatment (58). Another study
found that GF mice receiving responder FMT had higher
frequencies of CTLs, while those receiving non-responder FMT
had higher frequencies of immunosuppressive Tregs and Th17
cells (61). Similarly, a third study found that that mice receiving
May 2021 | Volume 12 | Article 643255
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responder FMT displayed elevated levels of tumor-specific CTLs,
but not Tregs (62). Together, these studies suggest that the
microbiome from patient ICI-responders elicits anti-tumor
immunity upon FMT, which in turn promote ICI response.
FMT, as a critical research tool, not only demonstrated the direct
modulatory effect of gut microbiome, but also opens the door to
identify key microbes and/or their metabolites that stimulates the
immune response.

Individual microbes have also been identified that promote ICI
response by inducing Th1 polarization. Oral supplementation
with Bacteroides fragilis, B. thetaiotaomicron, or Burkholderia
cepacia restored ICI efficacy in antibiotic treated mice (83). In
particular, B. fragilis potentiated ICI treatment by stimulating a
Th1 response within the tumor-draining lymph nodes (83). This
effect was mediated by stimulation of TLR2 and TLR4, which
recognize microbe-associated molecular patterns (MAMPs),
leading to the maturation of intratumoral dendritic cells (DCs).
In a separate study, oral delivery of A. muciniphila and E. hirae to
antibiotic-treated mice increased the incidence of central memory
CD4+ T cells within the tumor bed, mesenteric lymph nodes, and
draining lymph nodes and also induced production of IL-12 by
DCs, a Th1 cytokine that plays a role in ICI response (58). Another
Frontiers in Immunology | www.frontiersin.org 4
study using mice with low baseline ICI response due to a unique
microbial community found that administration of
Bifidobacterium restored ICI response by stimulating antigen
presentation by DCs and CTL activation (82). Additionally, a
recent study found that Bifidobacterium pseudolongum was
enriched in colon tumors of mice that responded to ICI
treatment, and that colonization of germ-free mice with B.
pseudolongum promoted ICI response (86). The authors found
that this effect was mediated by stimulation of the adenosine A2A

receptor on T cells viamicrobially-produced inosine. Oral delivery
of inosine promoted clearance of colon, bladder, and melanoma
tumor models in combination with anti-CTLA-4 and
CpG treatment.

In addition to inosine, other microbial metabolites have also
been shown to mediate the effect of microbes on ICI outcomes. In
one study, delivery of a consortium of 11 bacterial species isolated
from healthy human fecal material improved ICI response and
induced a robust expansion of IFN-g producing CTLs (84).
However, administration of the heat-killed consortium failed to
recapitulate the effects, suggesting that active colonization is
required. The authors found that mice receiving the live
consortium displayed increased levels of mevalonate and
TABLE 1 | Gut microbial composition is associated with the efficacy of immune checkpoint inhibitor therapy in patients.

Cancer Type (number of patients) Immune checkpoint
inhibitor

Identified factor Key associations Reference

Metastatic non-small-cell lung carcinoma (74) anti-PD-1 Antibiotic prescription (within 3 months prior) No association with
progression-free survival

70

Metastatic renal cell (121) and non-small-cell
lung (239) carcinomas

anti-PD-L1 Antibiotic usage (within 30 days prior) Reduced ICI responsea 65

Metastatic renal cell (67), non-small-cell lung
(140), and urothelial carcinoma (42)

anti-PD-1 or anti-PD-
L1
anti-PD-1 or anti-PD-
L1

Bacteria: Akkermansia muciniphilia Enhanced ICI responsea 58

Metastatic melanoma (26) anti-CTLA-4 Bacteria: Faecalibacterium spp. and Firmicutes Longer progression-free
survival

59

Metastatic melanoma (39) anti-CTLA-4 Bacteria: Faecalibacterium prausnitzii, Bacteroides
thetaioamicron, Holdemania filiformis

Enhanced ICI responsea 60

anti-PD-1 Bacteria: Dorea formicigenerans Enhanced ICI responsea

anti-CTLA-4 or anti-
PD-1

Xenobiotic: anacardic acid Enhanced ICI responsea

Metastatic melanoma (43) anti-PD-1 Bacteria: Faecalibacterium prausnitzii;
Ruminococcus bromii; microbial diversity baseline

Enhanced ICI responsea 61

Metastatic melanoma (42) anti-PD-1; anti-CTLA-4 Bacteria: Bifidobacterium longum; Collinsella
aerofaciens; Enterococcus faecium

Enhanced ICI responsea 62

Metastatic melanoma (27) anti-PD-1; anti-CTLA-4 Bacteria: Microbial community richness Longer progression-free
survival

64

Metastatic non-small-cell lung carcinoma
(142)

anti-PD-1; anti-PD-L1 Antibiotic treatment (concomitant) Shorter progression-free
survival and overall survival

67

Metastatic renal cell carcinoma (69) anti-PD-1 Antibiotic usage (within 2 months prior) Shorter progression-free
survival

66

Metastatic melanoma (568) anti-PD-1; anti-CTLA-4 Antibiotic usage (within 3 months prior) Shorter overall survival 68
Metastatic non-small-cell lung carcinoma
(2208)

anti-PD-1; anti-CTLA-4 Antibiotic usage (within 3 months prior or
concomitant)

Shorter median overall
survival

69

Metastatic melanoma (50) anti-CTLA-4 Bacteria: Faecalibacterium spp.; Gemminger spp Longer progression-free
survival

63

Metabolite: fecal SCFA butyrate Shorter progression-free
survival

Metastatic non-small cell lung carcinoma anti-PD1; anti-PD-1 Bacterial delivery: Clostridium butyricus Longer progression-free
survival

71
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dimethylglycine in both cecal contents and sera, which may
increase CTL activation or expansion (87, 88). Interestingly, the
effect of the consortium was independent of a number of key
innate signaling pathways, but loss of CD103+ DCs or MHC class
Ia was sufficient to abrogate expansion of CTLs, suggesting that
the consortiummay interact with tissue-resident DCs in an MHC
class Ia-dependent manner to promote ICI response (84).

Elevated levels of microbiota-derived short-chain fatty acids,
which are known to induce anti-inflammatory Tregs (40), have
also been associated with reduced survival in ICI treatment (63).
DCs isolated from butyrate-supplemented mice receiving ICI
therapy displayed reduced surface expression of costimulatory
molecules on APCs, suggesting that SCFAs may interfere with
ICI therapy by inhibiting DC maturation within the tumor-
draining lymph nodes (63). Another study found that antibiotics
reduced the efficacy of ICI therapy in mice and decreased plasma
levels of microbiota-derived metabolites known to be involved in
glycerophospholipid metabolism and glycosylphosphatidylinositol
(GPI)-anchor biosynthesis (85). The authors also observed
reduced levels of the inflammatory cytokines IL-2 and IFN-g
within the tumor microenvironment, leading to the hypothesis
that impaired glycerophospholipid metabolism by the microbiota
could dampen anticancer immune responses by muting
production of proinflammatory cytokines.

Thus far, multiple studies have implicated the microbiome in
modulating response to ICI treatment. Clinically, several studies
have suggested that the overall diversity of the microbiome is a
key determinant of ICI responsiveness (61, 89). However, other
studies have identified unique microbial signatures of responders
and non-responders, suggesting that the presence or absence of
key taxa may be more predictive of response (58–61, 64, 66, 83).
Frontiers in Immunology | www.frontiersin.org 5
Several bacteria identified in ICI responders have been shown to
promote ICI efficacy in preclinical studies, indicating that
supplementation with these strains could improve outcomes for
patients undergoing ICI treatment. Recent molecular and cellular
investigations have implicated several pathways by which the
microbiota influence ICI treatment outcome, including SCFAs
(63), inflammatory cytokines (58, 85), antigen presentation cell
function (63, 82–84), and T cell polarization (58, 61, 83).

In addition to the established role of the gut microbiome in
regulating immune function, there is also a growing body of
evidence that bacteria present within the tumor micro
environment (collectively termed the tumor microbiome) may
also impact anti-cancer responses. For example, F. nucleatum is
known to form biofilm-like structures within tumor spheroids in
vitro and has been shown to directly inhibit NK cells via
engaging TIGIT (90–92). Furthermore, a recent analysis of
human tumors found that different tumor types displayed
unique microbial signatures and that responders to ICI had
tumors containing elevated abundances of Clostridia (93).
However, it is unclear what role the tumor microbiome plays
as a determinant of ICI efficacy. Further investigations of the
roles of these microbial communities and their impact on
immune function may facilitate target-specific therapeutic
approaches to promote ICI response in patients.

Influence of Immune Checkpoint Inhibitors
on the Microbiome
Immunomodulatory agents have been shown to change
microbial composition, likely by modulating immune-mediated
control of the microbiota (27, 94–98). Thus, an open question is
whether cancer ICIs influence the microbial community.
TABLE 2 | Impact of gut microbiome on immune checkpoint inhibitor therapy: selected preclinical studies.

Tumor Cell
Model (Cancer
Type)a

Treatment Immune
checkpoint
inhibitor

Key findings Reference

B16.SIY (M) Comparison of mice from different vendors
and different microbial communities

anti-PD-L1 Differential tumor growth in mice from different vendors;
Bifidobacterium promotes antitumor immunity and anti-PD-L1
efficacy

82

MCA-205 (FS)
RET (M)
MC38 (CRC)

Antibiotic cocktail: ampicillin, streptomycin,
& colistin

anti-CTLA-4 Bacteroides fragilis promotes anti-CTLA-4 efficacy via TL2/TLR4
host signaling

83

RET (M)
RENCA (RCC)
MCA-205 (FS)

Antibiotic cocktail: ampicillin, streptomycin,
& colistin

anti-PD-1 ±
anti-CTLA-4

Antibiotic exposure decreased ICI efficacy; oral supplementation
with Akkermansia muciniphila restored the efficacy of ICI

58

MC38 (CRC)
BrafV600EPten−/−

(mouse-derived
melanoma)

Colonization with a consortium of 11 fecal
strains

anti-PD-1 ±
anti-CTLA-4

Colonization with an 11-strain consortium induces IFN-g producing
CD8+ T cells and increases ICI efficacy

84

CT26 (CRC) Antibiotic: ampicillin, streptomycin, & colistin
(cocktail); vancomycin; colistin

anti-PD-1 Antibiotics decreased efficacy of anti-PD-1 therapy and altered
glycerophosphlipid metabolism

85

MC38 (CRC)
CT26 (CRC)

Prebiotic supplementation: butyrate anti-CTLA-4 SCFA butyrate supplementation reduces efficacy of anti-CTLA-4 63

MC38 (CRC)
MB49 (RCC)
B16-F10 (M)
Genetic CRC
(Msh2)

Colonization with Bifidobacterium
pseudolongum; delivery of inosine and
microbial ligands

anti-CTLA-4 Microbial-derived inosine activates anti-tumor T cell via the
adenosine A2A receptor in combination with T cell costimulation by
MAMPs

86
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Emerging evidence suggests that ICIs targeting different immune
checkpoint proteins may differentially impact the microbiome
depending on their propensity to cause gastrointestinal
adverse events such as diarrhea or colitis. However, the
immune-microbe interactions that mediate these distinct
effects are largely unknown.

Anti-PD-1/PD-L1 drugs appear to have minimal impact on the
gut microbiome, in line with a lower incidence of gastrointestinal
adverse events compared to other immunotherapy drugs (99). A
recent study examining the gut microbiota of melanoma patients
receiving anti-PD-1 therapy found no significant differences in
microbial diversity or composition (61). Similarly, anti-PD-1
therapy for either renal cell carcinoma or non-small cell lung
cancer had no impact on microbiome diversity or gene content
after one month treatment, despite of elevation after two months
(58). In contrast, anti-CTLA-4 treatment, which is known to be
associated with elevated incidence of gastrointestinal adverse events,
has been found to increase the abundance of Bacteroides genus in
mice and a cohort of metastatic melanoma patients (83). Another
study also found that anti-CTLA-4 treatment was associated with a
reduction of multiple Firmicute species and an enrichment of
Bacteroides, but only in patients were experiencing acute
immune-related colitis (59). Lastly, combinatorial therapy with
anti-PD-1 and anti-CTLA-4 has been shown to induce limited
changes in the gut microbiome (60). However, the changes observed
(an increase in Bacteroides stercoris and a reduction in Clostridium
boltae) are largely consistent with those seen in other studies
examining anti-CTLA-4 alone (59, 60, 83).

Based on these findings, it appears that major changes to the
microbial community after ICI treatment are likely the
secondary result of immune-related colitis, and it is unlikely
that ICIs have a direct impact on microbiome composition. As a
result, regimens targeting CTLA-4 are more likely to induce
microbiome shifts than those targeting PD-1 due to their greater
incidence of gastrointestinal adverse events. However, there are a
number of limitations to the existing studies that make it difficult
to draw definitive conclusions. Several of the studies have very
small sample sizes (n <10), making it challenging to detect
potentially small changes in microbial composition.
Additionally, these studies differ considerably in methodology
of microbiome sequencing and analysis, which limits our
capacity to compare microbial signatures across cohorts.
Further complicating comparisons between studies are
considerable differences between treatment regimens, ICI
dosages, and cancer types. Therefore, these limitations
highlight a need for additional well-controlled and thorough
studies to understand the impact of ICIs on the gut microbiome
and whether ICI-induced microbiome changes subsequently
influence ICI treatment outcomes.

Microbial Manipulation During
ICI Treatment
Clinical and preclinical efforts suggest a link between the state of
the microbiome and ICI treatment outcomes. As described
above, preclinical studies in mice have found that fecal
microbiota transplant, delivery of single or consortia of
Frontiers in Immunology | www.frontiersin.org 6
microbes, or supplementation with microbial molecules can
modulate ICI treatment outcomes. Whether microbiome
manipulation improves ICI treatment outcomes in clinical
patients is a crucial question for ongoing and future studies. In
one study, fecal matter transplants (FMT) from donors that have
achieved a complete response with anti-PD-1 therapy were
shown to improve responsiveness to ICI in some metastatic
melanoma patients (100). Additionally, FMT recipients were
found to have increased expression of genes involved in the
presentation of peptides on MHC-I molecules in APCs along
with elevated IL-1-mediated signaling, suggesting a mechanistic
link between FMT and improved ICI responsiveness in a clinical
setting (100). Another recent study found that supplementation
with the probiotic Clostridium butyricum prior to or during ICI
therapy improved patient outcomes (71). Although C. butyricum
was selectively given to patients based on symptoms of
gastrointestinal upset, the effect was observed in patients with
or without prior antibiotic treatment. This result suggests that
promoting a normobiotic microbiome could not only relieve
gastrointestinal side effects of ICI treatment as has been
described (101), but may also feedback to enhance ICI
treatment outcomes (102).
LINKING THE MICROBIOME AND
RESPONSE TO VACCINES

Vaccination confers protection against pathogens. However, the
response to vaccination varies widely across individuals, which
could greatly compromise individual and community protection
(reviewed in 103, 104). Several factors that contribute to vaccine
non-responsiveness in humans have been identified, including
genetics (105, 106), advanced age (reviewed in 107–109),
smoking (110), and comorbidities such as infection (111–113),
obesity (114), malnutrition (115), kidney disease (116), and
autoimmune disorders or allergy (117, 118).

Recently, clinical and preclinical studies have suggested
microbial modulation of the immune system is directly
responsible for the effects of the microbiome on vaccine
response (summarized in Table 3). It is also possible the
microbiome is the mediator of other factors associated with
vaccine nonresponse, for example obesity or celiac disease, which
are known to induce changes in the microbiome (147, 148).
Thus, manipulation of the microbiota or direct targeting of
microbially-regulated immune pathways could represent
attractive strategies for promoting vaccine response in the
broad healthy population or specific sub-populations with
characteristically poor response (4, 147, 149–153).

In the following sections, we review key clinical and
preclinical studies that link the microbiota and vaccine
outcome, and we highlight putative immunomodulatory
mechanisms by which the microbiome may influence vaccine
responsiveness. We also discuss how the connections between
the microbiome and vaccine response evolve over the course of a
lifetime, and describe current approaches to harness the
microbiota to promote vaccine response.
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TABLE 3 | Summary of preclinical studies linking microbiome and vaccine outcome.

Vaccine (routea) Model/Treatment Key Findings Reference

Studies in Germ-Free Models
Bovine gamma-globulin (SC) Germ-free mice Reduced serum IgG antibody response 119
E coli O antigen (PO) Germ-free pigs Reduced IgA-positive cells in lamina propria 120
Sheep red blood cells (IP);
Bovine serum albumin (IP)

Germ-free mice Reduced serum IgG antibody response 121

Heat-inactivated E. coli (PO) Germ-free chickens Reduced intestinal and serum antibody (IgG,
IgA) production

122

Sheep red blood cells (SC) Germ-free mice Reduced delayed-type hypersensitivity
response; microbiota restoration restored
response

123

Live attenuated Bacille Calmette–Guerin (IV) Germ-free mice Enhanced resistance to Mycobacterium
tuberculosis challenge after immunization

124

Ovalbumin + complete Freund’s adjuvant (SC) Germ-free mice Reduced ova-specific antibody response 125
Trivalent inactivated influenza (SC) Germ-free mice Reduced antigen-specific serum IgG 126
Attenuated human rotavirus (PO) Germ-free mice Enhanced antigen-specific antibody response 127
Human serum albumin + cholera toxin (PO or IN) Germ-free mice Reduced ova-specific plasma IgG 128
Human serum albumin + cholera toxin (PO) Germ-free mice Reduced ova-specific plasma IgG 129
Studies of Antibiotic Treatment
Tetanus toxoid + alum (SC)
Pneumococcal polysaccharides (SC)
Hepatitis B surface antigen + alum (IP)
Live-attenuated S. typhi Ty21A (IP)

Antibiotics in mice: Clarithromycin or
doxycycline (4 weeks)

Reduced vaccine-specific serum IgM antibody
levels

130

Ovalbumin + complete Freund’s adjuvant (SC) Antibiotic cocktail in mice: clindamycin,
ampicillin, & streptomycin (maternal 5 days)

Reduced ova-specific antibody response in
pups from antibiotic-treated dams

125

Live attenuated human rotavirus (PO) Antibiotic cocktail in mice: Ampicillin &
Neomycin (2 weeks)

Enhanced antigen-specific antibody response 127

Trivalent inactivated influenza (SC)b Antibiotics in mice (4 weeks): cocktail of
neomycin, ampicillin, Vancomycin, &
metronidazole; vancomycin; polymixin B

Reduced antigen-specific serum IgG 126

Tetanus toxoid + diphtheria toxoid + acellular pertussis
antigens + alum (SC)
HIV-gp140 + alum (SC)
Live attenuated yellow fever YF-17D (SC)

Antibiotics in mice (4 weeks): cocktail of
neomycin, ampicillin, Vancomycin, &
metronidazole

No effect on antigen-specific IgG 126

Human serum albumin + cholera toxin (PO; IN) Antibiotic cocktail in mice: ampicillin,
vancomycin, metronidazole, neomycin (3-4
weeks)

Reduced ova-specific plasma IgG 128

Live attenuated Bacille Calmette-Guerin (SC)
Pneumococcal polysaccharide-diphtheria toxoid
conjugate + alum (IP)
Meningococcal B surface proteins + outer membrane
vesicles (IP)
Meningococcal C polysaccharide-tetanus toxoid
conjugate + alum (IP)
Diphtheria toxoid + tetanus toxoid + pertussis toxoid +
pertussis proteins + hepatitis B surface antigen +
inactivated polioviruses + Haemophilus influenzae type b-
polysaccharide + alum (IP)
Trivalent inactivated influenza (SC)b

Antibiotic cocktail in mice: Ampicillin &
neomycin (maternal 2-5 weeks)

Reduced vaccine-specific IgG titer 131

Live attenuated Bacille Calmette-Guerin (SC)
Pneumococcal polysaccharide-diphtheria toxoid
conjugate + alum (IP)

Antibiotic cocktail in mice: ampicillin &
neomycin (3 weeks)

No effect on vaccine-specific IgG titer 131

Ovalbumin + cholera toxin (PO) Antibiotic cocktail in mice: Metronidazole,
vancomycin, ampicillin, kanamycin (10 days)

Reduced ova-specific fecal IgA and serum IgG 132

Rabies vaccine iLBNSE (IM) Antibiotic cocktail in mice: metronidazole,
vancomycin, ampicillin, neomycin (4 weeks)

Reduced rabies-specific IgG, IgM, neutralizing
antibodies; reduced Tfh cells, germinal center B
cells, memory response

133

Studies of Prebiotic Supplementation
Trivalent inactivated influenza (SC) Prebiotic cocktail in mice: galacto- and

fructo-oligosaccharides
Enhanced delayed-type hypersensitivity
response; increased levels of Bifidobacteria and
Lactobacilli

134

Trivalent inactivated influenza (SC) Prebiotic cocktail in mice: fructo-
oligosaccharides and inulin

No effect on delayed-type hypersensitivity
response; increased levels of Bifidobacteria and
Lactobacilli

134

(Continued)
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TABLE 3 | Continued

Vaccine (routea) Model/Treatment Key Findings Reference

Live attenuated Salmonella typhimurium (oral) Prebiotic cocktail in mice: fructo-
oligosaccharides and inulin

Enhanced antigen-specific antibody titer,
inflammatory cytokines, and survival after
pathogen challenge

135

Trivalent inactivated influenza (SC) Prebiotic cocktail in mice: Galacto- and
fructo-oligosaccharides

Enhanced delayed-type hypersensitivity
response; increased levels of Bifidobacteria and
Lactobacilli

136

Ovalbumin + cholera toxin (oral) Prebiotic cocktail: acetate and butyrate Enhanced vaccine response and production of
B-cell-activating factors in dendritic cells; effect
was dependent on SCFA-receptor GPR43

132

Trivalent inactivated influenza (SC) Prebiotic cocktail in mice: Galacto- and
fructo-oligosaccharides 2’FL

Enhanced antigen-specific antibody titer and IL-
6 production in male mice, increased levels of
Actinobacteria

137

Cholera toxin + ovalbumin (oral) Prebiotic cocktail: spirulina, amaranth,
flaxseed, micronutrients

Enhanced antigen-specific antibody titer and
germinal B cell frequency in mesenteric lymph
nodes; effect was dependent on presence of
particular microbes

138

Studies of Microbial Delivery
Ovalbumin + complete Freund’s adjuvant (SC) Conventionalization of germ-free mice Enhanced ova-specific antibody response 125
Live attenuated human rotavirus (PO) Probiotic in gnotobiotic neonatal pigs:

Lactobacillus acidophilus
Modulated balance of antigen-specific Th1 cells
and Tregs in a dose-specific manner

139

Live attenuated human rotavirus (PO) Probiotic cocktail in gnotobiotic neonatal
pigs: Lactobacillus rhamnosus GG and
Bifidobacterium animalis lactis Bb12

Enhanced antigen-specific Th1 response and
protection from rotavirus challenge

140

Live attenuated human rotavirus (PO) Probiotic cocktail in gnotobiotic neonatal
pigs: Lactobacillus rhamnosus GG and
Bifidobacterium animalis lactis Bb12

Enhanced intestinal antigen-specific antibody
titers, cell responses, and protection from
rotavirus challenge

141

Live attenuated human rotavirus (PO) Probiotic in neonatal gnotobiotic pigs pre-
colonized with human fecal material:
Lactobacillus rhamnosus GG

No effect on protection from rotavirus
challenge; modulated production of antigen-
specific Th1 cells in a dose- and colonization-
dependent manner

142

Trivalent inactivated influenza (SC) Single strain in germ-free mice: flagellated or
aflagellated E. coli
Conventionalization of germ-free mice

Enhanced antigen-specific antibody response
after conventionalization or colonization with
flagellated, but not aflagellated, bacteria
MAMP flagellin functions as an
endogenous adjuvant

126

Live attenuated Mycobacterium tuberculosis Ad85A (IM) Pathobiont in mice: Helicobacter hepaticus
colonization

Reduced protection from Mycobacterium
tuberculosis
IL10 production reduces vaccine response

143

Live attenuated yellow fever virus YFV-17D (SC) Pathobiont in mice: MHV86, MCMV,
influenza WSN, & Heligmosomoides
polygyrus

Reduced pre-immunization production of
inflammatory cytokines correlates with
reduced anti-YFV antibody response

144

Pneumococcal polysaccharide-diphtheria toxoid
conjugate + alum (IP)

FMT in antibiotic-treated mice: fecal material
from untreated mice

Enhanced vaccine-specific antibody titer 131

Keyhole limpet hemocyanin + alum (SC); NP conjugated
to cholera toxin (PO)

Co-housing of aged mice with young mice
FMT in aged mice: fecal material from young
mice

No effect on antibody responses; improved
germinal center reactions independent of
vaccination

145

Cholera toxin + ovalbumin (PO) FMT in germ-free mice: fecal material from
undernourished children
Co-housing of mice that received different
FMT
Consortium of five fecal strains: Bacteroides
acidifaciens, Bacteroides fragilis,
Clostridioides difficile, Costridium innocuum,
Fusobacterium mortiferum

Specific microbes mediate the pro-vaccine
effects of prebiotics

138

Studies in Genetically Engineered Host Models
Trivalent influenza (SC)b

Inactivated poliovirus (SC)
TLR5−/− mice Reduced antigen-specific serum IgG for

nonadjuvanted vaccines
TLR5 mediates endogenous adjuvant
response to vaccine

126

Live attenuated yellow fever YF-17D (SC)
Hepatitis B sAg + alum (SC)

TLR5−/− mice No effect on antigen-specific serum IgG 126

(Continued)
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Clinical Findings
Within the last two decades, observational clinical studies have
revealed associations between microbiome community
composition and host vaccine responses (recently reviewed in
152, 153). One common observation is that decreased vaccine
response occurs in individuals with a disruptedmicrobiota (1). For
example, several studies suggest that a normobiotic infant gut
microbiome, replete with Bifidobacterium, promotes vaccine
response, whereas a more dysbiotic microbiome harboring
excess Proteobacteria interferes with vaccination outcome (154–
159). Other studies have correspondingly shown that healthy
human fecal material transplanted into neonatal gnotobiotic pigs
or mice promotes strong responses to vaccines, while
transplantation of dysbiotic human samples (harvested from
individuals with intestinal enteropathy) dampens immune
responses after vaccination (138, 160). Given the important role
of the microbiota to educate the immune system during early
development (161), it is possible that the dysbiotic infant
microbiome could lead to immune deficiencies and reduced
vaccine response. However, reducing the frequency of bacterial
enteropathogens with azithromycin treatment prior to vaccination
did not improve poliovirus vaccine response (162), suggesting that
microbial dysbiosis may interfere with vaccine response via
complex community changes or long-lasting immune effects.

Specific immunomodulatory bacteria have also been
associated with vaccine response. In infants, two parallel studies
found that a poor response to rotavirus vaccine was associated
with increased Bacteroides and Prevotella spp., whereas a strong
response was associated with higher levels of Proteobacteria and
Firmicutes, particularly Streptococcus bovis (163, 164). Two
additional studies have found that responders tend to have
higher levels of Proteobacteria, though these observations were
not statistically significant (165, 166). Nonetheless, a clinical study
in adults found that vancomycin treatment, which recreates a
similar microbial community comprising decreased Bacteroides
and increased Proteobacteria, temporarily increased antibody
levels in response to rotavirus (167). The authors speculate that
in responders, highly immunostimulatory ligands such as LPS,
Frontiers in Immunology | www.frontiersin.org 9
peptidoglycan, or flagellin could promote viral infection or act as
endogenous adjuvants to promote vaccine response.

Other immunomodulatory bacteria have been identified in
studies of vaccine response in adults. A study with oral typhoid
vaccine found that the gut abundance of the Firmicutes
Lachnospiraceae and Ruminococcaceae was associated with
early cell-mediated response to antigen after vaccination (168).
Presence of the Firmicutes Lactobacillus and Streptococcus, as
well the Bacteroidetes Bacteroides and Prevotella, in the nasal
microbiome were associated with positive response to a nasal
influenza vaccine (169). Furthermore, a recent meta-study
analysis associated Actinobacteria and Firmicutes with positive
vaccine responses, whereas Proteobacteria and Bacteroidetes
were associated with poor vaccine outcomes (170). Though
differences in study design, vaccine strategy, patient age, as
well as other confounding variables complicates the
interpretation of cross-study microbial associations, published
studies together point toward an association of Firmicutes with
successful vaccine outcome.

Interventional clinical studies including extensive immune
characterization may facilitate more mechanistic explorations of
the role of the microbiome during vaccination. A recent study in
humans found that disruption of the microbiota by antibiotic
treatment decreased response to influenza vaccination,
specifically in individuals with low pre-existing immunity
(171). Characterization of the metagenome and immune tone
after antibiotic treatment implicated microbial bile acid
metabolism, inflammasome signaling, and the underlying
inflammatory state as key players that are influenced by the
microbiota in the context of vaccination. We anticipate that
similar investigational clinical studies may reveal crucial
microbial and immune mechanisms that interact to either
increase or decrease vaccine response in humans.

Pre-Clinical Findings
Since the 1960s, germ-free mouse, chicken, and pig models have
demonstrated that the microbiome influences vaccine response
(119–124). More recently, microbiota disruption via antibiotic
TABLE 3 | Continued

Vaccine (routea) Model/Treatment Key Findings Reference

Human serum albumin + cholera toxin (PO; IN) Nod2−/− mice
Nod2-DC(CD11c) specific deletion

Reduced ova-specific plasma IgG
Nod2 in DCs mediates adjuvant activity of
cholera toxin

128

Human serum albumin + cholera toxin (PO; IN) Myd88−/−; Ripk2−/−; Nod1−/− No effect on ova-specific plasma IgG 128
Lactobacillus acidophilus vaccine strain expressing HIV
proteins (PO)

Nod2−/− mice Reduced antigen-specific IgG and IgA
Nod2 mediates response to vaccine strain

146

Trivalent influenza (SC)b TLR5−/− mice No effect on antigen-specific serum IgG 131
Human serum albumin + cholera toxin (PO) Nod2−/− mice

IL1b−/− mice
Reduced ova-specific plasma IgG
IL-1b production via Nod2 is required for
cholera toxin adjuvanticity

129

Ovalbumin + cholera toxin (PO) GPR43−/− mice Reduced ova-specific fecal IgA and serum IgG;
reduced pro-vaccine effect of SCFA
prebiotics
GPR43 mediates pro-vaccine effect of
SCFAs

132
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treatment in mice has corroborated these early observations
(125–127, 130, 131, 133). Multiple antibiotics from different
classes and with different breadths of activity have been shown
to decrease vaccine response (Table 3). This observation suggests
that diverse species may play a role in vaccine response. It also
appears that the microbiome influences response to multiple
classes of vaccines, including live, inactivated, and molecular
vaccines (Table 3). Nearly all studies employing molecular or
inactivated vaccines have found that microbiome disruption
decreases response; in contrast, studies of live vaccines have
found the microbiome can either promote, reduce, or have no
effect on response (124, 126, 127, 130). These differences raise the
possibility that complex interactions between the microbiome
and the immune system may influence the ability of a live
vaccine to colonize the host (colonization resistance), and thus
have clear implications for considering the impact of the
microbiome during development of live-attenuated (155, 168,
169) and viral- or bacterial-vectored vaccines (172, 173) and
could also influence cellular transfection by mRNA-
based vaccines.

Notably, several studies have identified specific microbial
products or host factors that mediate the effects of the
microbiome on vaccine response. Broadly expressed microbe-
associated molecular patterns (MAMPs) may mediate key effects
of the microbiota on vaccine response. Indeed, a recent study
demonstrated that signaling by the pattern recognition receptor
(PRR) TLR5, stimulated by the MAMP flagellin, is important for
vaccine adjuvanticity (126). Depletion of the microbiota
compromised parenteral vaccine response, and this defect
could be reversed by colonization with flagellated bacteria but
not by colonization with an aflagellated isogenic strain. Further,
loss of TLR5 specifically in B cells compromised response to
several unadjuvanted vaccines but did not affect response to
adjuvanted vaccines. Since deletion of TLR5 did not alter
baseline plasma cell phenotypes (126), the authors
hypothesized that gut-derived flagellin spreads systemically and
functions as an endogenous adjuvant at the site of immunization
(174). However, another group was unable to reproduce the
requirement for TLR5 for vaccine response (131), suggesting that
differences in the baseline microbial community likely dictate the
mechanisms by which the microbiome affects vaccine response.
Nonetheless, the data suggest that particular microbial
communities may function as an endogenous adjuvant, or that
steady-state intestinal MAMP-PRR signaling can alter the
systemic immunophenotype and alter response upon
subsequent vaccination.

Indeed, altered homeostatic cytokine production in response to
microbes has been implicated in vaccine response and protection
from infection. One study found that induction of the
immunosuppressive cytokine IL-10 by oral introduction of
Helicobacter hepaticus (Hh) into immunocompetent mice
disrupted response to intramuscular vaccination with live-
attenuated Mycobacterium tuberculosis (143). The authors found
that, compared to animals with a normal microbiota, Hh-colonized
animals exhibited lower antigen-specific cell-mediated responses
and higher infection when nasally challenged with M. tuberculosis.
Frontiers in Immunology | www.frontiersin.org 10
Infusion of IL-10-receptor-blocking antibodies restored vaccine
response in Hh-colonized animals, demonstrating that the effect
was mediated by increased IL-10 signaling. However, Hh
colonization had no effect on IL-10 expression or Treg
abundances in the lung but did increase IL-10 expression in the
intestines, suggesting that intestinal IL-10 and other intermediate
factors likely influence systemic immunity. Whether the effects of
Hh on intestinal IL-10 production are direct as observed forHh and
T cells (175), or are due to Hh-mediated microbiome disruption
(176) remains unknown. A second study also found that
colonization of mice with viruses and a helminth disrupted
response to vaccination with live-attenuated yellow fever virus,
and observed that at the time of vaccination, colonized animals
displayed altered expression of several inflammatory cytokines
which could compromise vaccine response (144). Thus,
microbially-induced changes in the steady-state cytokine milieu
likely affect subsequent systemic immunity to vaccines.

Other studies suggest the microbiota are required to supply
immune receptor ligands for the activity of mucosal adjuvants.
Two independent groups have employed immunization with
albumin and cholera toxin (CTx) to demonstrate that germ-free
or antibiotic-treated mice have decreased antibody responses,
which are rescued by supplementation with microbial molecules
(128, 129, 132). Both groups demonstrated that CTx potentiates
immune receptor signaling, which require the presence of
microbial molecules for full signaling activation in response to
CTx. One study found that microbial peptidoglycan signaled
through NOD2 during vaccination with CTx, leading to
increased IL-1b production and generation of T-follicular
helper cells and plasma cells (128, 129). A second group found
that microbe-derived short-chain fatty acids (SCFAs) synergized
with CT to promote vaccine response, by driving DC-mediated
production of B cell activators BAFF and retinoic acid (132).
Notably, the authors also found that SCFAs increased vaccine
response even in the absence of CTx through the same immune
pathway, demonstrating that SCFAs can independently promote
pro-vaccine immune tone, in addition to mediating the adjuvant
effect of CTx. It is important to note that the two groups
employed different antibiotic cocktails, which likely
differentially affect the microbiome, which may account for the
distinct mechanisms identified.

Taken together, these preclinical studies reveal several
possible mechanisms by which the microbiota can promote
immune response in the context of vaccine response: as an
endogenous adjuvant, as ligands for immune receptors that are
potentiated by exogenous adjuvants, and as regulators of systemic
immune tone. Germ-free and antibiotic-treated mice represent
crucial models to parse the mechanisms by which the microbiome
affects vaccine response. Another relevant model for future studies
is “dirty” mice, which receive microbes from pet store mice via
cohousing or bedding transfer, and may prove a valuable system
for understanding vaccine response (177). Given that there are
multiple mechanisms by which the microbiome can affect vaccine
response and that these effects can vary across different vaccines,
additional preclinical studies are critically important to define the
microbes and immune pathways involved.
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The Microbiome Modulates Vaccine
Response in Infants and in the Elderly
Though infants and the elderly are profoundly at risk for severe
infection, these populations also consistently fail to respond to
vaccines (reviewed in 178–180). Lack of vaccine response can be
attributed to maternal antibody interference (reviewed in 181, 182),
early life immune immaturity (183–185), and immunosenescence in
the elderly (186–192). However, emerging evidence suggests that
microbiotamay also influence vaccine response at the extremes of life,
likely by modulating immune development and senescence (153).

The microbiome plays a key role in the proper maturation of the
immune system (reviewed in 161), which is necessary for optimal
vaccine response. Alterations in the neonatal microbiome are
associated with defects in vaccine response in clinical studies (154,
163, 164) and in preclinical studies (125, 131). Although the
mechanisms influencing vaccine response in neonates have not
been clearly defined, related studies suggest that early-life microbial
stimulation could promote vaccine response indirectly by
modulating immune development and function (193–195), or
directly by regulating adjuvanticity during vaccination (126). The
possibility also exists that microbial dysbiosis during early life could
interfere with vaccine response later in life, due to defects in
microbial-immune imprinting (reviewed in 196), as has been
observed for other immune-related disorders (9, 14, 15, 197).
Although this idea has not yet been examined in clinical studies
of vaccine response, a study in mice found that early life microbial
dysfunction did not affect later vaccine response, provided the
microbiome was repaired prior to vaccination (131). Thus, further
studies are warranted to explore the immediate and long-term
ramifications of early-life microbial dysbiosis on vaccine responses
and relevant immune pathways; such discoveries could reveal novel
therapeutic strategies to improve vaccine response in neonates by
harnessing the microbiota.

In the elderly, emerging evidence suggests that age-induced
changes in the microbiome contribute to immunosenescence
(145, 198–200) and could thereby mediate changes in vaccine
response (201). Indeed, defective intestinal germinal center
reactions in aged mice were rescued by transplantation with fecal
material from young mice (145), which could suggest an improved
capacity for vaccine response after fecal transplantation. In humans,
immunophenotypic similarities have been observed between elderly
subjects and adults with antibiotic-induced microbial dysbiosis,
consistent with the idea that age-mediated effects and antibiotic-
mediated effects on vaccine response are both effected by the
microbiota (171, 192). Others have speculated that immuno
senescence caused by changes in the microbiota could drive other
pathological immune conditions such as asthma (202). Thus, in
both elderly and neonatal individuals, the microbiome may mediate
changes in vaccine response, and microbiome rehabilitation
represents a promising approach to promote vaccine response in
these populations.

Microbial Manipulation to Improve
Vaccine Response
Given the role of the microbiome in vaccine response in clinical
and preclinical studies, a key question is whether manipulating
Frontiers in Immunology | www.frontiersin.org 11
the microbiome can improve vaccine outcome, especially in
populations at risk for poor vaccine response (182). Many
clinical studies have evaluated vaccine response after dietary
supplementation with probiotics, primarily species within
Lactobacillus or Bifidobacterium. Recent reviews and meta-
analyses of these studies highlight that there is significant
heterogeneity in the ability of probiotic supplementation to
increase antibody titers after vaccination (203–206). Effects are
likely to be specific to particular bacterial strains, and may vary
between different vaccines and adjuvants (149, 207). Several of
these probiotic studies have also found correlates between
probiotic supplementation and diverse measures of immune
function, including serum levels of pro-inflammatory cytokines
(208, 209), T cell responsiveness (210, 211), and innate immune
cell activity (212, 213), although the mechanistic implications of
these observations are unclear.

The effect of probiotics on vaccine response has also been
evaluated in neonatal pigs, and recent studies have begun to
elucidate the mechanisms by which Lactobacillus and
Bifidobacterium strains promote vaccine response in this
model. Early studies using gnotobiotic pigs revealed that
colonization by probiotics prior to oral rotavirus immunization
enhanced Th1 cellular immunity (139–141). However, prior
colonization by human fecal material prevented subsequent
Lactobacillus colonization and Lactobacillus-mediated effects
on vaccine response (142), suggesting that an intact microbiota
can obstruct the effects of probiotics and contribute to the
heterogeneity of their effects across individuals.

Efforts are underway to use probiotic strains as vaccine
vectors to capitalize on the vaccine-promoting and immuno
modulatory effects of certain microbes, by engineering the
expression of antigens to induce the desired immune responses
including mucosal IgA (reviewed in 214, 215). In particular,
Lactobacilli are known to activate the immune cell receptors
NOD2, TLR2, TLR6, C-type lectin receptors, and the caspase-1
dependent inflammasome (reviewed in 216). Recently, a study
demonstrated that activation of NOD2 was required for Th2
skewing and humoral immune responses to a Lactobacillus
vaccine vector strain (146). Further work to elucidate the cell
types and functional pathways modulated by Lactobacillus and
other probiotics will contribute to understanding of key
interactions between the microbiota and the immune system in
the context of vaccines.

Several groups have also explored whether prebiotic
supplementation improves vaccine outcome. Prebiotics are
expected to promote a diverse microbiota and prevent
expansion of dysbiosis-inducing microbes (149). Though
animal studies suggest prebiotics can stabilize “normobiotic”
microbes including Lactobacillus and Bifidobacterium and
promote vaccine response (134–138), prebiotics in clinical
studies have predominantly had no effect on vaccine outcome
(217–222). Why prebiotics do not affect vaccine response
remains unclear, as they have been shown to influence other
immune-related conditions (reviewed in 149).

Taken together, these and previously discussed studies
illustrate the potential of microbiome-modulating interventions
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to promote vaccine response, but suggest that effective realization
of such strategies is challenging. We note that the majority of
studies have sought to enhance the abundance of Lactobacilli
or Bifidobacteria, which are known to modulate the immune
system (216, 223). These families belong respectively to the
Firmicutes and Actinobacteria, which have been associated
with vaccine response in a meta-analysis of clinical studies
(170). It is possible that vaccine response could also be
augmented by probiotic supplementation with other families
within the Firmicutes, though this possibility has not been
widely investigated. An outstanding question for probiotic
approaches is whether it is necessary for probiotic strains to
colonize within the context of an intact microbiome in order
to promote vaccine response. Finally, an alternative strategy may
be to leverage the pathways modulated by microbiome, either by
delivery of live engineered organisms (146) or of bioactive
molecules (132).
CONCLUDING REMARKS: INTERACTIONS
BETWEEN MICROBIOME AND THE
IMMUNE SYSTEM HAVE THE POTENTIAL
TO SHAPE RESPONSE TO IMMUNE
INTERVENTIONS

Recent literature reveals that assorted microbes, metabolites, and
immune factors interact to influence the patient response during
cancer immunotherapy and immunization (summarized in
Tables 1–3). To gain greater perspective into the most
meaningful molecular and cellular mechanisms by which the
microbiome modulates the immune system, we have juxtaposed
two therapeutic spheres: ICIs and vaccines. Evidence from both
therapeutic spheres highlights three elements of the microbiome
that consistently play an immunomodulatory role: microbially-
derived metabolites including short-chain fatty acids, microbe-
associated molecular patterns (MAMPs), and inflammatory
cytokines (Figure 2).

The microbiome is a rich source of diverse bioactive
metabolites that can affect host biology and the immune
system (reviewed in 150, 224, 225). One class of bacterial
metabolites that influence response to both vaccination and
ICI therapy are short-chain fatty acids (SCFAs). SCFAs are
immunomodulatory metabolites and are produced by a subset
of intestinal microbes (reviewed in 224, 226), some of which are
implicated in clinical studies of immunotherapy and vaccine
response. SCFAs such as butyrate and propionate appear to alter
immunotherapy outcome by modulating CTL activation directly
or indirectly by influencing DC maturation (37, 63, 227),
whereas butyrate, acetate and some branched-chain fatty acids
may alter vaccine response by modulating DC-mediated B cell
activation (132, 228, 229). SCFAs are known to broadly influence
the immune system as well as other host pathways, and have also
been implicated in regulation of Tregs, allergic disease, resistance
to infectious disease, obesity, intestinal barrier function,
carcinogenesis, and microglia development in the central
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nervous system (40, 224, 226, 230–235). However, future
investigations must continue to define the biology of SCFAs, as
well as other immunomodulatory microbial metabolites
associated with outcomes of immune-targeted interventions
(84, 85), including whether immunotherapies themselves
influence the gut metabolome. Determining the unique effects
of specific metabolites, including SCFAs, on immune pathways
critical for ICI and vaccine response may identify key microbes
and signaling pathways that could be harnessed to promote
therapeutic success.

The outcomes of ICI and immunization are also influenced by
MAMPs, including flagellin, unmethylated CpG DNA,
peptidoglycan, muramyl dipeptide, and polysaccharides (6, 83,
126, 129). MAMPs directly and indirectly modulate activation
and differentiation of immune cells (236–238), and synthetic
MAMPs are already used as exogenous adjuvants during
immunization to activate the immune system. In the context of
microbial modulation of immunotherapy and vaccination
outcomes, the cellular and molecular mechanisms by which
commensal MAMPs affect B and T cells are incompletely
defined. Commensal MAMPs can bind to host receptors
and directly influence B cells during vaccination (126), possibly
by promoting antibody production and regulating class-
switching (239, 240). Similarly, endogenous MAMPs
may also promote T cell function as costimulatory molecules
(241–245). B and T cell functions are also indirectly influenced
by MAMP-mediated modulation of APC maturation, leading
to altered interactions and production of cytokines and
chemokines (5, 6, 83, 129, 246, 247). By understanding the
role endogenous MAMPs play in outcomes of ICI and
vaccination, we may be able to identify key MAMPs and host
pathways that promote immunotherapy response, which
could lead to development of novel vaccine adjuvants or ICI
co-therapies.

Inflammatory cytokines are emerging as a key host
mediator of microbial immunomodulation (54). Both ICI and
vaccine outcomes have been associated with microbial
modulation of inflammatory cytokines, including IL-12, IL-1b,
and IFN-g (6, 58, 83, 85, 129). These effects appear to be
primarily mediated by MAMP stimulation of host receptors
on APCs, but stimulation of epithelial cells with MAMPs or
microbial metabolites can also alter epithelial cytokine
production and impact immunity (143, 173, 248, 249). As
the core communication toolbox of the immune system,
cytokines represent a likely mediator through which the
microbiome and intestinal immunity could influence systemic
responses during ICI treatment and vaccination (58, 143,
247). Thus, microbiome-derived products could represent
an indirect but powerful approach to control cytokine
levels and broadly affect the immune system in diverse
therapeutic contexts.

The effect of the microbiome on the outcome of
immunotherapies certainly extends beyond ICI therapy
and vaccination, as has been observed for non-ICI
immunostimulatory treatments to control tumor growth (25,
26), anti-inflammatory treatment for irritable bowel syndrome
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and rheumatoid arthritis (27–30), and antigen desensitization for
allergy (31). It is also clear that the microbiome broadly affects the
immune system, as has been well-documented in studies of
infectious disease and immune function (5, 6, 230, 232, 235,
246, 247). Taken as a whole, the current literature argues that
the microbiome likely plays a key role in the heterogeneity of the
immune response across individuals. Though the majority of
mechanistic studies to date have employed preclinical models,
technological developments for ex vivo microbiome studies (58,
61, 138, 160), and microbiome manipulation of human subjects in
the clinical setting (162, 167, 171) will facilitate our understanding
of the role of the microbiota on the human immune system. As
crucial immunomodulatory interactions continue to be identified,
novel strategies also need to be developed to manipulate the
microbiota and microbial regulation of immunity. Patient
microbial profiles could be surveyed to anticipate therapeutic
outcomes. Probiotics and prebiotics may play a role in repairing
or supporting the microbiota (84, 138). Supplementation with
immunomodulatory microbial metabolites or ligands (132), or
direct targeting of microbially-regulated immune pathways (6,
247) could also bypass the effects of the microbiota on cytokine
Frontiers in Immunology | www.frontiersin.org 13
production and cellular function. As we develop novel approaches
to understand and influence the microbiome, we will also expand
our ability to harness the immune system to treat or
prevent disease.
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FIGURE 2 | Mechanisms by which the microbiome influences response to ICI treatment and vaccination. The microbiome produces microbial factors and influences
host factors and cells, thereby influencing the outcomes of immune interventions. (A) Microbiome-derived short-chain fatty acids (SCFAs) bind receptors including
GPR43 on DCs and T cells, leading to changes in cytokine production, antigen presentation, cellular polarization, and interactions with other cell types. (B) Microbe-
associated molecular patterns (MAMPs) including flagellin, polysaccharide A, fucosylated antigens, unmethylated CpG DNA, and peptidoglycan bind pattern
recognition receptors on DCs (NOD2, TLR2, TLR3, TLR9, DC-SIGN) or B cells (TLR5) and modulate activation, cytokine production, and immune cell function.
(C) Microbiome-dependent changes in production of cytokines (IL-1b, IL-12, IL-18, IFN-g, IL-10) produced by intestinal DCs or epithelial cells broadly affect immune
cell function.
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