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Background: The aggressive biology and treatment refractory nature of pancreatic

ductal adenocarcinoma (PDAC) significantly limits long-term survival. Examining the

tumor microenvironment (TME) of long-term survivors (LTS) of PDAC offers the potential

of unveiling novel biological insights and therapeutic targets.

Methods: Weperformed an integrated approach involving immunophenotyping, stromal

scoring and histomorphological profiling of a cohort of 112 PDAC-cases, including 25

long-term survivors (LTSs, OS ≥ 60 months). Mutational frequencies were assessed

using targeted next generation sequencing. Finally, we validated our findings in silico

using an external cohort of microarray data from PDAC patients.

Results: LTS cases exhibit a largely quiescent population of cancer-associated

fibroblasts (CAFs). Immune profiling revealed key differences between LTS and NON-LTS

cases in the intratumoral and stromal compartments. In both compartments, LTS cases

exhibit a T cell inflamed profile with higher density of CD3+ T cells, CD4+ T cells, iNOS+

leukocytes and strikingly diminished numbers of CD68+ total macrophages, CD163+

(M2) macrophages and FOXP3+ Tregs. A large proportion of LTS cases exhibited tertiary

lymphoid tissue (TLT) formation, which has been observed to be a positive prognostic

marker in a number of tumor types. Using a Random-Forest variable selection approach,

we identified the density of stromal iNOS+ cells and CD68+ cells as strong positive and

negative prognostic variables, respectively. In an external cohort, computational cell-type

deconvolution revealed a higher abundance of T cells, B lymphocytes and dendritic

cells (DCs) in patients with long-term OS compared to short-term survivors. Thus, in

silico profiling of long-term survivors in an external cohort, strongly corroborated the T

cell-inflamed TME observed in our LTS group.

Conclusions: Collectively, our findings highlight the prognostic importance of TME

profiles in PDAC, underlining the crucial role of tumor associated macrophages (TAMs)
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and the potential interdependence between immunosuppressive TAMs and activated

CAFs in pancreatic cancer. Additionally, our data has potential for precision medicine

and patient stratification. Patients with a T cell inflamed TME might derive benefit from

agonistic T cell antibodies (e.g., OX40 or CD137 agonists). Alternately, patients with

activated CAFs and high infiltration of immunosuppressive TAMs are highly likely to

exhibit therapeutic responses to macrophage targeted drugs (e.g., anti-CSF1R) and

anti-CAF agents.

Keywords: PDAC–pancreatic ductal adenocarcinoma, long term survival, tumor associated macrophage (TAM),

cancer associated fibroblast (CAF), tumor microenvironment (TME)

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is an exceptionally
lethal malignancy with a 5-years survival of <10% and is
projected to become the second-leading cause of cancer-
associated mortality by 2030 (1, 2). Recent advances in surgical
techniques and multimodal management have improved 5-years
overall survival following resection with curative intent (3–6).
Nevertheless, the rates of tumor recurrence remain high, limiting
the quality of life and long-term survival of patients with PDAC
(4). Several factors have been associated with diminished overall
survival (OS) in pancreatic cancer including tumor stage, lymph
node metastases and involvement of the resection margins (7, 8).
However, the aforementioned features are simply indicative of
a highly aggressive tumor biology and do not shed mechanistic
insight on disease progression. Furthermore, unlike breast or
colon cancer, molecular subtyping in PDAC is subject to further
study and does not currently inform clinical decision-making (9).
Molecular profiling has identified two to five PDAC-subtypes and
transcriptional analyses have correlated molecular subtypes to
microenvironmental and histomorphologic features (9–14).

It is currently well-established that the tumor
microenvironment (TME) of PDAC poses a significant barrier
to conventional and immune-modulating cancer therapies
(15, 16). PDAC patients generally display a distinct TME marked
by a significant stromal compartment comprised of cancer-
associated fibroblasts, inflammatory cytokines and multiple
populations of immunosuppressive leukocytes in particular,
tumor associated macrophages (TAMs) (15, 17). While shown
to be effective in a number of tumor types, only a rare subset
of PDAC patients (∼1%) with high microsatellite instability
(MSI-high) derive clinical benefit from anti-PD-1 checkpoint
inhibitors (15). Although a number of reports have attempted
to elucidate the heterogeneous cellular landscape of the TME
in pancreatic cancer (18–22), there is currently an unmet need
for defining novel biomarkers and treatments for PDAC. Thus,
a more comprehensive assessment of TME is warranted and
this might reveal key immune, stromal and tumor-intrinsic
features, which are essential for disease progression in PDAC
and have prognostic or therapeutic value. Moreover, examining
the TME of long-term survivors (LTS) of PDAC might unveil
novel biological insights and therapeutic targets.

In this study, we performed an integrated histomorphological,
immunological and stromal phenotyping of PDAC tissues from

a clinically rare subgroup of patients with long-term survival
(LTS, OS ≥ 60 months) and compared them to all other cases
(NON-LTS) in our cohort of 112 patients, to demonstrate that
long-term survival in pancreatic cancer is associated with distinct
stromal and immunological profiles. Finally, we validated our
immunological findings in silico using gene expression data from
an external cohort of PDAC samples.

METHODS

Patients and Tissues
Overall, 112 cases of surgically resected PDACs, stage I-
III were available for this study in ngTMA R© format (see
Supplementary Materials for TMA construction details). This
cohort included 25 long-term survivors (LTS, OS ≥ 60 months)
and 87 cases with OS < 60 months (NON-LTS). Patients were
selected on the base of tissue availability and accessibility to
full follow-up information and overall survival. Patient related
information can be viewed in the Supplementary Table 1. All
patients provided written informed consent for inclusion in this
study and the study was approved by the Ethics Committee of the
canton Bern (KEK Nr 200/14).

Assessment of Tumor Budding,
Gland-Forming Component, and TLT
Tumor budding was evaluated as previously described (22).
The percentage of gland-forming component was assessed using
H&E stained whole tissue slides by a trained pathologist.
Cases were evaluated as present or absent for TLT based
on staining with H&E as well as the patterns of CD3+T
cells and CD20+B lymphocytes (for further details, see
Supplementary Materials section).

Stromal Subtyping and Evaluation
Evaluation of the αSMA was undertaken by assessing the
intensity of the staining in each tumor core which ranked from
0 to 3 (0: negative, 1: weak, 2: moderate, and 3: strong) and
the percentage of area stained. H-Scores were then calculated
for each core by multiplying intensity score by the percentage
of core staining and a median H-score was calculated for all
cores from each patient. The digitalized slides stained for αSMA
were evaluated in parallel with their corresponding H&E-stained
slides to ensure smooth-muscle fibers of the duodenal wall were
not mistaken for stromal reaction. Collagen quantification was
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assessed by using Masson‘s Trichrome staining (Collagen stained
blue) according to the intensity of the staining in the tumor core
which ranked from 0 to 3 (0: negative, 1: weak, 2: moderate,
and 3: strong) and the percentage of area stained. H-scores were
calculated for each core by multiplying the intensity score by the
percentage of core staining. An average H-score was calculated
for all cores from each patient. Average H-scores for αSMA
and Collagen were dichotomized through the median into low
and high scores and cases were assigned accordingly into the
corresponding categories as described in the results section.

Immunohistochemistry
ngTMAs were sectioned at 3µm, de-waxed and re-hydrated in
dH2O. They were double stained immunohistochemically for
Pancytokeratin (1:400, cytokeratin LMW, clone AE1/AE3, Dako
M3515) and each of the following: CD3 (1:400, clone SP7, Abcam
ab16669), CD4 (1:100, clone CD4/4B12, Dako M7310), CD8
(1:100, clone C8/144B, Dako M7103), CD20 (1:100, clone L26,
Dako M0755), CD68 (1:100, clone KP1, Dako M0814), DC-
LAMP (1:100, CD208/DC-LAMP PA, Sino Biological, 10527-
H08H), iNOS (1:100, PAb, Thermo Fisher Scientific PA3-030A),
CD163 (1:100, clone 10D6, Novocastra NCL-CD163), FOXP3
(1:100, clone 236A/E7, Abcam ab20034), and αSMA (1:100,
clone). Antigen retrieval was performed with Tris-HCl, pH 9 for
30min at 95◦C. Antibody testing and staining protocols have
been established and staining was performed by an automated
Leica Bond RX System (Leica Bond RX, Leica Biosystems,
Muttenz, Switzerland) with the Bond Polymer Refine Kit (with
DAB as chromogen) and Bond Polymer Refine Red Detection Kit
for the double staining (Leica Biosystems, Newcastle, UK).

Normalization and Scoring of the Immune
Cell Infiltrates
All slides were digitalized with their corresponding H&E-stained
slides (Aperio Image Scope, Version 12.4.0.5043) and evaluated
by virtual microscopy using the Case Viewer software (Case
Viewer 3DHISTECH_Ltd Version 2.2.0.85100). Immune cells
in the intratumoral (IT) and stromal (S) compartments were
enumerated separately and normalized per unit area as cells
or counts/mm2. As a single TMA core may contain various
degrees of non-tumor vs. tumor content, the percentage of non-
tumor and tumor tissue per core was recorded. Cell counts
were normalized for tumor and non-tumor content of each core.
For each immune cell population, the average counts across all
TMA cores of the same patient were used for further analysis.
Evaluation was performed by two independent pathologists
blinded to clinical parameters.

Next Generation Sequencing and Data
Analysis
Libraries preparation using the Ion AmpliSeqTM Cancer Hotspot
Panel v2 panel (Thermo Fisher Scientific) were performed
following the manufacturer’s instructions and as previously
described (23). The Ion AmpliSeqTM Cancer Hotspot Panel
v2 panel was designed to allow amplification-based capture
and sequencing of nearly 2800 COSMIC mutations from 50
oncogenes and tumor suppressor genes. The NGS was performed

on an Ion S5TM system (Thermo Fisher Scientific). Finally,
all candidate mutations were manually reviewed using the
Integrative Genomics Viewer (24).

Gene Expression Dataset
The expression matrix and associated metadata from the
Puleo cohort (12) were obtained from ArrayExpress (accession
number E-MTAB-6134). Expression data was downloaded
in pre-processed form and no further transformation or
normalization was applied. Probe annotation was downloaded
from GEO for [HG-U219] Affymetrix Human Genome U219
Array (platform ID GPL13667). To ensure most up-to-date gene
symbol nomenclature, we re-annotated probes with relevant
Entrez gene IDs in the annotation file and assigned gene
symbols using “org.Hs.eg.db” package in BioConductor (https://
bioconductor.org/packages/release/data/annotation/html/org.
Hs.eg.db.html). In cases where single probe had multiple gene ID
assignments, the probe was replicated to the number of gene IDs
assigned to it. To reduce probe-level to gene-level expression,
intensity values were averaged per gene by calculating mean
value for all the probes with the same gene symbol. The resulting
gene-level expression values were used for all downstream
analysis except for differential expression, which was performed
at the probe-level.

Gene Signature Scoring
The TLS gene signature was first reported by Coppola et al.
(25) and consists of the following 12 chemokine genes: CCL2,
CCL3, CCL4, CCL5, CCL8, CCL18, CCL19, CCL21, CXCL9,
CXCL10, CXCL11, CXCL13. The normalized signature scores for
a given gene signature were calculated for each sample using
singscore package in Bioconductor (26), following established
user guidelines and gene-level values for Puleo datasets.

Cell-Type Deconvolution
The MCP-counter algorithm was performed using
“immunedeconv” package in R, a uniform access-tool for
multiple cell-type deconvolutionmethods (27). Gene-level values
from Puleo dataset were reverse-transformed by exponentiating
base 2 to the power of each expression value according to
package user guide suggestion. In all cases “tumor” flag was set
to “TRUE” and “arrays” flag was set to ‘TRUE‘ for Puleo dataset.

Cell type abundance scores for each of the groups (LTS vs.
STS) were visualized as box plots. Significance of difference
between groups was assessed using Mann-Whitney U test.

Random Forest Machine Learning and
Immune Variable Selection
We used Random Forest (RF) (28), a machine learning ensemble
method to identify the immune cell type, the density of which can
best predict LTS vs. NON-LTS status. RF uses a bootstrapping
method that generates random samples from the dataset with
replacement. Those samples are divided into training (Two thirds
of the sample set) and testing samples (One third of the sample
set). The testing samples are also termed “out-of-bag” (OOB)
sample and used for the prediction performance of the model. RF
needs to use the number of trees (ntree) and number of variables
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(either IT or S cell types) randomly sampled as candidates at each
split (mtry), and these parameters need to be defined. We used
ntree= 500 and mtry= square root of variables in our models.

We used two strategies to select best markers that are
associated with survival. First, we iteratively fitted random
forests, at each iteration building a new forest after discarding
20% of the variables with the smallest variable importance. The
selected set of variables is used as a predictor to fit the model
to check the OOB error rate. This recursive feature elimination
method procedure is done iteratively using the varSelRF function
from the varSelRF package in R (28). Second, the selected
variables are further refined based on the smallest set of variables
with the best AUC values.

Survival Analysis
Kaplan-Meier plots and log-rank tests were performed to
determine differences in overall survival between groups. These
were plotted and analyzed in the survminer package in R. The cut-
offs for patient stratification for each survival curve are provided
in the figure legends. Multivariate Cox Regression was performed
using survival package in R accounting for patient sex, tumor
stage, and grade.

Statistical Analysis
Statistical differences between continuous variables or immune
cell counts were analyzed using Mann-Whitney U tests or
Kruskal Wallis tests followed by Dunn’s post-hoc test. Differences
between categorical variables were calculated by means Fisher’s
exact test or Chi-square tests. Analyses were conducted on Prism
(Version 8.3) and R (Version 4.0.0). All tests were two sided and
P-values were considered significant at P < 0.05.

RESULTS

Clinical and Pathological Profiles
We integrated immunophenotyping with stromal and
histomorphological profiling on surgically resected, pre-
treatment, PDAC tissues (Stage I-III) in the format of a
next-generation tissue microarray (ngTMA R©) as outlined in
Supplementary Figure 1. There was no significant association
between the survival group (LTS vs. NON-LTS) and any of the
following clinical features: gender, age, or tumor size. However,
a significant proportion of LTS cases exhibited lower tumor
grades, CA19-9 values and AJCC stages compared to NON-LTS
patients (Supplementary Table 1).

Molecular profiling of our cohort was conducted via next
generation sequencing using Ion AmpliSeqTM Cancer Hotspot
Panel v2. A comparison between LTS and NON-LTS cases for
frequencies of mutations in the 4 key driver genes KRAS, TP53,
CDK2NA, and SMAD4 is shown in Supplementary Table 2. No
significant differences between the mutational frequencies of
KRAS, TP53, CDK2NA, and SMAD4 were observed between the
two survival groups. These findings collectively demonstrate that
LTS status is not associated with a markedly altered profile of
PDAC driver mutations.

However, LTS cases exhibit distinct histomorphological
differences from NON-LTS patients (Figure 1 and Table 1).

A comparison of LTSs vs. non-LTSs demonstrated significant
differences with respect to the number of tumor buds as
well as tumor budding category (Figures 1A,B). While high-
grade tumor budding (Category 3) cases represented only
12% of the LTS cohort, they comprised 60% of the NON-
LTS cases (P < 0.0001). A key morphological characteristic
which has recently been shown to have positive prognostic
significance for PDAC patients is the percentage of the gland-
forming component (13). A statistically significant difference
was observed between LTS and NON-LTS cases with respect to
this important morphological feature (P < 0.0001, Figure 1C).
Finally, we performed histological assessment for the presence
of tertiary lymphoid tissue (TLT), also termed tertiary lymphoid
structures (TLS). TLS are ectopic lymphoid aggregates found
in chronic inflammatory conditions and in many solid tumors
and are observed to be a positive prognostic factor in PDAC
(29). In the LTS group, a significantly higher (P < 0.0001)
proportion of cases displayed TLT formation compared to
the NON-LTS group (64 vs. 12%, respectively) as shown in
Figure 1D. Representative images of TLT formation in PDAC are
shown in Supplementary Figure 2A. The presence of TLT was
associated with improved survival in this cohort (P < 0.0001;
Supplementary Figure 2B).

Representative images of the differences between LTS and
NON-LTS cases in the percentage of gland forming component
and tumor budding are shown in Supplementary Figures 3A,B.
Thus, taken together, these findings demonstrate that
long-term survivors of pancreatic cancer exhibit distinct
histomorphological characteristics.

Stromal Subtyping
Pancreatic stellate cells are the primary subset of cancer-
associated fibroblasts (CAFs) in PDAC (30). Upon activation,
PSCs express alpha smooth muscle actin (αSMA) and produce
factors contributing to disease progression as well as producing
extracellular matrix (ECM) proteins such as collagen (30, 31).
Using semi-quantitative histological or H-Scores, each case was
scored as high or low for αSMA and collagen expression via a
median cut-off (32). Based on these classifications, we scored the
stromal subtypes as inert (αSMAlow/collagenlow), desmoplastic
(αSMAlow/collagenhigh), fibrolytic (αSMAhigh/collagenlow), and
fibrogenic (αSMAhigh/collagenhigh). Representative images for
stromal subtypes are shown in Supplementary Figure 4.

When H-scores for αSMA and collagen were compared
between LTS and NON-LTS cases, the expression of αSMA
was observed to be significantly higher in long-term survivors
(P = 0.011, Figure 2A). However, collagen expression levels
were comparable between both survival groups (Figure 2B).
We subsequently compared the distribution of stromal subtypes
between LTS and NON-LTS groups (Figure 2C and Table 2).
Here, it was shown that the “inert” and “desmoplastic” subtypes
which are αSMAlow comprised 75% of the LTS group compared
to 43% of the NON-LTS group. Similarly, the most fibrotic
phenotype, i.e., the “fibrogenic” subtype constituted only 4%
of LTS cases compared to 28% of NON-LTS patients. The
association between survival groups and stromal subtype was
analyzed by the Chi-square test and found to be statistically
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FIGURE 1 | LTS cases exhibit distinct histopathological characteristics. (A)

Scatterplot depicting the distribution of tumor buds in LTS vs. NON-LTS cases.

Mann-Whitney U-test was used to determine differences between groups.

Each symbol denotes an individual patient. The bars denote median values for

each group. (B) Bar-graphs showing the distribution of tumor budding

categories in LTS and NON-LTS patients. Statistical comparisons were

performed using Chi-Square test. (C) Scatterplot depicting the distribution of

gland-forming component (as a percentage) in LTS vs. NON-LTS cases.

Mann-Whitney U-test was used to determine differences between groups.

Each symbol denotes an individual patient. The bars denote median values for

each group. (D) Bar-graphs depicting the number of cases exhibiting presence

or absence of tertiary lymphoid tissue (TLT) in LTS and NON-LTS patients.

Statistical comparisons were performed using Fisher’s exact test.

significant (P = 0.016). Finally, increased levels of αSMA were
associated with worse outcome in our cohort demonstrating the
importance of the stromal compartment in modulating disease
progression (P= 0.02473, Figure 2D).

To examine the association between stromal subtypes and
immune composition, immune cell densities were compared
across all stromal subtypes (Figure 3 andTable 3).We performed
immunohistochemistry-based detection and enumeration of
nine immune cell subsets; total T cells (CD3), cytotoxic T cells
(CD8), helper T cells (CD4), Tregs (FOXP3), B cells (CD20),
total macrophages (CD68), M2 macrophages (CD163), iNOS
leukocytes (which include M1 macrophages and neutrophils),
and mature dendritic cells (DC-LAMP). The counts of CD68+

and CD163+ (putatively M2) macrophages were significantly
higher in cases with “fibrogenic” compared to “inert” stroma
(P = 0.011 and P = 0.02, respectively), revealing a potential
biological interdependence between immunosuppressive TAMs
and activated CAFs. Taken together, these results demonstrate

TABLE 1 | Tumor budding, percentage of gland-forming component and

presence of TLT across survival groups in PDAC.

Parameter LTS (n = 25) NON-LTS (n = 87) P-value

Tumor budding category

3 3 (12%) 52 (60%) <0.0001

2 9 (36%) 22 (25%)

1 13 (52%) 13 (15%)

Percentage of gland-forming

component median (range)

95 (40–100) 48 (0–80) <0.0001

TLT status <0.0001

Present 16 (64%) 10 (12%)

Absent 9 (36%) 77 (88%)

Quantitative data presented as group medians with interquartile range (IQR) in brackets.

Categorical data are shown number of cases (and as percentages of survival subgroup in

brackets). Statistical comparisons were performed using Mann-Whitney U Test, Fisher’s

Exact Test and Chi-Square test. Bolded values denote significant results.

that LTS patients display a distinct stromal profile marked by
largely quiescent PSCs and diminished fibrosis.

Profiling the Immune Contexture
Subsequently, we examined the immune landscapes of LTS vs.
NON-LTS patients. The nine leukocyte subsets assessed across
stromal subtypes were analyzed between LTS and NON-LTS
cases. Immune cell counts were assessed separately for the
intratumoral (IT) and stromal (S) compartments to reveal any
compartment-specific differences in the prognostic value of
infiltrating immune cells. Representative immunohistochemistry
of selected stains for immune cell markers in LTS and NON-LTS-
cases is provided in Supplementary Figure 5.

Clear immunological differences were observed between LTS
and NON-LTS cases in the IT compartment (Figure 4 and
Table 4). Compared to NON-LTS cases, LTS patients exhibit
higher densities of total T cells (CD3+), CD4+ T cells and
iNOS+ leukocytes (P= 0.007, <0.0001 and 0.0007, respectively).
On the other hand, LTS patients display significantly lower
densities of FOXP3+ Tregs, CD68+ cells (total macrophages) and
CD163+ (M2) macrophages than NON-LTS cases (P = 0.007,
<0.0001, and <0.0001, respectively). No significant differences
were observed between LTS and NON-LTS groups in CD8+

lymphocytes counts in the IT compartment. Stromal leukocyte
densities were not only markedly higher than those in the IT
compartment, but also revealed a distinct immune landscape
in LTS cases compared to NON-LTS patients (Figure 5 and
Table 5). Stromal lymphocyte counts such as CD3+ T cells,
CD4+ helper T cells and CD20+ B cells were observed to be
higher in the LTS vs. NON-LTS group (P = 0.0004, <0.0001,
and 0.0006, respectively). On the other hand, FOXP3+ Tregs
were lower in the LTS group compared to NON-LTS patients
(P = 0.0004). The myeloid landscape in the stroma was similar
to the intratumoral compartment. PDACs from LTS patients
displayed significantly higher densities of iNOS+ leukocytes (P<

0.0001) and DC-LAMP+ or “mature” DC (P = 0.008) compared
to NON-LTS patients. Conversely, stromal densities of CD163+

macrophages and CD68+ (total) macrophages were significantly
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FIGURE 2 | Stromal subtyping of the TME. (A) Scatterplots depicting H-Scores for αSMA staining (IHC) in LTS vs. NON-LTS groups. (B) Scatterplots depicting

H-Scores for Collagen staining (Masson’s trichrome) in LTS vs. NON-LTS cases. Mann-Whitney U test was used to determine differences between groups. Each

symbol denotes an individual patient. The bars denote median values for each group. (C) Barplots depicting number of cases belonging to each stromal subtype

(inert, desmoplastic, fibrolytic and fibrogenic) in LTS vs. NON-LTS patients. Statistical comparisons were performed using Chi-square test. (D) Kaplan-Meier curve

showing the correlation of αSMA values with overall survival (OS). Statistical comparisons were performed using log-rank test.

lower in LTS vs. NON-LTS cases (P< 0.0001, for both cell types).
Taken together, these results show that LTS cases exhibit multiple
hallmarks of enhanced anti-tumor immunity. Compared to
NON-LTS patients, tumors from LTS cases exhibit a T cell
inflamed TME with diminished populations of macrophages
and Tregs. In order to determine if immune features could
distinguish LTS from NON-LTS cases, Principal Component
Analysis (PCA), a dimensionality reduction technique was
applied, and it was observed that PCA on both IT and stromal
immune cell profiles resulted in a distinct separation of LTS from
NON-LTS cases (Figures 6A,B). As such, these findings suggest
that the improved survival of the LTS cases is associated strongly
with an immunologically unique TME.

Prognostic Significance of Immune
Infiltrates
Given that immune infiltrates could distinguish LTS from
NON-LTS cases, we investigated the prognostic significance of
leukocyte densities within our cohort. Kaplan-Meier analysis
of patients with high and low immune cell infiltration in the
stroma (dichotomized by a median cut-off) was performed.
Cases with high overall stromal densities of total T cells
(CD3+) and CD4+ T cells displayed significantly improved
OS while cases with high densities of stromal FOXP3+ Tregs
displayed poor OS (Supplementary Figure 6). Patients with
high CD8+ T cell also displayed improved survival. Moreover,

TABLE 2 | Features of tumor desmoplasia and stromal subtyping.

Feature LTS NON-LTS P-value

aSMA H-Score 146.60

(68.55–226.10)

180.00

(43.00–290.00)

0.011

Collagen H-Score 78.89

(40.89–174.4)

90.63

(19.00–190.00)

0.20

Stromal subtypes 0.016

Inert

(aSMAlow/Collagenlow )

42% 17%

Desmoplastic

(aSMAlow/Collagenhigh)

33% 26%

Fibrolytic

(aSMAhigh/Collagenlow )

21% 29%

Fibrogenic

(aSMAhigh/Collagenhigh)

4% 28%

Quantitative data presented as group medians with interquartile range (IQR) in brackets.

Categorical data are shown as percentages of survival subgroup. Statistical comparisons

were performed using Mann-Whitney U Test and Chi-Square test. Bolded values denote

significant results.

patients included in the high subgroup for stromal densities
of CD68+ macrophages and M2 (CD163+) macrophages had
significantly reduced OS while patients with high stromal
counts of iNOS+ leukocytes exhibited significantly higher OS
(Supplementary Figure 6). There were no differences in survival
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FIGURE 3 | Immune contexture across stromal subtypes. Scatterplots representing the distribution of leukocyte density (counts/mm2 ) in the stromal compartment of

PDAC cases exhibiting distinct stromal subtypes (Inert, Desmoplastic, Fibrolytic, Fibrogenic). Each symbol denotes an individual patient. The bars denote median

values for each group. Differences between groups were analyzed by Kruskal-Wallis tests followed by Dunn’s post-hoc test. Multiplicity adjusted P-values are reported.

TABLE 3 | Distribution of stromal (S) leukocyte densities across stromal subtype groups.

Inert Desmoplastic Fibrolytic Fibrogenic

Immune cell type Median Range Median Range Median Range Median Range P-value

CD3/ mm2 420.6 3.25–1,760 526.8 54.27–3,163 333 31.87–1,957 354.1 84.97–2,647 0.71

CD4/mm2 77.08 0–912.9 43 0–4,367 36.51 0–995.7 24.8 0–308.7 0.92

CD8/mm2 240.7 0–1,736 545.4 16.12–2,013 253.4 24.4–799.1 377 46.17–2,635 0.08

CD20/mm2 25.95 0–424.7 52.61 0–5,811 12.38 0–1,879 35.22 0–321.8 0.58

DC-LAMP/mm2 28.29 0–173.1 26.97 2.65–255.3 23.59 0–617 37.04 2.53–212.8 0.62

CD68/mm2 517.1 244.7–4,116 752.5 253.1–3,422 706.9 309.4–2,777 1084 229.6–6,730 0.011

iNOS (M1) /mm2 14.17 0–120.3 15.8 0–481.5 16.37 0–111.4 9.66 0–212.8 0.67

CD163 (M2) /mm2 443.4 130.9–4,310 743.4 228.6–5,096 662.4 199.6–2971 1184 182.6–6,578 0.02

FOXP3 (Tregs) /mm2 9.8 0–531.6 27.95 0–307.3 21.27 0–168 26.91 5.74–196.4 0.59

Statistical comparisons were performed using Kruskal-Wallis test. Bolded values denote significant results.

between patients with high vs. low stromal counts of DC (DC-
LAMP+) and as such, these data are not shown for graphical
clarity. Overall, the most significant survival differences between
high and low immune infiltration groups were observed for
CD4+ T cells (P = 0.0001), CD68+ macrophages (P < 0.0001),
CD163+ macrophages (P = 0.0004) and iNOS+ leukocytes (P
< 0.0001).

In order to determine if immune cell infiltration could
independently predict OS, we performed multivariate Cox
regression analysis including both IT and stromal counts, as
distinct variables, in addition to the primary clinical parameters
(Table 6). It was observed that along with clinical parameters
such as age and UICC stages, stromal densities of total T cells
(CD3+), CD4+ T cells, CD8+ T cells, and CD20+ B cells
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FIGURE 4 | Intratumoral (IT) immune contexture. Scatterplots displaying the distribution of intratumoral leukocyte density (counts/mm2 ) for LTS cases and NON-LTS

cases. Each symbol denotes an individual patient. The bars denote median values for each group. Differences between LTS and NON-LTS groups were analyzed

using the Mann-Whitney U test.

were identified as independently predictive of survival. Stromal
densities of FOXP3+ Tregs and mature DC (DC-LAMP+) were
also found to be independently prognostic variables in our
cohort. In the IT compartment, only CD163+ (M2) macrophages
were found to be significantly associated with survival in our
multivariate cox regression model. All covariates tested in the
model are presented in Supplementary Table 3.

Next, we sought to identify using machine learning, the
immune variable (IT or Stromal) that best classifies patients
as LTS or NON-LTS and thereby, predicts patient survival.
Random-forest (RF) is a decision tree-based machine learning
method which uses a bootstrapping method to generate
at random, training and testing samples from the dataset
(28). Variable selection was performed through the varSelRF
package in R, which uses recursive feature elimination to
find a minimal set of variables with the best predictive
performance (28). Using this approach, we determined that
stromal densities of iNOS+ and CD68+ cells are the two
best discriminatory variables for patient survival. Stromal
iNOS+ leukocytes display a potent positive correlation with
OS (Figure 7A) while stromal CD68+ (total) macrophages

TABLE 4 | Distribution of intra-tumoral (IT) leukocyte densities between LTS and

NON-LTS cases.

LTS NON-LTS

Immune cell type Median Range Median Range mm2 P-value

CD3/mm2 7.60 0.00–60.27 0.00 0.00–67.31 0.007

CD4/mm2 2.310 0.00–42.55 0.00 0.00–16.00 <0.0001

CD8/mm2 3.19 0.00–131.90 1.740 0.00–98.19 0.28

Foxp3/mm2 0.00 0.00–3.19 0.00 82.34 0.007

CD20/mm2 0.00 0.00–2.12 0.00 0.00–3.53 0.50

CD68/mm2 0.00 0.00–7.56 5.80 0.00–132.50 <0.0001

CD163/mm2 0.34 0.00–20.21 18.43 0.00–165.50 <0.0001

iNOS/mm2 0.00 0.00–61.44 0.00 0.00–41.56 0.0007

DC–LAMP/mm2 0.00 0.00–30.37 0.00 0.00–8.85 0.16

Statistical comparisons were performed using Mann-Whitney U Test. Bolded values

denote significant results.

show a strong negative correlation with OS (Figure 7B). The
ROC (Receiver Operating Characteristic) curves and ROC
values for the final two variables determined by RF selection

Frontiers in Immunology | www.frontiersin.org 8 February 2021 | Volume 12 | Article 643529

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sadozai et al. Long-Term Survivors With Pancreatic Cancer

FIGURE 5 | Stromal (S) immune contexture. Scatterplots displaying the distribution of stromal leukocyte density (counts/mm2 ) for LTS cases and NON-LTS cases.

Each symbol denotes an individual patient. The bars denote median values for each group. Differences between LTS and NON-LTS groups were analyzed using

Mann-Whitney U test.

(i.e., iNOS and CD68) are plotted in Supplementary Figure 7.
These findings suggest that iNOS+ leukocytes and CD68+

macrophages are highly relevant prognostic biomarkers in
PDAC patients.

In silico Examination of Survival
Associated Features in the PDAC TME
In order to validate our findings in an external cohort, we
performed analyses of transcriptional profiles of PDAC tissue
in a publicly available dataset first described in a report by
Puleo et al. (E-MTAB-6134) (12). For in silico studies, we
examined only those patients with long vs. short-term survival.
Selecting cases with extreme phenotypes/outcomes is a routine
practice in transcriptomics analyses of cancer patients in order
to identify differentially expressed genes or gene sets without
confounding from non-extreme samples (33). As such, we used
a quintile-based dichotomization for OS (top 20% vs. bottom
20%). Samples from patients in the aforementioned dataset with
survival information (n = 288) were divided into the following

groups; LTS (n = 58, median OS of 63.5 months) and STS
(n= 58, median OS of 7.2 months).

First, we performed immune cell profiling in LTS and STS
patients in silico. Recently, a number of algorithms have been
devised to perform cell-type specific deconvolution of bulk
transcriptomic (microarray or RNAseq) data (34). We used
the Microenvironment Cell Populations-counter (MCP-counter)
method developed by Becht et al., which can compute the
abundance of eight immune and two non-immune stromal cell
subtypes using transcriptional profiles of a bulk tumor sample
(35). A comparison of the eight immune cells between LTS and
STS-cases revealed an immune landscape comparable to LTS
patients in our own cohort (Figure 8). While there were no
statistically significant differences between both survival groups
in the estimated abundance of CD8+ T cells (P = 0.36), that of
CD3+ T cells and B lineage cells was significantly higher in LTS
vs. STS-cases (P = 0.006 and 0.036, respectively). Furthermore,
cytotoxic lymphocyte scores, a functionally defined subset which
accounts for mRNA expression from both T cells and NK
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TABLE 5 | Distribution of stromal (S) leukocyte densities between LTS and

NON-LTS cases.

LTS Non-LTS

Immune cell

type

Median Range Median Range P-value

CD3/mm2 735.6 78.89–3163.00 332.40 3.25–2647.00 0.0004

CD4/mm2 474.50 42.55–4324.00 20.28 0.00–680.90 <0.0001

CD8/mm2 454.90 10.93–2004.00 309.50 0.00–2635.00 0.24

Foxp3/mm2 7.97 0.00–140.80 32.02 0.00–531.90 0.0004

CD20/mm2 89.25 0.74–5811.00 24.17 0.00–1879.00 0.0006

CD68/mm2 331.60 169.00–752.50 788.40 229.60–6730.00 <0.0001

CD163/mm2 319.90 234.60–1085.00 893.60 130.90–6578.00 <0.0001

iNOS/mm2 85.40 14.17–481.50 6.78 0.00–212.80 <0.0001

DC–

LAMP/mm2

40.76 0.00–255.3 14.82 0.00–617.00 0.008

Statistical comparisons were performed using Mann-Whitney U Test. Bolded values

denote significant results.

cells (35), were found to be significantly elevated in LTS cases
compared to STS-patients (P = 0.023). When compared to STS-
patients, the LTS group exhibited no significant differences in
the abundance of NK cells (P = 0.65), monocyte-lineage cells
(P = 0.074), and neutrophils (P = 0.77). However, myeloid DC
abundance scores were markedly higher in LTS compared to STS
tumors (P = 0.006). Finally, multivariate Cox regression was
performed in the cohort including all MCP-Counter populations
and available clinical variables (gender, TNM tumor stages, and
pathological tumor grades). Only tumor grades and myeloid DC
abundance scores were observed to be independently associated
with OS in the external cohort (Supplementary Table 4).

Due to the strong association between survival status (LTS
vs. NON-LTS) and TLS formation in our cohort, we sought to
recapitulate this finding in silico. Recently, a 12-gene chemokine
signature which could predict TLS presence in colorectal cancer
was reported by Coppola et al. in 2011 (25). Using a rank-based
sample scoring method for gene signatures (signscore) (26), we
scored each sample for TLS gene expression. LTS cases were
observed to have significantly higher (P= 0.016) signature scores
for the TLS signature vs. STS cases (Supplementary Figure 8).
Collectively, these results provide an independent validation of
the presence of TLT formation and dense lymphocyte infiltration
in patients who exhibit improved survival in pancreatic cancer.

DISCUSSION

The distinct TME of PDAC patients poses a significant challenge
for treatment with conventional drugs or immunotherapy (15,
16). By examining a clinically rare subset of LTS patients, we
sought to determine those features which are highly specific to
enhanced survival. Generally, LTS cases exhibit an inactive or
inert stroma, and are marked by improved T cell infiltration and
a significantly reduced burden of immunosuppressive myeloid
cells and Tregs. Furthermore, our findings show evidence for the
use of TAM markers as prognostic biomarkers and suggest that
therapies targeted to myeloid cells might abolish the uniquely
immunosuppressive TME found in pancreatic cancer.

Currently, T cell targeted immunotherapies such as immune
checkpoint inhibitors, tumor cell-derived vaccines (e.g., GVAX)
and chimeric antigen receptor (CAR)-T cell infusions show only
minimal clinical efficacy in PDAC patients (15). Remarkably,
although CD8+ T cell counts were identified as an independent
prognostic factor, no significant differences were observed in
CD8+ T cell density between LTS and NON-LTS cases in
either the intratumoral or the stromal compartment. These
findings warrant further elucidation. First, in our cohort, a
number of NON-LTS patients exhibiting medium-term survival
(between three to five years) contained higher densities of
both intratumoral and stromal CD8+ T cells. As such, major
differences between NON-LTS and LTS cases could not be
observed. Secondly, these data suggest that the presence of
copious numbers of CD8+ T cells alone might not be sufficient
to control disease progression in pancreatic cancer. This was
corroborated by the seminal work of Balachandran et al. who
demonstrated that PDAC patients who were found to have
the longest survival displayed the highest number of predicted
neoantigens as well as the highest abundance of CD8+ T cells but
neither variable independently (36).

We found CD4+ T cells to be significantly elevated in both
the intratumoral and stromal compartments of LTS vs. NON-
LTS patients. Furthermore, patients with high CD4+ T cell
infiltration demonstrated a dramatically improved OS compared
to patients with low CD4+ T cells, suggesting that patient
outcome might be, at least partly, mediated by CD4+ helper T
cells. Indeed, CD4+ T cells are recognized to be essential for
tumor immunity as they can exhibit direct cytotoxicity against
tumor cells as well as potentiate DC resulting in enhanced CD8+

T cell responses (37). The association of CD4+ T cell density
with OS has been corroborated by a number of other reports
(20, 38). However, our report is the first to demonstrate that
helper T cells distinguish LTS from NON-LTS cases warranting
further investigation into CD4+ T cell specific immunotherapies.
Evidence for the therapeutic utility of helper T cells is shown
in murine models of glioblastoma multiforme where CD4+

CAR-T cells were found to perform better than CD8+ CAR-
T cells, particularly in terms of exhibiting long-term anti-
tumor immunity (39). Notably, the immune landscape of LTS
cases in our cohort was recapitulated in silico in an external
cohort of PDAC tissues, where patients in the top quintile (i.e.,
LTS) of overall survival exhibited higher abundance scores for
total (CD3+) T cells but not for CD8+ T cells compared to
STS patients. The MCP-counter algorithm does not specifically
estimate the abundance for CD4+ T cells but incorporates them
into the CD3+ T cell category, possibly explaining the higher
CD3+ T cell scores observed in LTS compared to STS cases (35).
We were unable to assess the presence of FOXP3+ Tregs in silico.
Nevertheless, the intratumoral and stromal densities of Tregs was
found to be markedly diminished in LTS cases suggesting the
presence of a uniquely immunostimulatory TME compared to
NON-LTS cases. Intriguingly, MCP-counter derived abundance
scores for “cytotoxic lymphocytes” were significantly higher in
LTS compared to STS patients. This category is considered to
transcriptionally identify T cell andNK cells with cytotoxic ability
and suggests the presence of higher numbers of functionally
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FIGURE 6 | Principal Component Analysis (PCA) demonstrates distinct immune landscape in LTS vs. NON-LTS samples. PCA performed using (A) stromal and (B)

intratumoral immune cell densities show distinct clustering of LTS vs. NON-LTS patient groups. Each symbol denotes an individual patient and 95% confidence

ellipses are drawn. The percent variation is explained by first principal component (PC1, x-axis) and the second principal component −2 (PC2, y-axis).

active cytotoxic leukocytes in LTS cases (35). Collectively, these
findings indicate that long-term survival in PDAC patients
is predicated on both T cell infiltration and the presence
of functionally activated T cells. Thus, there is a therapeutic
rationale for treating such cases with agonistic antibodies to T cell
costimulatorymolecules (e.g., CD137, OX40, GITR), a number of
which are undergoing clinical trials (40). Such an approachmight
significantly enhance anti-tumor immunity in PDAC patients
with a pre-existing T cell infiltrate.

B cells and DC can prime T cells to target tumor cells
due to their capacity for antigen presentation (41, 42). This
occurs in secondary lymphoid organs but can also occur in
TLT which contain CD20+ B cells and DC-LAMP+ DC and
are considered to be foci of T cell priming (29). We also noted
elevated numbers of CD20+ B cells and mature DC-LAMP+

DC in the stromal compartment of LTS group compared to the
NON-LTS group. Most TLTs are found in the invasive margin
of the tumor or the stroma and as such, increased densities of
stromal B cells and DC in the LTS group are suggestive of the
co-localization of these cells within TLT. Further support for this
observation was yielded by our in silico analyses, where LTS cases
exhibited not only higher abundance scores for B lineage cells and
myeloid DC but also displayed significantly higher expression
of a previously published TLT gene signature compared to STS
cases (25). Thus, inducing TLT formation in solid tumors is
a potentially promising treatment and a number of agents in
preclinical development (e.g., agonistic anti-lymphotoxin beta
receptor antibody) warrant further investigation (29).

Finally, the most striking immunological differences between
LTS and NON-LTS cases were observed in the myeloid
compartment. Our work aligns with the findings of Ino et al.,

TABLE 6 | Independent prognostic variables as determined by multivariate Cox

regression using data from University of Bern cohort.

Parameters HR Lower.95 Upper.95 P-value

Age 0.974742 0.952607 0.997392 0.03

UICCIB 4.029215 1.037952 15.64096 0.04

UICCIIA 7.794558 1.414953 42.9379 0.02

UICCIIB 7.257432 2.040314 25.81482 0.002

UICCIII 11.08317 2.72406 45.09324 0.0008

CD163 IT 1.015146 1.003463 1.026965 0.01

CD3S 1.001003 1.00012 1.001886 0.02

CD4S 0.998119 0.996678 0.999561 0.01

CD8S 0.997823 0.996611 0.999038 0.0004

CD20S 1.001441 1.00033 1.002554 0.01

DC-LAMP S 0.995403 0.991113 0.999712 0.04

FOXP3S 1.00403 1.000643 1.007428 0.02

Only statistically significant values are reported. For the full analysis, please see

Supplementary Table 3. Bolded values denote significant results.

who showed that CD68+ and CD163+ macrophages were
associated with significantly worse OS in PDAC (20). It is
therefore plausible why therapies targeted to TAMs and other
myeloid cells currently display promise both in pre-clinical
and clinical studies of pancreatic cancer (15–17). TAM-targeted
therapies involve depletion (e.g., CSF1Ri), interrupting their
recruitment to the TME (CCR2i) or repolarizing TAMs to an
immunostimulatory (M1) phenotype (e.g., agonist anti-CD40
antibodies) (15–17). Such treatments aim to abrogate TAM-
mediated immunosuppression but have also been shown to
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FIGURE 7 | Stromal densities of iNOS and CD68 positive cells display strongest association with survival using Random Forest variable selection. Scatterplots

demonstrating association between stromal density and survival for (A) iNOS+ cells, and (B) CD68+ cells. Each symbol represents an individual patient. Both the

features are significantly (P < 0.05) associated with OS (months). Spearman correlation and P-values are plotted.

FIGURE 8 | Comparison of immune cell abundance between LTS and STS cases in silico. Boxplots demonstrating the distribution of abundance scores for 8

leukocyte subsets as computed by the MCP-Counter method in LTS (n = 58) vs. STS (n = 58) samples in an external cohort of PDAC cases. The following cell types

were quantified CD3+ T cells (Pan T cells), CD8+ T cells, cytotoxic lymphocytes, B lineage cells, NK cells, monocytic lineage cells, myeloid dendritic cells and

neutrophils. Differences between groups were analyzed using the Mann-Whitney U test.

significantly remodel tumor stroma (43). We observed an inverse
relationship between iNOS+ leukocytes and CD68+ as well as
CD163+ leukocytes in LTS and NON-LTS cases. It is pertinent

to note that while iNOS is considered to be a marker for M1
macrophages (44), it is also expressed by neutrophils (45). As
such, we used the term iNOS+ leukocytes to describe all immune
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cells were positive for iNOS. Furthermore, iNOS-mediated NO
production in both macrophages and neutrophils can induce
direct tumor cytotoxicity (45, 46). Thus, it can be postulated
that myeloid cells play an essential role in the improved survival
of LTS cases. However, we could not determine differences
between LTS and STS patients for myeloid lineage cell abundance
scores in the external cohort. This is plausible as cell-type
deconvolution methods rely upon pre-defined transcriptional
signatures to identify a particular subset and thus, may be unable
to distinguish between the heterogeneous subsets of the myeloid
lineage (34, 47). Finally, we utilized a Random-Forest based
variable selection method to identify a minimum number of
variables which could predict survival in our cohort (28). Thus,
our findings offer a rationale for the use of either iNOS and/or
CD68 as prognostic biomarkers for PDAC. From our results,
it can be hypothesized that a higher burden of stromal CD68+

or CD163+ TAMs might prevent intratumoral infiltration of
T cells. Support for this concept is provided by studies in
mice where stromal macrophages were found to trap CD8+

T cells in the stroma and their depletion with CSF1Ri, led to
significantly enhanced infiltration of CD8+ T cells into tumor
nests (48).

Our study also shows that LTS cases can be distinguished by
having a largely inactivated stromal profile thereby suggesting
that stromal modulation might extend survival in pancreatic
cancer. However, therapeutic manipulation of the stroma in
PDAC has shown mixed results in experimental models.
Depletion of αSMA+ myofibroblasts in autochthonous murine
tumors resulted in advanced disease progression with invasive,
undifferentiated tumors and increased hypoxia and EMT
(49). On the other hand, inhibition of focal adhesion kinase
(FAK) in murine models was shown to diminish fibrosis
resulting in a notable reduction in intratumoral macrophages
and Tregs (50). In addition, studies have also shown that
activated pancreatic stellate cells (i.e., CAFs) can limit T cell
infiltration into the intratumoral compartment (51). Indeed,
in our study we noted that diminished fibrosis was associated
with reduced numbers of immunosuppressive and increased
numbers of immunostimulatory leukocytes, as nearly half
of the LTS patients (42%) displayed an “inert” stromal
subtype. Our results are also corroborated by the work of
Mahajan et al., who also reported immune cell differences
between stromal subtypes (52). The authors showed that
while fibrolytic (αSMAhigh/collagenlow) stromal subtype displays
a higher abundance of CD206+ macrophages (which are
also deemed to be M2 macrophages) and reduced CD8+ T
cells, fibrogenic (αSMAhigh/collagenhigh) stroma are marked
by increased CD8+ T cells and CD68+ macrophages (52).
In our study, it was shown that 57% of the NON-LTS
group displayed fibrolytic and fibrogenic stromal subtypes
and while these cases contained comparable levels of CD8+

T cells to LTS cases, they also exhibited a notably higher
burden of CD163+ (M2) and CD68+ TAMs. Thus, our
study supports the concept of stromal-immune crosstalk with
respect to the myeloid compartment. Interfering with this
crosstalk might limit stromal activation and TAM-mediated

immunosuppression. This was shown recently by an elegant
study in an autochthonous murine model of PDAC, where the
authors disrupted pancreatic stellate cell activation and ECM
deposition using Halifuginone, an analog of febrifugine (53).
Inhibition of fibrosis with Halifuginone in mice resulted in
a marked infiltration of iNOS+ leukocytes and CD8+ T cells
(53). Thus, such an approach might be a viable strategy for
modulating the stroma and repolarizing myeloid cells to an
immunostimulatory phenotype.

A limitation of our study is the low number of cases in
the LTS group. Nevertheless, our results provide substantial
evidence that long-term survival in pancreatic cancer is
associated with distinct immune and stromal profiles suggesting
the use of combinatorial therapy to improve treatment
outcomes in PDAC. NGS mutational profiling revealed no
major differences between LTS and NON-LTS cases and
furthermore, it is known that the four primary driver
mutations in PDAC currently remain unactionable targets.
Thus, while further efforts are required to comprehensively
phenotype the immunological and stromal cell diversity in
pancreatic cancer, our approach highlights a number of immune
markers for use as prognostic tools or as drug targets for
combinatorial immunotherapies.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in
online repositories. The names of the repository/repositories
and accession number(s) can be found in the article or
Supplementary Material.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Ethics Committee of the Canton of Bern (KEK
Nr 200/14). The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

EK conceived and supervised the study. EK and HS devised
all analyses and wrote the manuscript. HS, AA, and SE-C
performed statistical analyses and interpreted data. AA revised
the manuscript. TG and HS performed in silico analyses and
interpreted data. MS provided input on interpretation of the data.
BG provided the clinical information. All authors contributed to
the article and approved the submitted version.

FUNDING

EK was supported for this project by the Foundation for
Clinical-Experimental Tumor-Research. The funders had no
involvement in the study design; in the collection, analysis,
and interpretation of the data; in the writing of the report;
and in the decision to submit the paper for publication. AA

Frontiers in Immunology | www.frontiersin.org 13 February 2021 | Volume 12 | Article 643529

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sadozai et al. Long-Term Survivors With Pancreatic Cancer

was supported by National Institute for Health Research
(NIHR) Surgical Reconstruction and Microbiology Research
Center (SRMRC), Birmingham, UK. MS was supported
by the Foundation for Experimental Biomedicine, Zurich,
Switzerland, The Swiss National Science Foundation and the
San Salvatore Foundation, Lugano, Switzerland. The views
expressed in this publication are those of the authors and not
necessarily those of the NHS, the National Institute for Health

Research, the Medical Research Council or the Department of
Health, UK.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fimmu.
2021.643529/full#supplementary-material

REFERENCES

1. Kamisawa T, Wood LD, Itoi T, Takaori K. Pancreatic cancer. Lancet. (2016)
388:73–85. doi: 10.1016/S0140-6736(16)00141-0

2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian
LM. Projecting cancer incidence and deaths to 2030: the unexpected burden
of thyroid, liver, and pancreas cancers in the united states. Cancer Res. (2014)
74:2913–21. doi: 10.1158/0008-5472.CAN-14-0155

3. Serrano PE, Cleary SP, Dhani N, Kim PTW, Greig PD, Leung K, et al.
Improved long-term outcomes after resection of pancreatic adenocarcinoma:
a comparison between two time periods. Ann Surg Oncol. (2015) 22:1160–7.
doi: 10.1245/s10434-014-4196-2

4. Keck T, Wellner UF, Bahra M, Klein F, Sick O, Niedergethmann M, et al.
Pancreatogastrostomy vs. pancreatojejunostomy for RECOnstruction after
PANCreatoduodenectomy (RECOPANC, DRKS 00000767). Ann Surg. (2016)
263:440–9. doi: 10.1097/SLA.0000000000001240

5. Conroy T, Hammel P, Hebbar M, Ben Abdelghani M,Wei AC, Raoul J-L, et al.
FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N
Engl J Med. (2018) 379:2395–406. doi: 10.1056/NEJMoa1809775

6. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, et al.
Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine.
N Engl J Med. (2013) 369:1691–703. doi: 10.1056/NEJMoa1304369

7. Lowder CY, Metkus J, Epstein J, Kozak GM, Lavu H, Yeo CJ, et al. Clinical
implications of extensive lymph node metastases for resected pancreatic
cancer. Ann Surg Oncol. (2018) 25:4004–11. doi: 10.1245/s10434-018-6763-4

8. Kaltenmeier C, Nassour I, Hoehn RS, Khan S, Althans A, Geller
DA, et al. Impact of resection margin status in patients with
pancreatic cancer: a national cohort study. J Gastrointest Surg. (2020)
doi: 10.1007/s11605-020-04870-6

9. Collisson EA, Bailey P, Chang DK, Biankin A V. Molecular subtypes
of pancreatic cancer. Nat Rev Gastroenterol Hepatol. (2019) 16:207–20.
doi: 10.1038/s41575-019-0109-y

10. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SGH, Hoadley KA,
et al. Virtual microdissection identifies distinct tumor- and stroma-specific
subtypes of pancreatic ductal adenocarcinoma. Nat Genet. (2015) 47:1168–78.
doi: 10.1038/ng.3398

11. Bailey P, Chang DK, Nones K, Johns AL, Patch A-M, Gingras M-C, et al.
Genomic analyses identify molecular subtypes of pancreatic cancer. Nature.
(2016) 531:47–52. doi: 10.1038/nature16965

12. Puleo F, Nicolle R, Blum Y, Cros J, Marisa L, Demetter P, et al.
Stratification of pancreatic ductal adenocarcinomas based on tumor and
microenvironment features. Gastroenterology. (2018) 155:1999–2013.e3.
doi: 10.1053/j.gastro.2018.08.033

13. N Kalimuthu S, Wilson GW, Grant RC, Seto M, O’Kane G, Vajpeyi R,
et al. Morphological classification of pancreatic ductal adenocarcinoma that
predicts molecular subtypes and correlates with clinical outcome. Gut. (2020)
69:317–28. doi: 10.1136/gutjnl-2019-318217

14. Chan-Seng-Yue M, Kim JC, Wilson GW, Ng K, Figueroa EF, O’Kane
GM, et al. Transcription phenotypes of pancreatic cancer are driven by
genomic events during tumor evolution. Nat Genet. (2020) 52:231–40.
doi: 10.1038/s41588-019-0566-9

15. Balachandran VP, Beatty GL, Dougan SK. Broadening the impact of
immunotherapy to pancreatic cancer: challenges and opportunities.
Gastroenterology. (2019) 156:2056–72. doi: 10.1053/j.gastro.2018.
12.038

16. Ho WJ, Jaffee EM, Zheng L. The tumor microenvironment in pancreatic
cancer — clinical challenges and opportunities. Nat Rev Clin Oncol. (2020)
17:527–40. doi: 10.1038/s41571-020-0363-5

17. Lafaro KJ, Melstrom LG. The paradoxical web of pancreatic
cancer tumor microenvironment. Am J Pathol. (2019) 189:44–57.
doi: 10.1016/j.ajpath.2018.09.009

18. Ligorio M, Sil S, Malagon-Lopez J, Nieman LT, Misale S, Di Pilato M, et al.
Stromal microenvironment shapes the intratumoral architecture of pancreatic
cancer. Cell. (2019) 178:160–75.e27. doi: 10.1016/j.cell.2019.05.012

19. Trovato R, Fiore A, Sartori S, Canè S, Giugno R, Cascione L, et al.
Immunosuppression by monocytic myeloid-derived suppressor cells in
patients with pancreatic ductal carcinoma is orchestrated by STAT3. J

Immunother Cancer. (2019) 7:255. doi: 10.1186/s40425-019-0734-6
20. Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, et al.

Immune cell infiltration as an indicator of the immune microenvironment of
pancreatic cancer. Br J Cancer. (2013) 108:914–923. doi: 10.1038/bjc.2013.32

21. Blando J, Sharma A, Higa MG, Zhao H, Vence L, Yadav SS, et al. Comparison
of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as
a potential target in pancreatic cancer. Proc Natl Acad Sci. (2019) 116:1692–7.
doi: 10.1073/pnas.1811067116

22. Wartenberg M, Cibin S, Zlobec I, Vassella E, Eppenberger-Castori
S, Terracciano L, et al. Integrated genomic and immunophenotypic
classification of pancreatic cancer reveals three distinct subtypes with
prognostic/predictive significance. Clin Cancer Res. (2018) 24:4444–54.
doi: 10.1158/1078-0432.CCR-17-3401

23. Dacheva D, Dodova R, Popov I, Goranova T, Mitkova A, Mitev V, et al.
Validation of an NGS approach for diagnostic BRCA1/BRCA2 mutation
testing.Mol Diagn Ther. (2015) 19:119–30. doi: 10.1007/s40291-015-0136-5

24. Thorvaldsdottir H, Robinson JT, Mesirov JP. Integrative genomics viewer
(IGV): high-performance genomics data visualization and exploration. Brief
Bioinform. (2013) 14:178–92. doi: 10.1093/bib/bbs017

25. Coppola D, NebozhynM, Khalil F, Dai H, Yeatman T, Loboda A, et al. Unique
ectopic lymph node-like structures present in human primary colorectal
carcinoma are identified by immune gene array profiling. Am J Pathol. (2011)
179:37–45. doi: 10.1016/j.ajpath.2011.03.007

26. Foroutan M, Bhuva DD, Lyu R, Horan K, Cursons J, Davis MJ. Single
sample scoring of molecular phenotypes. BMC Bioinformatics. (2018) 19:404.
doi: 10.1186/s12859-018-2435-4

27. Sturm G, Finotello F, List M. Immunedeconv: An R package for unified
access to computational methods for estimating immune cell fractions from
bulk RNA-sequencing data. In:Methods in Molecular Biology. (2020). 223–32.
doi: 10.1007/978-1-0716-0327-7_16

28. Díaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification
of microarray data using random forest. BMC Bioinformatics. (2006) 7:3.
doi: 10.1186/1471-2105-7-3

29. Sautès-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid
structures in the era of cancer immunotherapy. Nat Rev Cancer. (2019)
19:307–25. doi: 10.1038/s41568-019-0144-6

30. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD,
Rivera A, et al. Cancer-associated stromal fibroblasts promote
pancreatic tumor progression. Cancer Res. (2008) 68:918–26.
doi: 10.1158/0008-5472.CAN-07-5714

31. Apte M V., Pirola RC, Wilson JS. Pancreatic stellate cells: a starring
role in normal and diseased pancreas. Front Physiol. (2012) 3:
doi: 10.3389/fphys.2012.00344

Frontiers in Immunology | www.frontiersin.org 14 February 2021 | Volume 12 | Article 643529

https://www.frontiersin.org/articles/10.3389/fimmu.2021.643529/full#supplementary-material
https://doi.org/10.1016/S0140-6736(16)00141-0
https://doi.org/10.1158/0008-5472.CAN-14-0155
https://doi.org/10.1245/s10434-014-4196-2
https://doi.org/10.1097/SLA.0000000000001240
https://doi.org/10.1056/NEJMoa1809775
https://doi.org/10.1056/NEJMoa1304369
https://doi.org/10.1245/s10434-018-6763-4
https://doi.org/10.1007/s11605-020-04870-6
https://doi.org/10.1038/s41575-019-0109-y
https://doi.org/10.1038/ng.3398
https://doi.org/10.1038/nature16965
https://doi.org/10.1053/j.gastro.2018.08.033
https://doi.org/10.1136/gutjnl-2019-318217
https://doi.org/10.1038/s41588-019-0566-9
https://doi.org/10.1053/j.gastro.2018.12.038
https://doi.org/10.1038/s41571-020-0363-5
https://doi.org/10.1016/j.ajpath.2018.09.009
https://doi.org/10.1016/j.cell.2019.05.012
https://doi.org/10.1186/s40425-019-0734-6
https://doi.org/10.1038/bjc.2013.32
https://doi.org/10.1073/pnas.1811067116
https://doi.org/10.1158/1078-0432.CCR-17-3401
https://doi.org/10.1007/s40291-015-0136-5
https://doi.org/10.1093/bib/bbs017
https://doi.org/10.1016/j.ajpath.2011.03.007
https://doi.org/10.1186/s12859-018-2435-4
https://doi.org/10.1007/978-1-0716-0327-7_16
https://doi.org/10.1186/1471-2105-7-3
https://doi.org/10.1038/s41568-019-0144-6
https://doi.org/10.1158/0008-5472.CAN-07-5714
https://doi.org/10.3389/fphys.2012.00344
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Sadozai et al. Long-Term Survivors With Pancreatic Cancer

32. Erkan M, Michalski CW, Rieder S, Reiser–Erkan C, Abiatari I, Kolb A, et al.
The activated stroma index is a novel and independent prognostic marker
in pancreatic ductal adenocarcinoma. Clin Gastroenterol Hepatol. (2008)
6:1155–61. doi: 10.1016/j.cgh.2008.05.006

33. Marko NF, Toms SA, Barnett GH, Weil R. Genomic expression
patterns distinguish long-term from short-term glioblastoma survivors:
a preliminary feasibility study. Genomics. (2008) 91:395–406.
doi: 10.1016/j.ygeno.2008.01.002

34. Finotello F, Rieder D, Hackl H, Trajanoski Z. Next-generation computational
tools for interrogating cancer immunity. Nat Rev Genet. (2019) 20:724–46.
doi: 10.1038/s41576-019-0166-7

35. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al.
Estimating the population abundance of tissue-infiltrating immune and
stromal cell populations using gene expression. Genome Biol. (2016) 17:218.
doi: 10.1186/s13059-016-1070-5

36. Balachandran VP, Łuksza M, Zhao JN, Makarov V, Moral JA, Remark
R, Herbst B, et al. Identification of unique neoantigen qualities in
long-term survivors of pancreatic cancer. Nature. (2017) 551:512–516.
doi: 10.1038/nature24462

37. Borst J, Ahrends T, Babała N, Melief CJM, Kastenmüller W. CD4+ T cell
help in cancer immunology and immunotherapy. Nat Rev Immunol. (2018)
18:635–47. doi: 10.1038/s41577-018-0044-0

38. Carstens JL, Correa de Sampaio P, Yang D, Barua S, Wang H, Rao
A, et al. Spatial computation of intratumoral T cells correlates with
survival of patients with pancreatic cancer. Nat Commun. (2017) 8:15095.
doi: 10.1038/ncomms15095

39. Wang D, Aguilar B, Starr R, Alizadeh D, Brito A, Sarkissian A, et al.
Glioblastoma-targeted CD4+ CAR T cells mediate superior antitumor
activity. JCI Insight. (2018) 3: doi: 10.1172/jci.insight.99048

40. Choi Y, Shi Y, Haymaker CL, Naing A, Ciliberto G, Hajjar J. T-cell
agonists in cancer immunotherapy. J Immunother Cancer. (2020) 8:e000966.
doi: 10.1136/jitc-2020-000966

41. Sharonov G V., Serebrovskaya EO, Yuzhakova D V., Britanova O
V., Chudakov DM. B cells, plasma cells and antibody repertoires in
the tumour microenvironment. Nat Rev Immunol. (2020) 20:294–307.
doi: 10.1038/s41577-019-0257-x

42. Gardner A, Ruffell B. Dendritic Cells and Cancer Immunity. Trends Immunol.

(2016) 37:855–65. doi: 10.1016/j.it.2016.09.006
43. Candido JB, Morton JP, Bailey P, Campbell AD, Karim SA, Jamieson T,

et al. CSF1R+ macrophages sustain pancreatic tumor growth through T cell
suppression and maintenance of key gene programs that define the squamous
subtype. Cell Rep. (2018) 23:1448–60. doi: 10.1016/j.celrep.2018.03.131

44. Ley K. M1 means Kill; M2 means Heal. J Immunol. (2017) 199:2191–3.
doi: 10.4049/jimmunol.1701135

45. Jaillon S, Ponzetta A, Di Mitri D, Santoni A, Bonecchi R, Mantovani A.
Neutrophil diversity and plasticity in tumour progression and therapy. Nat
Rev Cancer. (2020) 20:485–503. doi: 10.1038/s41568-020-0281-y

46. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol.

(2015) 6:334–43. doi: 10.1016/j.redox.2015.08.009
47. Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in

cancer. J Leukoc Biol. (2019) 106:309–22. doi: 10.1002/JLB.4RI0818-311R
48. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun

C, et al. Macrophages impede CD8T cells from reaching tumor cells and
limit the efficacy of anti–PD-1 treatment. Proc Natl Acad Sci USA. (2018)
115:E4041–50. doi: 10.1073/pnas.1720948115

49. Özdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu C-C, Simpson
TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces
immunosuppression and accelerates pancreas cancer with reduced survival.
Cancer Cell. (2014) 25:719–34. doi: 10.1016/j.ccr.2014.04.005

50. Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA,
et al. Targeting focal adhesion kinase renders pancreatic cancers
responsive to checkpoint immunotherapy. Nat Med. (2016) 22:851–60.
doi: 10.1038/nm.4123

51. Ene–Obong A, Clear AJ, Watt J, Wang J, Fatah R, Riches JC, et al. Activated
pancreatic stellate cells sequester CD8+ T cells to reduce their infiltration
of the juxtatumoral compartment of pancreatic ductal adenocarcinoma.
Gastroenterology. (2013) 145:1121–32. doi: 10.1053/j.gastro.2013.
07.025

52. Mahajan UM, Langhoff E, Goni E, Costello E, Greenhalf W, Halloran C, et al.
Immune cell and stromal signature associated with progression-free survival
of patients with resected pancreatic ductal adenocarcinoma. Gastroenterology.
(2018) 155:1625–1639.e2. doi: 10.1053/j.gastro.2018.08.009

53. Elahi-Gedwillo KY, Carlson M, Zettervall J, Provenzano PP. Antifibrotic
therapy disrupts stromal barriers and modulates the immune landscape
in pancreatic ductal adenocarcinoma. Cancer Res. (2019) 79:372–86.
doi: 10.1158/0008-5472.CAN-18-1334

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Sadozai, Acharjee, Eppenberger-Castori, Gloor, Gruber, Schenk

and Karamitopoulou. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Immunology | www.frontiersin.org 15 February 2021 | Volume 12 | Article 643529

https://doi.org/10.1016/j.cgh.2008.05.006
https://doi.org/10.1016/j.ygeno.2008.01.002
https://doi.org/10.1038/s41576-019-0166-7
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1038/nature24462
https://doi.org/10.1038/s41577-018-0044-0
https://doi.org/10.1038/ncomms15095
https://doi.org/10.1172/jci.insight.99048
https://doi.org/10.1136/jitc-2020-000966
https://doi.org/10.1038/s41577-019-0257-x
https://doi.org/10.1016/j.it.2016.09.006
https://doi.org/10.1016/j.celrep.2018.03.131
https://doi.org/10.4049/jimmunol.1701135
https://doi.org/10.1038/s41568-020-0281-y
https://doi.org/10.1016/j.redox.2015.08.009
https://doi.org/10.1002/JLB.4RI0818-311R
https://doi.org/10.1073/pnas.1720948115
https://doi.org/10.1016/j.ccr.2014.04.005
https://doi.org/10.1038/nm.4123
https://doi.org/10.1053/j.gastro.2013.07.025
https://doi.org/10.1053/j.gastro.2018.08.009
https://doi.org/10.1158/0008-5472.CAN-18-1334
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles

	Distinct Stromal and Immune Features Collectively Contribute to Long-Term Survival in Pancreatic Cancer
	Introduction
	Methods
	Patients and Tissues
	Assessment of Tumor Budding, Gland-Forming Component, and TLT
	Stromal Subtyping and Evaluation
	Immunohistochemistry
	Normalization and Scoring of the Immune Cell Infiltrates
	Next Generation Sequencing and Data Analysis
	Gene Expression Dataset
	Gene Signature Scoring
	Cell-Type Deconvolution
	Random Forest Machine Learning and Immune Variable Selection
	Survival Analysis
	Statistical Analysis

	Results
	Clinical and Pathological Profiles
	Stromal Subtyping
	Profiling the Immune Contexture
	Prognostic Significance of Immune Infiltrates
	In silico Examination of Survival Associated Features in the PDAC TME

	Discussion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


