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Circulating T helper cells with a type 17-polarized phenotype (TH17) and expansion of
aquaporin-4 (AQP4)-specific T cells are frequently observed in patients with neuromyelitis
optica spectrum disorder (NMOSD). However, naive T cell populations, which give rise to
T helper cells, and the primary site of T cell maturation, namely the thymus, have not been
studied in these patients. Here, we report the alterations of naive CD4 T cell homeostasis
and the changes in thymic characteristics in NMOSD patients. Flow cytometry was
performed to investigate the naive CD4+ T cell subpopulations in 44 NMOSD patients and
21 healthy controls (HC). On immunological evaluation, NMOSD patients exhibited
increased counts of CD31+thymic naive CD4+ T cells and CD31-cental naive CD4+ T cells
along with significantly higher fraction and absolute counts of peripheral blood CD45RA+

CD62L+ naive CD4+ T cells. Chest computed tomography (CT) images of 60 NMOSD
patients and 65 HCs were retrospectively reviewed to characterize the thymus in NMOSD.
Thymus gland of NMOSD patients exhibited unique morphological characteristics with
respect to size, shape, and density. NMOSD patients showed exacerbated age-
dependent thymus involution than HC, which showed a significant association with
disease duration. These findings broaden our understanding of the immunological
mechanisms that drive severe disease in NMOSD.

Keywords: neuromyelitis optica spectrum disorder, thymic involution, CT, naive T cells, flow cytometry
INTRODUCTION

Neuromyelitis optica spectrum disorder (NMOSD) is a severe disabling autoimmune disease of the
central nervous system (CNS) associated with anti-aquaporin-4 (AQP4)-autoantibody. T helper
subsets, which affect the differentiation of B cells into antibody-producing cells, have been
implicated in the pathogenesis of this autoimmune disorder (1). Changes in the circulating T-cell
profile indicate a key role of T cells in NMOSD (2, 3). Thymus is the primary lymphoid organ,
which regulates the development, selection, and maturation of T cells (4). However, alterations in
the thymic characteristics or thymic function, if any, in NMOSD have not been elucidated.
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Naive T cells are generated in the thymus and recirculate
among lymphoid organs. Exposure of naïve T cells to foreign
antigens induces their activation and differentiation into effector
and memory T cells (5, 6). Preservation of the peripheral naive T
cell pool in humans requires both thymic output and
homeostatic proliferation (7–9). Interleukin-6 (IL-6) can
promote the di fferent ia t ion of naive T ce l l s into
proinflammatory type 17 helper T cells, which, along with
interleukin-6, promote the differentiation of B cells into
AQP4-IgG–produc ing p lasmab las t s (10–12) . Th i s
phenomenon consistently aggravates the disease severity in
patients with NMOSD. However, the naive T cell homeostasis
in NMOSD patients is not well characterized.

Naive T cells are regarded as a fairly homogeneous and
quiescent cell population, differing only with respect to T-cell
receptor (TCR) specificity; the size of the naive T cell population
depends on age and thymic output (13). Phenotypically, human
naive CD4 + T cells express surface markers, such as CCR7,
CD45RA, CD62L, CD27, and CD28 (14, 15). Previous studies
have shown that surface CD31 expression distinguishes two
subpopulations of CD45RA+ CD62L+ naive CD4+ T cells with
distinct T-cell receptor excision circle (TREC) content in the
peripheral blood of humans (13, 14, 16). CD31+ thymic naive
CD4+ T cells were found to be enriched in TRECs, comprising
of recent thymic emigrants, whereas CD31- central naive CD4+ T
cells displayed a rather low TREC content, characterized by
striking TCR repertoire restrictions, seemingly generated by
homeostatic proliferation of naive CD4+ T cells (13). The
fraction and absolute count of CD31+ thymic naive CD4+ T cells
show a negative correlation with age and the age-related decline in
thymic function, which can be regarded as direct marker of thymic
output (17). In contrast, the absolute number of CD31-central naive
CD4+ T cells tends to remain stable over time, implying a
peripheral regulation independent of thymic activity (18).

Thymic homing of activated CD4+ T cells has been shown to
induce the degeneration of thymus gland (19); therefore, the
thymic characteristics and thymic function in NMOSD were
unexpected observations on account of the CD4+ TH17 cells
polarization. This complexity provides interesting insights into
the pathogenesis of NMOSD.

In this study, we retrospectively reviewed the chest computed
tomography (CT) images to describe the characteristics of
thymus in patients with NMOSD and measured the thymic
density as a representative marker of thymic function. In
addition, we performed flow cytometric analysis of naive T
cells to investigate the homeostasis alteration and thymic output.
METHODS

Patient Selection
Flow Cytometry
Forty-four patients with NMOSD, who were diagnosed according
to 2015 International Panel for Neuromyelitis Optica Diagnostic
criteria at the Neurology department of the Beijing Tiantan
Hospital between August 2019 and January 2020, and 21
healthy controls (HC) from the Health Management Center
Frontiers in Immunology | www.frontiersin.org 2
underwent flow cytometry to investigate the naive CD4+ T cell
subpopulations. All patients with NMOSD were in the acute
phase, and the samples were collected prior to treatment. None of
the NMOSD patients had any other autoimmune disease. Eligible
HC had no history of autoimmune diseases, thymoma, or other
underlying diseases. Women who were pregnant or breastfeeding
within the last 6 months were ineligible for this study. The
demographic and clinical characteristics of all participants are
summarized in Table 1.

Chest Computed Tomography
We retrospectively reviewed chest CT images of 60 patients with
NMOSD from the Neurology Department, Beijing Tiantan
Hospital, from May 2018 to December 2019, and 65 age-, sex-
matched healthy adults from the Health Management Center,
Beijing Tiantan Hospital as HC. Eligible HC with no history of
autoimmune diseases, thymoma, or other underlying diseases
were enrolled for chest CT examination. Women who were
pregnant or breastfeeding within the last 6 months were
ineligible for this study. The demographic and thymus
characteristics of all participants are summarized in Table 3.

Image Acquisition and Analysis
All imaging was conducted on a 256 slice Discovery CT750 HD CT
Scanner (GEHealthcare, Waukesha,WI). Chest CT scans with axial
technique 5-mm slice thickness were evaluated on a Picture
Archiving and Communication System (PACS) workstation
(Neusoft Co., China). All images were reviewed on a PACS, using
a mediastinal window setting (level, 50 HU; width, 350 HU).

Flow Cytometric Analysis of Naive CD4 T
Cells Subpopulations
Whole blood samples (100 ml) were stained in TruCount™ tubes
with anti-CD45RA, CD3, CD4, CD31, and CD62L antibodies
(Biolegend) after red blood cell lysis. The CytExpert software
(Beckman Coulter) was used for analysis.
TABLE 1 | Clinical and demographic characteristics of participants who
underwent flow cytometric analysis.

Characteristic NMOSD HC P
Value

Number 44 21
Agea, mean (SD), y 42.8 (15.8) 39.1

(14.7)
0.42

Sexb, No. (%)
Male 10 (22.7%) 1 (4.8%) 0.985
Female 34 (77.3%) 20

(95.2%)
Disease duration, mean (range), m 31.9 (0.5–205.0) –

Relapse times, median (interquartile range) 3.8 (3, 5) –

EDSS at FCM analysis, median
(interquartile range)

4.2 (3.0, 6.0) –

Antibody status (Cell based assay)
AQP4-IgG, No. (%) 31 (70.5%) –
July
 2021 | Volume 1
2 | Article
aMann-Whitney U test.
bDifferences of sex and thymus shapes between groups were assessed using Chi-
squared test. y, year; m, month; FCM, flow cytometry; NMOSD, Neuromyelitis optica
spectrum disorder; HC, healthy controls; EDSS, Expanded Disability Status Scale.
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Serum IL-6 Analysis in the Population
Subjected to Flow Cytometry
After flow cytometric analysis, blood samples were centrifuged to
collect the serum.

Serum IL-6 was measured using a human IL-6 Quantikine
ELISA Kit according to the manufacturer’s instructions (R&D
systems D6050).

Statistical Analysis
Data are presented as mean (standard deviation), median
(interquartile range), or frequency (%), as appropriate.
Independent-samples t test or Mann–Whitney U test was
Frontiers in Immunology | www.frontiersin.org 3
used to analyze differences between NMOSD and HC, with
respect to scalar and nonparametric parameters. The chi-
squared test was used to examine the differences of sex and
thymus shapes between groups. Linear regressions were
performed to examine the relationships of the frequency
and absolute counts of naive CD4+ T-cell subpopulations
with age and sex. Statistical analysis of thymic predominant
sides, volume, density, and thymic scores was performed after
disaggregating patients by age, sex, and body mass index
(BMI). Mediation effects were analyzed by SPSS Statistics
26.0 plug-in PROCESS V3.4. P values less than 0.05 were
considered indicative of statistical significance.
TABLE 2 | Linear regressions analysis between multiple variables and naïve T cells.

B SE 95% CI P value

Frequency of CD45RA+ CD62L+ naive CD4+ T cells
NMOSD vs HC -7.649 3.082 -13.811 – -1.487 0.016
Age -0.353 0.089 -0.531 – -0.176 <0.001
Sex 1.068 3.92 -6.770 – 8.905 0.786

Number of CD45RA+ CD62L+ naive CD4+ T cells
NMOSD vs HC -1010.145 362.843 -1735.694 – -284.597 0.007
Age -21.803 10.467 -42.733 – -0.873 0.041
Sex -137.891 461.509 -1060.735 – 784.952 0.766

Frequency of CD31+thymic naive CD4+ T cells
NMOSD vs HC 0.537 3.256 -5.973 – 7.048 0.87
Age -0.48 0.094 -0.668 – -0.292 <0.001
Sex -1.501 4.141 -9.781 – 6.780 0.718

Number of CD31+thymic naive CD4+ T cells
NMOSD vs HC -703.577 291.031 -1285.531 – -121.624 0.019
Age -32.627 8.396 -49.415 – -15.839 <0.001
Sex -68.831 370.17 -809.032 – 671.370 0.853

Frequency of CD31-central naïve CD4+ T cells
NMOSD vs HC -0.485 3.257 -6.998 – 6.028 0.882
Age 0.479 0.094 0.291 – 0.667 <0.001
Sex 1.503 4.143 -6.781 – 9.787 0.718

Number of CD31-cental naive CD4+ T cells
NMOSD vs HC -306.542 145.937 -598.362 – -14.722 0.04
Age 10.823 4.21 2.405 – 19.241 0.013
Sex -69.028 185.621 -440.201 – 302.145 0.711
July 2021 | Volume 12 | Article
NMOSD, Neuromyelitis optica spectrum disorder; HC, healthy controls; B, regression coefficient; SE, standard error; CI, confidence interval.
FIGURE 1 | Flow cytometric identification of naïve CD4 + T cell subpopulations. A representative analysis of CD31+ thymic naive and CD31- central naive CD4 + T cells
as described in Materials and Methods is depicted. First lymphocytes were identified according to FSC/SSC characteristics. Then CD3+ CD4+ cells were gated and
subdivided according to CD62L and CD45RA expression. Among CD62L+ and CD45RA+ naive CD4+ T cells, the frequency of CD31+ thymic naive and CD31−central

naive CD4+ T cells was determined. Representative results of a 21-year-old woman from the HC group.
645277
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RESULTS

NMOSD Patients Displayed Higher
Fraction and Count of Naive CD4 T Cells
Flow cytometry was used to investigate the naive CD4+ T cell
subpopulations in 44 NMOSD patients (mean age, 42.8 years;
range, 15–75) and 21 HC. A representative analysis is shown
in Figure 1. Compared with HC, NMOSD patients displayed
significantly higher fraction of peripheral blood CD45RA+

CD62L+ naive CD4+ T cells (95% CI, −13.811 to −1.487; P =
0.016; Table 2) which showed an age-dependent decrease (P <
0.001; r = −0.423; Figure 2A). The absolute numbers of
CD45RA+ CD62L+ naive CD4+ T cells in NMOSD patients
was also significantly higher than that in HC (95% CI,
−1735.694 to −284.597; P = 0.007; Table 2) and showed
a declining trend with increase in age, although not
statistically significant (P = 0.074; r = −0.225; Figure 2B).
No significant difference was observed in naive CD4 T cells
Frontiers in Immunology | www.frontiersin.org 4
subpopulations between anti-AQP4-positive and anti-AQP4-
negative patients.

NMOSD Thymic Output Naive CD4 T Cells
Homeostasis Analysis
CD31+ thymic naive CD4+ T cells is a subpopulation of CD45RA +

CD62L + naive CD4+ T cells and are regarded as direct marker of
thymic output function (13, 20).

Because the fraction and absolute count of CD31+ thymic naïve
CD4+ T cells declines with increase in age (17), linear regressions
were performed to examine the relationship of the frequency and
absolute count of CD31+ thymic naïve CD4+ T cells with age and
sex. Correlation analysis showed an age-dependent decrease in
the frequency of CD31+ thymic naive CD4+ T cells (P < 0.0001;
r = −0.549; Figure 2C) and absolute numbers of CD31+ thymic

naive CD4+ T cells (P = 0.001; r = −0.416; Figure 2D). NMOSD
patients show significantly higher absolute numbers of
CD31+ thymic naïve CD4+ T cells (95% CI, -1285.531 – -121.624;
A B

D

E F

C

FIGURE 2 | Correlation analysis of naive T cell subpopulations with age. (A–F) Scatter plots showing the correlation of naive T cell subpopulations with age.
NMOSD, Neuromyelitis optica spectrum disorder; HC, healthy controls.
July 2021 | Volume 12 | Article 645277
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P = 0.019;Table 2) than HC, whereas no changes were observed in
the frequency of CD31+ thymic naive CD4+ T cells. The frequency
and absolute numbers of CD31−central naive CD4+ T cells showed a
significant positive correlation with age (P < 0.0001, r = 0.548; P =
0.011, r = 0.317; Figures 2E, F). In addition, NMOSD patients
displayed significantly higher absolute numbers of CD31−central

naive CD4+ T cells than HC (95% CI, −598.362 to −14.722; P =
0.04; Table 2).

We conclude that despite the absolute numbers of
CD31+ thymic naive CD4+ T cells and absolute numbers of
CD31-central naive CD4+ T cells showing opposite age-related
trends, the absolute numbers of CD31+ thymic naive CD4+ T
cells and CD31-central naive CD4+ T cells in patients seemed to
increased proportionally, which may explain the lack of
observed difference in the proportions. It is hard to draw
conclusions about the NMOSD thymic output naive CD4 T
cells changes, because only the absolute numbers were altered.
In the absence of other parameters of thymic function, it may
be controversial to assess thymus activity by thymic output
naïve T cells alone.

NMOSD Displayed Higher Level IL-6 and
Significantly Correlate With Naive T Cells
Serum samples of 44 patients and 21 HC were collected to detect
the level of IL-6. Notably, IL-6 levels in the serum of NMOSD
patients were significantly higher than those in HC (P < 0.001;
Figure 3A). Moreover, partial correlation analysis after
Frontiers in Immunology | www.frontiersin.org 5
controlling for age and sex revealed a marked positive
association between CD45RA+ CD62L+ naive CD4+ T cells
proportion and IL-6 level (P = 0.048; r = 0.307; Figure 3B),
and the count of CD45RA+ CD62L+ naive CD4+ T cells increases
with IL-6 level significantly (P = 0.008; r = 0.406; Figure 3C). The
subpopulation of CD45RA + CD62L + naive CD4+ T cells—
CD31+ thymic naive CD4+ T cells count increases with IL-6
significantly (P = 0.007; r = 0.408; Figure 3D). We observed
no significant correlation of CD31−central naive CD4+ T cells with
IL-6 level (data not shown).

Measurement of Thymic Characteristics
The thymus gland has a unique morphology with a bilobed
configuration, which can exhibit a pyramidal, triangular,
arrowhead, or trapezoid shape on imaging. Therefore,
morphological assessment of thymus requires dedicated
methods specific for thymus (21). Parameters of thymus were
measured as previously described (Figure 4A) (22, 23).
Morphological evaluation was performed by an experienced
technician who was blinded to the study using a thymic
scoring system with a four-point scale (0-3) according to the
proportion of fatty and soft tissues (24). CT density was
measured by setting an oval region of interest covering the
maximum area of the thymus gland with soft tissue density,
excluding the surrounding mediastinal fatty tissue (22, 24).
Predominant sides of thymus, density, and volume were
analyzed blindly by two experienced radiologists. Linear and
A B

DC

FIGURE 3 | Serum IL-6 level in participants subjected to flow cytometric analysis and correlation analysis of naive T cells with IL-6 level. (A) IL-6 levels in NMOSD
were significantly higher than HC; (B–D) Scatter plots showing the correlation of naive T cells with IL-6 level; r = partial correlation coefficient after for age and
gender. NMOSD, neuromyelitis optica spectrum disorder; HC, healthy controls.
July 2021 | Volume 12 | Article 645277
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ordinal regressions were performed to examine the relationships
of thymic predominant sides, volume, density, and thymic scores
with age, sex, body mass index (BMI), and disease duration. For
partial correlation coefficient, partial correlation analysis was
performed after controlling for age or BMI.
Frontiers in Immunology | www.frontiersin.org 6
Predominant Size and Shape of the
Thymus Differs in Healthy vs. NMOSD
Patients and Is Impacted by BMI
Compared with HC, the trapezoid shape of the thymus gland was
significantly more frequently observed in NMOSD patients (50%
vs 32.3%; P = 0.044; Table 3). Representative axial CT images of
the thymus with a different shape in NMOSD and HC were
displayed in Figure 4B. The thymus of NMOSD patients
exhibited distinct morphological changes characterized by
significant increase in the left length, left thickness, right
thickness, and transverse diameter of thymus (Table 4).
However, there were no significant between-group differences
with respect to right length and anteroposterior diameter
(Table 4).

Partial correlation analysis showed a positive correlation
between thymic predominant sides and BMI (Figures 5A–D).
Given the significant positive correlation between BMI and age
(r = 0.278, P = 0.002), partial correlation coefficient of these
thymic predominant sides was calculated according to age and
BMI. Compared with age, BMI showed a direct association with
thymic predominant sides. In the mediation analysis, BMI was
found to fully mediate the association between increase in thymic
A

B

C

FIGURE 4 | Schematic illustration of thymus measurements and the
proportion of thymic scoring. (A) Schematic illustration of thymus
measurement; (B) Representative axial CT images of thymus in age- and sex-
matched NMOSD and HC groups (two 32-year-old women). (C) The
proportion of thymic scoring, Score 0, complete fatty replacement and no
identifiable soft tissue density in the thymic bed; Score 1, predominantly fatty
thymus; Score 2, approximately one-half fatty and one half soft-tissue
attenuated thymus; Score 3, predominantly soft-tissue attenuated thymus.
NMOSD, Neuromyelitis optica spectrum disorder; HC, healthy controls.
TABLE 3 | Clinical, demographic, and thymus characteristics of participants
evaluated by CT.

Characteristic NMOSD (n=60) HC (n=65) P
value

Agea, mean (SD), y 45.5 (15.8) 42.8 (14.7) 0.326
Sexb, No. (%)

Male 11 (18.3%) 12 (18.5%) 0.985
Female 49 (81.7%) 53 (81.5%)

BMIc, mean (SD) 23.7 (3.2) 23.6 (3.7) 0.875
Disease duration, mean (range), m 39.5 (0.5–194.0) –

Relapses, median (interquartile
range)

3 (1, 4) –

EDSS at CT scan, median
(interquartile range)

4.0 (2.0, 5.5) –

Relapse prevention treatment
No relapse treatment 20
Immunosuppressants 24
B cell exhaustion 16

Antibody status (Cell based assay)
AQP4-IgG, seropositive, n (%) 44 (73.3%) –

Predominant sides of thymusb

Trapezoid, n (%) 30 (50.0%) 21 (32.3%) 0.044
Other shapes, n (%) 30 (50.0%) 44 (67.7%)
Left length, mean (range), mm 25.6 (11.6–44.2) 22.9 (11.0–38.7)
Left thickness, mean (range), mm 11.9 (3.7–23.8) 8.4 (2.6–20.5)
Right length, mean (range), mm 24.2 (7.5–48.1) 23.1 (10.7–40.8)
Right thickness, mean (range), mm 12.1 (3.7–24.7) 8.9 (2.9–21.4)
Transverse diameter, mean

(range), mm
34.4 (10.4–67.2) 23.9 (7.3–52.7)

Anteroposterior diameter, mean
(range), mm

20.9 (7.8–42.2) 20.0 (8.9–33.9)

Thymus density, mean (range), HU -81.3 (-126–16) -61.4 (-121–11)
July 2021 | Vo
lume 12 | Article 6
aMann-Whitney U test.
bDifferences of sex and thymus shapes between groups were assessed using Chi-
squared test.
cIndependent-samples t test. y, year; m, month; NMOSD, Neuromyelitis optica spectrum
disorder; HC, healthy controls; BMI, body mass index; EDSS, Expanded Disability Status
Scale.
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predominant sides with age (Figures 6A–C) and to partially
mediate the association between density decline with age (Figure
6D). No significant correlation was observed between sex and
thymic predominant sides.

NMOSD Patients Exhibited Higher Thymic
Involution as Measured by Fatty
Replacement of Thymic Tissue and
Thymic Density
Ordinal regressions were performed to examine the
relationship of thymic scores with age, sex, and BMI. In
thymus scoring, 25% NMOSD patients showed complete fatty
replacement (score 0), and 50% NMOSD patients showed
predominantly fatty thymus (score 1), whereas the proportion
of HC group was 17% and 28%, respectively (P = 0.001, Figure
4C). Thymic scores showed an inverse correlation with age
(95% CI, 1.075–1.325; P = 0.001) and BMI (95% CI, 1.123–
1.964; P = 0.006). We observed no significant correlation of
thymic scores with sex.
Frontiers in Immunology | www.frontiersin.org 7
Next, we compared the thymic density between the two
groups after disaggregating by age, sex, and BMI. Age (P <
0.0001; r = −0.637; Figure 5E) and BMI (95% CI, −4.109 to
−1.271; P < 0.001; Table 4) showed a significant association with
decline in thymus density. Thymic density in NMOSD patients
was significantly lesser than that in the HC group (95% CI,
6.509–24.693; P = 0.001; Table 4). Moreover, partial correlation
analysis after controlling for age and BMI revealed a marked
association between thymic density and disease duration (P =
0.037; r = −0.278; Figure 5F), but no significant correlation
between thymic predominant sides and disease duration (data
not shown). There was no significant correlation of thymus
density with sex.

The increased thymic fat and decreased thymic density in
NMOSD patients indicate exacerbation of age-dependent
thymus involution as compared with HC, which explains the
age-related declining trend of thymic function.

There was no significant difference between anti-AQP4-
positive and anti–AQP4-negative patients, with respect to
thymic predominant sides and thymic density or thymic score.

Owing to the difficulty in distinguishing thymus fat from
mediastinum, use of CT to measure thymus volume is not
straightforward. Especially in patients with complete fatty
involution, precise delineation of the thymic borders is mostly
impossible. We are not sure whether the volume of the thymus
has definitively decreased (data not shown).

NMOSD Output Naive CD4 T Cells Decline
With Age and Significantly Related to
Thymic Involution and Predominant
Sides Changes
Fourteen NMOSD patients underwent chest CT scan and flow
cytometric analysis of naive CD4 T cells subpopulations
simultaneously. We assessed the association of thymic density,
score, and predominant sides with naïve CD4+ T- cell
subpopulation in these patients. As expected, the proportions
and count of CD31+thymic naive CD4+ T cells increased with
thymic density and score (Figures 7A, B, D, E), since increase in
thymic fat and decreased thymic density indicate the trend of
decline in thymic function. The decline in CD31+thymic naive
CD4+ T cells was associated with the decrease in thymic function,
which can be regarded as a direct marker of thymic output (17).
In contrast, the proportions of CD31-central naive CD4+ T cells
declined with thymic density and score (Figures 7C, F). There
was no significant correlation of CD31-central naive CD4+ T cell
count with thymic density or score. As the count of CD31-central

naive CD4+ T cells remains stable over time, this implies a
peripheral regulation independent of thymic activity (18). We
observed no significant correlation of CD45RA+ CD62L+ naive
CD4+ T cells with thymic density or score.

The involution of thymus, characterized by disruption of
thymic architecture and increase in adipocytes, contributes to the
decrease in naïve T cell output. In thymic predominant sides, left
thickness showed a significant association with the proportions
and count of CD31+ thymic naive CD4+ T cells and the
proportions of CD31−central naive CD4+ T cells (Figures 8A–C).
TABLE 4 | Linear regressions analysis between multiple variables and thymus
parameter.

B SE 95% CI P value

Predominant sides of thymus
Left length
NMOSD vs HC -2.743 1.059 -4.839 – -0.646 0.011
Age -0.022 0.037 -0.095 – -0.050 0.542
Sex 1.923 1.447 -0.943 – 4.789 0.186
BMI 1.117 0.165 0.789 – 1.444 <0.0001

Left thickness
NMOSD vs HC -3.476 0.598 -4.661 – -2.291 <0.0001
Age 0.02 0.021 -0.021 – 0.061 0.334
Sex 0.246 0.818 -1.374 – -1.866 0.764
BMI 0.473 0.093 0.288 – 0.658 <0.0001

Right length
NMOSD vs HC -1.227 1.192 -3.587 – 1.133 0.305
Age -0.069 0.041 -0.151 – 0.012 0.096
Sex 1.867 1.63 -1.360 – 5.094 0.254
BMI 1.035 0.186 0.667 – 1.404 <0.0001

Right thickness
NMOSD vs HC -3.037 0.612 -4.248 – -1.826 <0.0001
Age 0.008 0.021 -0.034 – 0.050 0.714
Sex 0.534 0.836 -1.121 – 2.189 0.524
BMI 0.542 0.095 0.353 – 0.731 <0.0001

Transverse diameter
NMOSD vs HC -10.173 1.722 -13.582 – -6.763 <0.0001
Age 0.052 0.059 -0.065 – 0.170 0.379
Sex -0.972 2.354 -5.633 – 3.688 0.68
BMI 1.528 0.269 0.996 – 2.060 <0.0001

Anteroposterior diameter
NMOSD vs HC -0.937 0.923 -2.763 – 0.890 0.312
Age -0.055 0.032 -0.118 – 0.008 0.086
Sex 2.115 1.261 -0.382 – 4.612 0.096
BMI 0.941 0.144 0.656 – 1.226 <0.0001

Thymus density
NMOSD vs HC 15.601 4.592 6.509 – 24.693 0.001
Age -1.463 0.159 -1.777 – -1.149 <0.0001
Sex 6.521 6.277 -5.907 – 18.949 0.301
BMI -2.69 0.717 -4.109 – -1.271 <0.001
NMOSD, Neuromyelitis optica spectrum disorder; HC, healthy controls; BMI, body mass
index; B, regression coefficient; SE, standard error; CI, confidence interval.
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Right thickness and transverse diameter showed a significant
association with CD31+thymic naive CD4+ T cell count
(Figures 8D, E). There was no significant correlation of naive
CD4+ T cells with thymic left length, right length, and
anteroposterior diameter.

In the mediation analysis, both the thymic density and naive
CD4+ T cells showed an inverse correlation age. In addition, the
thymic density was found to fully mediate the relation between
age and naïve CD4+ T cells (Figures 7 and 8).
DISCUSSION

To the best of our knowledge, this is the first study exploring the
thymus characteristics and naive CD4 T-cell homeostasis in
NMOSD. Thymus provides an inductive microenvironment for
Frontiers in Immunology | www.frontiersin.org 8
the differentiation, development, and maturation of T cells. In
contrast, thymus involution, which is characterized by disruption
of thymic architecture and increase in adipocytes, contributes to
the decrease in naive T-cell output, which increases the risk of
infection and autoimmune disease (9, 25–27). Increased thymic
fat and decreased thymic density in patients with NMOSD
indicated a trend of decline in thymic function. However,
patients displayed a significantly higher fraction and absolute
numbers of peripheral blood CD45RA+ CD62L+ naive CD4+

T cells.
Although it is clear that both the thymus and homeostatic

proliferation contribute to naive T cell homeostasis and that their
relative contributions change over time (7, 28), the functional
consequences of the changes in naive T cell dynamics are not
well characterized. The naive T-cell pool in mice was shown to be
almost exclusively sustained by thymus output throughout the
A B

D

E F

C

FIGURE 5 | Regression and partial correlation analysis of thymic predominant sides, density, and disease duration. (A–D) Scatter plots showing the correlation of
thymic predominant sides with body mass index (BMI); r = partial correlation coefficient after controlling for age. (E) Scatter plots showing correlation of thymic
density with age; r = partial correlation coefficient after controlling for BMI. (F) Association between thymic density and disease duration; r = partial correlation
coefficient after for age and BMI. NMOSD, neuromyelitis optica spectrum disorder; HC, healthy controls.
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A B

DC

FIGURE 6 | Mediation effects of changes in BMI on the association of increase in thymic predominant sides with age and decline in thymic density with age.
(A–C) Mediation analysis was performed to examine the potential indirect relationship between Age (X) and thymic predominant sides (Y) via the BMI (M).
(D) Mediation analysis the potential indirect relationship between Age (X) and thymic density (Y) via the BMI (M). Path a and path b indicate the association between
X and M, and M and Y, respectively. Path c represents the total effect of X on Y, and path c’ shows the direct effect of X on Y after controlling for mediating factor.
X, predictor variable; Y, outcome variable; M, mediator; BMI, body mass index.
A B

D

E F

C

FIGURE 7 | Mediation effects of changes in thymic density and score on the association of decline in NMOSD thymic output naive CD4 T cells with age.
(A–C) Mediation analysis was performed to examine the potential indirect relationship between Age (X) and thymic output naive CD4 T cells (Y) via the thymic density
(M). (D–F) Mediation analysis the potential indirect relationship between Age (X) and thymic output naive CD4 T cells (Y) via the thymic score (M). Path a and path b
indicate the association between X and M, and M and Y, respectively. Path c represents the total effect of X on Y, and path c’ shows the direct effect of X on Y after
controlling for mediating factor. X, predictor variable; Y, outcome variable; M, mediator.
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lifetime, whereas the adult human naive T-cell pool is almost
exclusively maintained through peripheral T cell division (29, 30).
Thymic involution has a minimal effect on the size of the
peripheral T-cell pool (31), because of the extraordinary capacity
of post thymic T cells to proliferate and maintain normal numbers
of peripheral T cells. It is worth noting that higher IL-6 levels in
peripheral blood can promote the differentiation of naive T cells
into proinflammatory type 17 helper T cells. This may stimulate
the compensatory proliferation of naive T cells, because patients
with NMOSD simultaneously exhibit higher IL-6 levels and
increased naive CD4+ T cells in the peripheral blood, and naïve
T cells increase with IL-6 level significantly. The elevated
homeostatic proliferation of naive T cells, as indicated by the
increased absolute numbers of CD31-central naïve CD4+ T cells,
remains generally stable over time, implying a peripheral
regulation independent of thymic activity.

In previous studies, patients with myasthenia gravis showed
an association with NMOSD, or developed NMOSD after
thymectomy (32). However, the association between thymus
Frontiers in Immunology | www.frontiersin.org 10
and pathogenesis of NMOSD is not well characterized. In
this study, NMOSD patients showed exacerbated age-
dependent thymus involution than HC, because the size, shape,
and density of thymus showed significant changes in NMOSD
patients. Anti-thymus AQP4-antibodies and AQP4 autoreactive
T cells derived from thymus can trigger NMOSD, suggesting a
strong linkage between thymus involution and the pathogenesis
of NMOSD (33, 34). Thymus involution may initiate
immunological response against AQP4 peptides, enhance the
production of anti-AQP4 antibodies, aggravate the immune
dysregulation, and impair self-tolerance; alternatively, it may
be one of the main consequences of long-standing NMOSD.

Thymus plays a vital role in establishing T cell tolerance,
which enables the initiation of immune responses to pathogens
while avoiding autoimmune responses (35). The relative
contributions of thymic and peripheral tolerance in the
causation of CNS diseases are not well characterized. Studies of
human CNS inflammation suggest a role for autoreactive T cells
that have escaped thymic negative selection (36). In preclinical
A B

D

E

C

FIGURE 8 | Mediation effects of changes in thymic predominant sides on the association of decline in NMOSD thymic output naive CD4 T cells with age.
(A–E) Mediation analysis was performed to examine the potential indirect relationship between Age (X) and thymic output naive CD4 T cells (Y) via the thymic
predominant sides (M). Path a and path b indicate the association between X and M, and M and Y, respectively. Path c represents the total effect of X on Y, and
path c’ shows the direct effect of X on Y after controlling for mediating factor. X, predictor variable; Y, outcome variable; M, mediator.
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animal models, changes in thymic selection were associated with
CNS autoimmunity (3). Thymic selection is underappreciated as
a potential therapeutic target in CNS autoimmune disease and
should be a focus of future research (37).

The differentiation of B cells into AQP4-IgG–producing
plasmablasts along with IL-6 promotion is the primary
pathogenetic mechanism of NMOSD (1, 12). Because IL-6
expression in human thymus increases with age and is
associated with thymic involution (38), thymus degeneration
maybe one of the causes of elevated IL-6 in NMOSD patients.
Patients with NMOSD exhibit markedly elevated levels of IL-6 in
the serum and cerebrospinal fluid (39–41). IL-6 receptor
monoclonal antibodies satralizumab or tocilizumab were
shown to significantly reduce the risk of NMOSD (1, 42, 43).
The potential effect of IL-6 receptor monoclonal antibody on
thymus degeneration provides a comprehensive understanding
of the therapeutic mechanism.

There is no clear consensus as to whether the formation of
adipocytes during thymic involution is a passive aggressive or
active instigator of immunosenescence (44). Adipocytes in
thymus can influence both the thymic and systemic immune
function by secreting a diverse range of cytokines and hormones
(45–47). Thus, further research is required to elucidate the role of
thymic adipocytes in the establishment and maintenance of the
T-cell repertoire. Approaches for thymic rejuvenation by
preventing or slowing thymic adipogenesis may help regulate
T-cell homeostasis in patients with NMOSD. Research shows
that growth hormone administered in combination with
metformin can reverse the immunosenescent trends by
inducing regeneration of the thymus (48). As this potential
novel strategy is feasible, we believe that reversing thymic
involution to facilitate immune reconstitution is a viable
therapeutic strategy for NMOSD, especially in patients with
long-standing disease. Immune reconstitution to regulate T-cell
homeostasis and IL-6 may also reduce the relapse of NMOSD.

Our results should be interpreted as preliminary because of
some important study limitations, that is, lack of pathological
data, cross-sectional study design, single-center scope, and small
sample size of Asians. Large-scale multicenter studies with
longitudinal observation and analysis of thymus autopsy data
will provide more definitive evidence.

Overall, our study provides interesting insights that may
further our understanding of the pathogenesis of NMOSD and
indicate a potential novel strategy for patients with long-
standing disease.
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