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Inadequate sustained immune activation and tumor recurrence are major limitations of
radiotherapy (RT), sustained and targeted activation of the tumor microenvironment can
overcome this obstacle. Here, by two models of a primary rat breast cancer and cell co-
culture, we demonstrated that valproic acid (VPA) and its derivative (HPTA) are effective
immune activators for RT to inhibit tumor growth by inducing myeloid-derived
macrophages and polarizing them toward the M1 phenotype, thus elevate the
expression of cytokines such as IL-12, IL-6, IFN-g and TNF-a during the early stage of
the combination treatment. Meanwhile, activated CD8+ T cells increased, angiogenesis of
tumors is inhibited, and the vasculature becomes sparse. Furthermore, it was suggested
that VPA/HPTA can enhance the effects of RT via macrophage-mediated and
macrophage-CD8+ T cell-mediated anti-tumor immunity. The combination of VPA/
HPTA and RT treatment slowed the growth of tumors and prolong the anti-tumor effect
by continuously maintaining the activated immune response. These are promising findings
for the development of new effective, low-cost concurrent cancer therapy.

Keywords: VPA-like compounds, radiotherapy, breast cancer, TAMs, M1-like macrophages, CD8+ T, vasculature
Abbreviations: VPA, valproic acid; HPTA, 2-hexyl-4-pentynoic acid; DAB, 3,3'-diaminobenzidine; DMBA, 7,12-
dimethylbenz[a]anthracene; FBS, fetal bovine serum; HDACi, histone deacetylase inhibitor; BrdU, 5-Bromo-2′-
deoxyuridine; HE, hematoxylin and eosin; IHC, immunohistochemistry; SD, Sprague–Dawley; TBS, Tris-Buffered Saline;
TAMs, tumor-associated macrophages; CTLs, cytotoxic T lymphocytes; PD1, programmed cell death protein 1; EMT,
Epithelial–mesenchymal transition; PBMCs, Peripheral blood mononuclear cells; MDSCs, Myeloid-derived suppressor cells;
Tregs, Regulatory cells; CTLA-4, Cytotoxic T-lymphocyte-associated protein 4.
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INTRODUCTION

Breast cancer is one of the most common types of tumors in
women, and radiotherapy (RT) is a mainstay of oncology
treatment. In addition to the direct cytoreductive effect of RT
in breast cancer, emerging evidence suggests that the generation
of an anti-tumor immune response also plays an important role
in the effectiveness of this treatment modality (1, 2).

A variety of different cell types within tumors have been
described to undergo apoptosis after local irradiation, these
include T cells, stromal cells, and vascular endothelial cells,
which limited the therapeutic effect to some extent and
increased the possibility of immune escape (2). At the same
time, RT paradoxically promotes metastasis and invasion of
cancer cells by inducing the epithelial–mesenchymal transition
(EMT), and can even cause tumor recurrence (3), which are the
main obstacles to the successful treatment of cancer, and remains
the important cause of mortality in patients receiving RT (4).
New therapeutic strategies, such as combining immunotherapy
with RT are being trialed (5).

Breast cancer has a complex microenvironment consisting of
malignant cells, resident histiocytes such as adipocytes and
recruited cell types, which play an important role in the
progression of breast cancer to malignancy and resistance to
treatments (6). Among them, macrophages play a pivotal role.
Tumor-associated macrophages (TAMs), one of the main types
of immunosuppressive cells in the tumor microenvironment, are
key players in tumor immune escape, a major obstacle to cancer
immunotherapy (7, 8). In the overwhelming majority of tumors,
TAMs stimulate tumor cell migration, invasion, intravasation as
well as the angiogenic response required for tumor growth (9–
11). Clinicopathological studies have suggested that TAMs
accumulation in tumors is correlated with a poorer clinical
outcome (12). In human breast carcinomas, high TAMs
density is correlated with poorer prognosis (13). Depending on
the microenvironmental presence, macrophages are polarized
into two distinct phenotypes, the classically activated (M1) or the
alternative activated (M2) macrophages. TAMs closely resemble
the M2-polarized phenotype (14). Recent studies have shown
that polarizing TAMs toward M1 phenotype can effectively treat
tumors (15–19). This suggests that macrophages have plasticity,
which can restore the anti-tumor properties of TAMs for the
treatment of tumors (20). Therefore, TAMs are considered as
one of the important therapeutic targets to improve the efficacy
of immunotherapy, and the search for novel drugs that can
modulate the TAMs phenotype holds promise for safer and more
effective oncology treatment.

On the other hand, activation and recruitment of cytotoxic
lymphocytes (CTLs) have been recognized as key to effective
immunotherapy for solid tumors. Among them, CD8+ T cells are
essential to inhibit the occurrence and development of solid
tumors, because once these cells exert full cytotoxicity, they can
eliminate tumor cells (21). Most solid tumors include a variety of
immune cells, such as regulatory T cells and TAMs, which can
inhibit CTLs function (22, 23). It was reported that the depletion
of TAMs enhances CD8+ T cell-mediated anti-tumor immunity
in a mouse model of breast cancer (24). Therefore, therapies
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targeting the immune system hold great promise for the
treatment of cancer (25, 26).

In recent years, some scholars have reported that a histone
deacetylase inhibitor (HDACi), TMP195 can switch the major
macrophage type in tumors from TAMs to the high phagocytic
macrophages in mice mammary tumors (27). In this model,
TMP195 activates immune pathways, and synergistic anti-PD1
antibodies and chemotherapy significantly inhibited tumor
development. This HDACi, which has a stable and effective
regulatory effect on the immune system, hold great potential as
it targets specifically immune cells, resistance to treatment is rare
as compared with those agents which directly act on the tumor
cells (28, 29). The other HDACi, valproic acid (VPA), a well-
tolerated anti-epileptic agent used since the 1970s, has also
received attention recently as a possible concurrent therapy to
RT. Many researchers have demonstrated that VPA-like
compounds can kill a variety of tumor cells, including glioma
(30), breast cancer (31), prostate cancer (32), while sensitizing
tumor cells to RT or chemotherapy through its effect on DNA
repair (33–35). It was not clear whether VPA and VPA-like
compounds reported sensitization of tumor cells to RT or
chemotherapy was associated with the regulation of
immune function.

Therefore, in our study, we used a well-established animal
model of breast cancer that does not affect tumor immune
function (36) to explore whether VPA and VPA-like
compounds may also have the ability to activate immune
pathways, and when co-administered with RT can better
inhibit the development of tumors.
METHODS AND MATERIALS

Establishment of a Breast Cancer Model
Detailed steps are reported in our previous article (35). In brief,
female Sprague–Dawley (SD) rats were purchased from Peng
Yue Laboratory Animal Co. Ltd., Jinan, China. The studies of
animal tissue were performed in accordance with the
requirements of the Shandong University Human and Animal
Ethics Research Committee (project identification code
81472800, approved 3 March 2014). A single dose of 1 ml
7,12-dimethylbenz[a]anthracene (DMBA) oil was administered
to 50-day-old SD rats through intragastric gavage (37, 38). At
40–60 days after gavage, primary tumors could be detected
through palpation around the breast. The tumor size, location
and appearance were recorded weekly and measured with
Vernier Caliper. Tumor volume was calculated according to
the clinical standard formula “Volume (V; mm3) = Length
(L) ∗ Width (W)2 ∗ 0.5”.

Drug Treatment and Radiotherapy in Rats
The tumor-bearing rats were given an intraperitoneal injection of
saline, VPA (BP452, Sigma) or HPTA (H0964, TCI) twice a day
for 6 consecutive days. RT was applied to rats by using X-ray
Irradiator (X-RAD225 OptiMAX, Pxi) as shown in Figure S1.
Four fractionated doses of 2 Gy were utilized in our study. The
specific methods are as follows: When irradiating, we fixed the
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rat and placed it on the round plate. And the hollow cylinder
indicated by the red arrow is used for the precise irradiation of
the tumor. The inside diameter of the hollow cylinder is 2 cm,
and the tumor was exposed to radiation here (as indicated by the
red arrow). And the X-ray aperture was selected to match the
diameter of the tumor. The cylinder is made of solid copper,
allowing full protection of the rest of the body.

BrdU Incorporation and HE Staining
5-Bromo-2′-deoxyuridine (BrdU) (B5002, Sigma) was injected
intraperitoneally at a dose of 100 mg/kg 24 h before tissue
harvest. Tumor tissues and normal breast were fixed overnight
in 4% paraformaldehyde solution, embedded in paraffin and
serially sectioned 5 mm thick for hematoxylin and eosin (HE)
staining according to the manufacture’s procedures guideline.

Immunohistochemistry (IHC)
The avidin–biotin immunoperoxidase method was used for
deparaffinized zinc formalin-fixed, paraffin-embedded sections.
Specific methods are detailed in our previous article (27). The
primary antibodies including CD11b (1:5,000, ab133357,
Abcam), F4/80 (1:200, 123101, BioLegend), CD68 (1:500,
GB11067, Servicebio), Cleaved caspase-3 (1:300, 9661, Cell
Signaling), BrdU (1:50, B44, BD), Ki67 (1:400, 12202, Cell
Signaling), CD8 (1:500, GB11068, Servicebio), granzyme-B
(1:200, sc-8002, Santa Cruz), followed by incubation with
secondary antibodies: biotinylated goat anti-mouse IgG (1:300,
BA-9200, Vector), biotinylated goat anti-rat IgG (1:300, BA-
9400, Vector) and biotinylated goat anti-rabbit IgG (1:300,
BA-1000, Vector). Images were taken through a light
microscope (Olympus).

Immunofluorescence
Specific methods are detailed elsewhere (33, 39). The primary
antibodies including CD11b (1:1,000, ab133357, Abcam), F4/80
(1:200, 123101, BioLegend), EpCAM (1:200, sc-66020, Santa
Cruz), CD31 (1:200, GB12063, Servicebio), followed by
staining with Alexa Fluor® 594 goat anti-mouse IgG(H+L)
(1:300; A11032, Molecular probes), Alexa Fluor® 488 chicken
anti-rabbit IgG(H+L) (1:300; A21441, Molecular probes). Images
were taken using Zeiss 880 Confocal Microscope and analyzed
on Leica Microsystems imaging software. Composite images and
pseudo-colored images were generated using Fiji software and
images were captured using a laser confocal microscope.

Real-Time Quantitative Reverse
Transcriptase PCR (qRT-PCR)
The tumors were rapidly extracted after the tissues were
harvested, snap-frozen in liquid nitrogen, and stored at −80°C
before being used for qRT-PCR analysis. The RNA was extracted
from whole tumor tissue according to the RNA prep Pure Tissue
Kit (Tiangen) protocol. For the cellular experiment, we extracted
RNA according to the FastPure Cell/Tissue Total RNA Isolation
Kit (vazyme) and the isolated RNA was quantified by NanoDrop
ND-2000 spectrophotometer (Nadro Drop Technologies,
Wilmington, DE, USA). cDNA synthesis was performed using
the ReverAid First Strand cDNA Synthesis Kit (Thermo). Finally,
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and qRT-PCR analysis was performed on Light Cycler® 480II
(Roche Applied Science, Indianapolis, IN, USA) using 1 mL of
each primer and 1 mL of cDNA. The levels of the relative genes
and the internal reference gene (GAPDH) expressed were
measured, and the Ct values (threshold cycle number) of the
target gene and the reference gene were calculated according to
the Light Cycler® 480 Software release 1.5.0 SP4 software, use
2−DD Ct method. Sample from the DMBA-induced breast cancer
was used as control sample, and the expression of the target gene
of each group was compared. DDCt = experimental group DCt −
control group DCt, DCt = (average Ct of the target gene of the
control sample - average Ct of the control sample GAPDH) (40,
41). The primer sequences used in this study are listed in
Table S1.

Cell Culture
MCF7 and RAW264.7 cell lines were purchased from American
Type Culture Collection (ATCC) and maintained in DMEM
(12100046, Gibco) medium with 10% Fetal Bovine Serum
(10270106, Gibco) and 1% Penicillin-Streptomycin (V900929,
Sigma). All cells were confirmed to be mycoplasma-free, and
maintained at 37°C and 5% CO2.

Cytokine Detection in Macrophage Lysate
MCF7 cells were seeded in P60 dishes followed by 500mM VPA,
15mMHPTA and 100 ng/ml LPS (L8880, Solarbio) treatment for
24 h. The culture was centrifuged to collect the medium
supernatant, which is subsequently added to the P35 dishes
seeded with RAW264.7 cells. After 24hrs, RAW264.7 cells were
lysed by repeated freeze-thawing in PBS, and lysates were
collected. Cytokines detection (IL-12, IL-10, TNF-a, IFN-g)
were performed using ELISA kits (1211232, 1211002, 1217202,
1210002, DAKEWE, China).

Primary Culture and Stimulation of
Human Peripheral Blood Mononuclear
Cells (PBMCs)
Whole blood samples were collected from healthy donors after
obtaining informed consent in accordance with the National
Regulations on the Administration of Human Genetic Resources,
China. The ethics for this part of the study was approved by the
Shandong University Human and Animal Ethics Research
Committee’s requirements (project identification code
81472800, approved on 3 March 2014). PBMCs were isolated
from whole blood using Lymphocyte Isolate (LTS1007-1,
TBDScience, China) density gradient centrifugation. The
PBMCs were maintained in RPMI 1640 (12633012, Gibco)
medium with 10% Fetal Bovine Serum (10270106, Gibco) and
1% Penicillin–Streptomycin (V900929, Sigma).

PBMCs were isolated, and cells were seeded at 5 × 105 in 24-
well plate coated with CD3 (5 mg/ml) (B287689, BioLegend) at
4°C overnight, 500 ml/well, and added to CD28 (1 mg/ml)
(B281555, BioLegend) with IL-2 (10 ng/ml) (031612,
PEPROTECH) and maintained at 37°C and 5% CO2 for 3
days. Subsequent experiments were performed after sufficient
cells were reached.
May 2021 | Volume 12 | Article 646384
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Flow Cytometry
Lysates were extracted following the macrophage factor detection
step and added to the already activated PBMC cells at a 1:3 of
medium volume ratio for 5 days in culture. Then PBMCs were
collected, washed three times with PBS, incubated with the CD3
(B278047, BioLegend), CD4 (B310677, BioLegend) and CD8
(B311544, BioLegend), and centrifuged to collect cells. Cells
were washed three more times with PBS and resuspended as a
single cell suspension for flow cytometry.

Co-Culture of Tumor Cells With PBMCs
Lysates were extracted following the macrophage factor detection
step and added to the already activated PBMC cells at a 1:3 of
medium volume ratio for 5 days in culture. 4 × 105 MCF7 cells
were seeded on the lower chamber of the transwell (Corning
#3412, 24 mm Transwell® with 0.4 µm Pore Polycarbonate
Membrane Insert), and 2 Gy irradiation treatment was
administered after the cells had fully adherent growth. At the
end of irradiation, 2 × 105 PBMC cells cultured for 5 days were
transferred to the upper chamber of the transwell for co-cultured
for 24 h. The tumor cells in the lower chamber were subjected to
MTT to detect the number of viable cells.

MTT
MCF7 cells were seeded in lower chamber of a 6-well transwell at
a density of 4 × 105 cells per well. Following treatments, MTT
solution (5 mg/ml, Sigma) was added to the treated cells and
incubated for 4 h at 37°C. Then the medium was replaced with
dimethyl sulfoxide. After mixing, 120 ml was added to each well
in a 96-well plate. The absorbance of the solution was measured
using an enzyme immunoassay analyzer at 540 nm.

To determinate the effect of IR on the growth of macrophage,
RAW264.7 were seeded at a density of 2 × 103 cells per well in 96-
well plate, and treated with 4 and 8 Gy after the cells had attached,
and the growth of the cells observed by MTT assay after 72 h.

Statistical Analysis
All statistical analyses were performed with Student’s t-test on
SPSS Statistics for Windows, version 23.0 (Armonk, NY: IBM
Corp; licensed to Shandong University) and represented as mean ±
SD. The P values were designated as: *, P <0.05; **, P <0.01,
indicating a statistically significant difference.
RESULTS

VPA/HPTA Enhanced Radiotherapy Effect
to Inhibit Tumor Growth in Rats With
Breast Cancer
To study whether VPA/HPTA can enhance the effect of
radiotherapy in vivo, we used the primary breast cancer model
in rats induced by the environmental carcinogen DMBA, which
was previously described and employed in related studies (33, 35,
36). In brief, around 40 days after DMBA gavage to female SD
rats, lumps in the breast sites were found. The shape of lumps
in the location of mammary glands was irregular (Figure 1A).
Frontiers in Immunology | www.frontiersin.org 4
By HE staining, when compared with the normal breast tissue,
a monotonous population of cells, poorly circumscribed,
infiltrating the surrounding soft and adipose tissues, cords and
nodules of atypical epithelial cells, with some duct or gland
formation, indicating that breast cancer in rats was successfully
induced. Next, the dose of VPA/HPTA and radiotherapy
were determined for the tumor treatment in this animal
model. Reported studies of VPA on glioblastoma utilized
intraperitoneal injection of VPA in the range from 150 to 600
mg/kg (42), here, we choose 200 mg/kg as the treatment dose of
VPA, which was the same as that used to treat the cells (0.5 mM)
in our working system (33, 35). 20 mg/kg HPTA was adopted as
this is closest to the 200 mg/kg VPA previously utilized in cell
culture (0.015 mM) (34). Four fractionated doses of 2 Gy, based
on previous studies, were utilized (43, 44). The workflow of our
experimental design is detailed in Figure 1B upper.

During the early observation, the growth of tumors in VPA/
HPTA-treated rats was inhibited (P <0.05). Compared with the
RT-alone group, the reduction of breast cancer volume in the
VPA/HTPA treatment groups was significantly more (P <0.01).
On the 10th day post-treatment, the morphological structure of
tumors was observed by HE staining (Figure 1C). The VPA/
HPTA treatment led to vacuole structures formation in the breast
cancer tissue as compared with the untreated control group; there
were more vacuoles structures and number of necrotic cells after
the RT, and larger necrotic areas and cells were seen in the tissues
in the combination treatment groups. The morphological results
are consistent with the above findings. The results demonstrated
that 200 mg/kg VPA or 20 mg/kg HPTA can effectively enhance
RT for breast cancer in our rat working model.

We next tested the cell proliferation ability in the tumor using
both BrdU and Ki67 markers. BrdU IHC staining results showed
that VPA/HPTA treatment significantly reduced the proliferation
of tumor cells, the reduction was significantly greater in the
combination treatment groups (P <0.01, Figure 1D). Similar
results were noted with the Ki67 proliferation marker (P <0.01,
Figure S1A). The IHC findings were consistent with the gross
observation and measurement. In conclusion, we highlight that
the combination of both treatment modalities is superior to each
treatment modality alone.

VPA/HPTA Activates the Macrophages
and Reprograms TAMs Polarization
Towards M1 Phenotype in Irradiated
Breast Tumor at the Early Stage
of the Treatment
Other scholars had reported that TMP195 has a macrophage-
mediated immune effect (27), so we next studied the
macrophages in the tumor microenvironment to investigate
whether VPA and VPA-like compound (HPTA) may have a
similar effect during RT treatment in our working model.

We used the macrophage marker F4/80 for IHC staining
(Figure 2A) and found that after VPA/HPTA treatment, the
macrophages increased significantly in the tumor, while in the
combination treatment groups, there were a further substantial
increased (P <0.01). Similar results were observed for the other
May 2021 | Volume 12 | Article 646384
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macrophage marker, CD68 (P <0.01, Figure S2). The data
indicate that the immune system is activated by VPA/HPTA in
response to RT.

TAMs, being a M2 macrophage, play a key role in cancer
immune escape. We next investigate whether VPA/HPTA
treatment may be able to switch the polarization of
macrophages to the pro-inflammatory M1 phenotype. As shown
in Figure 2B, VPA/HPTA treatment alone significantly promoted
an increase in the cell population expressing M1 marker (CD86;
P <0.01) and M1 function markers (IL-12, IL-6, MHC-II, IFN-g
and TNF-a; P <0.01) at the transcriptional level in the tumor. The
M2 macrophage marker (CD209 and CD163) and the function
marker (IL-10) also had no significant change. For the RT-alone
group, M2 macrophages, but not M1 macrophages, were
significantly increased compared with the untreated control
group. Meanwhile, in the combination treatment groups, the
increase in M1 marker and function markers and decrease in
M2marker (CD209 and CD163) and function marker (IL-10) was
Frontiers in Immunology | www.frontiersin.org 5
further amplified (P <0.01). The data suggest that VPA/HPTA can
reverse and further activate the RT-induced immune pathway at
the early stage after the RT treatment.

VPA/HPTA Regulates Myeloid-Derived
Macrophages to Enhance Radiotherapy
Effect in Breast Cancer at the Early Stage
of Treatment In Vivo
We next explore the origin of the macrophages which were
recruited into the tumor microenvironment by VPA/HPTA.
Some scholars have reported that CD11b, a marker of
myeloid-derived differentiated cells, can promote bone marrow
cells to develop into macrophages and then inhibit tumor growth
(45). Therefore, we performed IHC analysis of tumor tissues in
each group with CD11b, the results showed that CD11b+ cells
were significantly increased after VPA/HPTA treatment (1.76 ±
0.24/2.11 ± 0.31) (P <0.01, Figure 3A), there was a small increase
after RT-alone (0.95 ± 0.15, P <0.05). We noticed a substantial
A

B

D

C

FIGURE 1 | VPA/HPTA enhanced radiotherapy effect to inhibit tumor growth in rats with breast cancer (A) Normal breast and DMBA-induced breast cancer of rats
under gross observation. HE staining for the morphology of normal tissue and DMBA-induced breast cancer. (B) The tumor-bearing rats were given intraperitoneal
injection of saline, 200 mg/kg of VPA or 20 mg/kg of HPTA twice a day for 6 consecutive days in combination with 2Gy of radiotherapy once a day for 4 consecutive
days. The change in tumor volumes in different groups after treatment, which was normalized by untreated group. (C) HE staining for the morphology of tumors in
different groups. (D) IHC was performed on tumor sections with BrdU, a marker of proliferation. Quantitation as a percentage of total tissue is shown to the right of
representative images. Each data point in the graphs was from three independent experiments (mean ± SD). P-values were calculated by Student’s t-test (*P < 0.05,
**P < 0.01).
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increase in CD11b+ cells with the combination treatment (4.42 ±
0.94/4.14 ± 0.91) (P <0.01). The data demonstrate that VPA/
HPTA can induce an increase in CD11b+ cells in the tumor.

Next, to verify the source of VPA/HPTA-induced
macrophages, we employed co-localization staining of CD11b
and F4/80 markers. As shown in Figure 3B, all F4/80+ cells co-
localized with CD11b, and the proportion of the cells (CD11b+,
F4/80+) increased significantly after VPA/HPTA treatment
(29.4%/27.5%) (P <0.01, Figures 3C and S3A). This proportion
was further increased in the combination treatment groups
(52.2%/49.4%) (P <0.01), but not in the RT-alone group
(P >0.05). The data demonstrate that the increased macrophages
in the tumormay be of myeloid origin, which can be recruited into
the tumor microenvironment by VPA/HPTA.

To distinguish whether the increased macrophage population
were the resident macrophages in the tumor, the ability of
Frontiers in Immunology | www.frontiersin.org 6
RAW264.7 macrophages was tested after IR and VPA/HPTA
combination treatment by MTT assay in vitro. We found that the
ability of the macrophages irradiated with 4 and 8Gy was
significantly decreased (Figure S3B, P <0.01); however, VPA/
HPTA treatment did not cause a further decrease in the cell
ability (P >0.05). We concluded that the previously observed
increased macrophage population is likely from non-tumor
resident macrophages, the myeloid-derived macrophages may
be recruited from other tissues.

VPA/HPTA-Activated Macrophages Are
Highly Phagocytic in Breast Tumors at the
Early Stage of Treatment In Vivo
To determine the effect of VPA/HPTA-activated macrophages
on tumors, we found that the proportion of apoptotic cells
(Cleaved caspase-3+) was increased after VPA/HPTA
A

B

FIGURE 2 | VPA/HPTA activates the macrophages and reprograms TAMs polarization towards M1 phenotype in irradiated breast tumor at the early stage of the
treatment (A) IHC was performed on tumor sections with the macrophage-specific marker F4/80 to assess infiltration of macrophages, and representative
quantitation and images are shown. (B) The mRNA expression levels of CD86, CD209, CD163, MHC-II, IL-10, TNF-a, IFN-g, IL-6 and IL-12 in DMBA-induced breast
tumors in rats were determined by real-time PCR. Data were normalized to untreated group. Each data point in the graphs was from three independent experiments
(mean ± SD). P-values were calculated by Student’s t-test (*P < 0.05, **P < 0.01).
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treatment and RT-alone treatment, this was further increased
after the combined treatment (2.03 ± 0.43/1.90 ± 0.41, P <0.01,
Figure 4A), suggesting that the combination treatment
promoted the apoptosis of tumor cells.

Phagocytosis of breast tumor cells was quantified as the
proportion of F4/80+ macrophages that contain intracellular
EpCAM, a marker of breast tumor cells. By co-localization
staining with F4/80 and EpCAM markers (Figure 4B), we
found that the proportion was increased significantly both in
the VPA/HPTA-alone and the combination treatment groups
(89.61%/87.73%) (P <0.01, Figures 4C and S4). Thus, the
macrophages induced by VPA/HPTA are highly phagocytic,
which we concluded is helpful to enhance the RT effect in
eliminating tumor cells.

VPA/HPTA Reinforces the Anti-Tumor
Effect of Radiotherapy by Activating CD8+

T Cell-Dependent Anti-Tumor Response
and Inducing Vascular Normalization In
Vivo at the Early Stage of the Treatment
TAMs can target CD8+ T cells and inhibit immune rejection of
tumor cells through various mechanisms (46), while IL-12
secreted by M1 cells can activate CD8+ T cells to stimulate an
anti-tumor response in solid tumor models (47, 48). CD8+ T cells
mediate the most important anti-tumor immune response in vivo,
and most cancer immunotherapy approaches aim to evoke,
Frontiers in Immunology | www.frontiersin.org 7
promote and enhance the specific anti-tumor activity of CD8+ T
cells (49). Since we found that VPA/HPTA promoted pro-
inflammatory M1 phenotype and increased IL-12 expression in
our study, we next examined whether VPA/HPTA can activate
CD8+ T cells to be involved in the anti-tumor response. The results
in Figure 5A showed that VPA/HPTA treatment induced an
increase in CD8+ T cells population (P <0.01), which was also
modestly increased in the RT-alone treatment group (P <0.05).
The combination treatment further significantly increased the
CD8+ T cells population (19.85 ± 5.61/20.00 ± 5.43) (P <0.01).
Granzyme-B, the functional marker of CD8+ T cells, was also
increased in the combination treatment groups (Figure 5B),
indicating that VPA/HPTA activated the CD8+ T cells and thus
enhanced the RT effect in the tumor, whichmay be associated with
IL-12 secreted by anti-tumor M1-type macrophages.

The tumor-promoting TAMs contribute to abnormalities in
tumor vasculature (9, 50–52), while anti-tumor M1 macrophages
are associated with anti-angiogenic effects including vascular
pruning and normalization (53). Studies have shown that IFN-g
can interfere with the integrity of blood vessels and affect the
progression of tumors (27, 39). Since we discovered that VPA/
HPTA increased mRNA level of IFN-g of M1 function markers in
our study, we next examine whether VPA/HPTA can influence
angiogenesis in the tumor. The results of CD31, the markers of
endothelial blood vessel, demonstrated that VPA/HPTA
treatment, as well as the RT-alone treatment, reduced the size,
A

B C

FIGURE 3 | VPA/HPTA regulates myeloid-derived macrophages to enhance radiotherapy effect in breast cancer at the early stage of treatment in vivo (A) IHC was
performed on tumor sections with the myeloid marker CD11b to assess infiltration, representative quantitation and images are shown. Immunofluorescence co-
staining of myeloid derived cells (CD11b+: green) and macrophages (F4/80+: red), and representative images (B) and quantitation (C) are shown. Each data point in
the graphs was from three independent experiments (mean ± SD). P-values were calculated by Student’s t-test (*P < 0.05, **P < 0.01).
May 2021 | Volume 12 | Article 646384

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cai et al. Enhance and Prolong Radiotherapy Effect
density and aberrantly branches of the vasculature, and the effect
was augmented in the combination treatment groups (Figure 5C).
These findings suggest that VPA/HPTA combined with
radiotherapy can inhibit tumor neovascularization, such action
is associated with IFN-g secreted by anti-tumor M1 macrophages
exhibiting anti-angiogenic properties.

VPA/HPTA Prolong the Radiotherapy
Effect of Breast Cancer via Maintaining the
Durability of Anti-Tumor Immune
Response In Vivo
Our results on the tumor growth revealed an interesting
phenomenon. As shown in Figure 1B, the tumor volume
significantly decreased in the first week after the RT-alone
treatment, and then started to increase after that. At the end of
the observation period (70 days), the tumor volume elevated to
about 2.5 times than that before RT treatment. Surprisingly, for
the combination treatment groups, the tumor volume grew
slowly after an initial decrease in the first week, and
subsequently the tumor volume was increased about 0.5 times
than that before the treatment at the end of the observation
period, indicating that both VPA and HPTA could significantly
prolong the RT effect in inhibiting tumor growth. We speculated
that this effect may be associated with anti-tumor immune
response activated at the early stage of the treatment, so we
Frontiers in Immunology | www.frontiersin.org 8
further analyzed the immune state in the tumor at 70 days
after treatment.

Firstly, HE staining showed that there were still large necrotic
areas and cells in the combination treatment groups (Figure S5A).
The results of BrdU showed that the cells in the untreated group
were still high-proliferative, the proliferative capacity in the RT-
alone group was the same as in the VPA/HPTA-alone groups,
which was consistent with the tumor growth (Figure 1B), but was
lower than that in the untreated control group (P <0.01). While,
the combination treatment groups still showed much lower
proliferative capacity (P <0.01, Figures 5B and 6A). Similar
findings were noted with Ki67 (P <0.01, Figure S5C). The data
indicate that the tumor growth was inhibited in the combination
treatment at the later stage of RT treatment.

Subsequently, F4/80 IHC results suggested that macrophages
were still active in the combination treatment group (P <0.01,
Figures 6B and S5D), although not as evident as in the early stage,
as can be seen largely by the CD68 staining (P <0.01, Figure S5E).
We further analyzed the macrophage phenotype and its function.
The increase of CD86+ M1-type population (P <0.01) and mRNA
level of M1 function markers (IL-12, IL-6, MHC-II, IFN-g and
TNF-a; P <0.01) and the decrease of CD209+/CD163+ M2-type
population (P <0.05) and mRNA level of M2 function marker
(IL-10; P <0.01) were also observed in the combination treatment
groups but not in RT-alone group (Figure 6C). Such effects are not
A

B C

FIGURE 4 | VPA/HPTA-activated macrophages are highly phagocytic in breast tumors at the early stage of treatment in vivo (A) IHC was performed using the
cleaved caspase-3 to identify apoptotic bodies within macrophages, representative images and quantitation are shown. Phagocytosis of breast tumor cells was
quantified as the proportion of F4/80+ macrophages (red) that contain intracellular EpCAM+ (green), a marker of breast tumor cells by immunofluorescence,
representative images (B) and quantitation (C) are shown. Data were normalized to untreated group. Each data point in the graphs was from three independent
experiments (mean ± SD). P-values were calculated by Student’s t-test (*P < 0.05, **P < 0.01).
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as strong as in the early stage of the treatment (Figure 2B). The
increased of CD8+ T cell population (Figure 6D) with higher
expression of granzyme-B (Figure 6E) and a reduction in vascular
(Figure 6F), under the combination treatment were also observed,
supporting the hypothesis that VPA/HPTA prolonged the RT
effect by maintaining anti-tumor immune response through the
later stage of treatment.

VPA/HPTA Can Directly Promote M1
Polarization of Macrophages to Activate
Anti-Tumor Response of CD8+ T Cells
In Vitro
To verify VPA-like compounds can directly reprogram M1
polarization and activate anti-tumor response, the conditional
Frontiers in Immunology | www.frontiersin.org 9
medium experiment was employed for this study. Firstly, to
manipulate the environment for tumor cell growth, the
conditional medium, which was from the culturing breast
cancer cell line MCF7, was used to incubate the macrophage
cells, RAW264.7, thus to investigate the effect of VPA/HPTA on
RAW264.7 polarization. The experiment design was shown in
Figure 7A. As a negative control, regular medium was used.
Both the qRT-PCR and ELISA experiments demonstrated a
significant decreased in the level of the M1 marker CD86 and
its secreted cytokines (IL-12, IFN-g, and TNF-a), and a
significant increase in M2 secreted cytokine IL-10 were
observed after VPA/HPTA treatment (P <0.01), although the
significant changes in the level of the M2marker CD209 were not
observed (Figures 7B, C). The results indicate that VPA/HPTA
A

B

C

FIGURE 5 | VPA/HPTA reinforces the anti-tumor effect of radiotherapy by activating CD8+ T cell-dependent anti-tumor response and inducing vascular
normalization in vivo at an early stage of the treatment. (A) IHC was performed on tumor sections for the marker CD8. Quantitation as a percentage of total tissue is
shown to the right of representative images. (B) IHC was performed on tumor sections with the marker granzyme-B. Quantitation as a percentage of total tissue is
shown to the right of representative images. (C) Immunofluorescence staining of tumor vessels (CD31+: green) and representative images are shown. Each data
point in the graphs was from three independent experiments (mean ± SD). P-values were calculated by Student’s t-test (*P < 0.05, **P < 0.01).
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can induce M2 polarization of macrophages under a normal
culture environment.

With the conditional medium, through both qRT-PCR and
ELISA, a significant elevation of the level of CD86 and the
cytokines (IL-12, IFN-g, and TNF-a) (P <0.01) and a
significant decrease of the level of CD209 and IL-10 were found
after VPA/HPTA treatment (P <0.01). The results indicate that
VPA/HPTA can directly promote M1 polarization under tumor
cell growth environment (Figures 7B, C).

We also used LPS as a positive control for this study. The
results indicated that LPS can induce M1 polarization of
macrophages under regular medium and conditional medium
(Figures 7B, C), consistent with other reports (54, 55),
suggesting that our experimental design was reliable.

Cell lysate from the macrophages was further used to incubate
MCF7 cells to test for cell viability (Figure 7D). We found that
the relative survival fraction of VPA/HPTA-alone was
comparable to RT-alone treatment. The combination treatment
resulted in further inhibited cell growth (P <0.01).

We concluded from the above results that VPA/HPTA can
directly induce macrophage M1 polarization in the tumor
Frontiers in Immunology | www.frontiersin.org 10
environment, and activate macrophage-mediated anti-tumor
immunity for enhancing the effects of radiotherapy to tumor.

Since VPA/HPTA can directly induce M1 polarization and
result in the increase of IL-12 level, we next test the effect of VPA/
HPTA-induced M1 polarization on CD8+ T cells in vitro. The cell
lysate from the VPA/HPTA-treated macrophage RAW264.7 was
used to treat isolated mononuclear cells extracted from venous
blood from healthy donors, at the same time the isolated
mononuclear cells were activated with anti-CD3/CD28. The
experimental design was shown in Figure 7E. After treatment
for 5 days, the mononuclear cells were labeled with the antibodies
of CD3 and CD8 for isolating CD8+ T cells by flow analysis. The
results showed that VPA/HPTA significantly increased the number
of CD3+CD8+ T lymphocytes (Figure 7F, P <0.05), indicating that
VPA/HPTA-induced M1 polarization can promote the
proliferation of CD8+ T cells. Next, to further illustrate the effect
of activated CD8+ T cells on the growth of tumor cell MCF7
(Figure 7G), the PBMCs treated by VPA/HPTA-treated
macrophage lysate were co-cultured with MCF7 cells for 48 h.
We found the viability of MCF7 cells was inhibited by VPA/
HPTA-alone and RT-alone treatment (P <0.05), this was further
A B D

E

F

C

FIGURE 6 | VPA/HPTA prolong the radiotherapy effect of breast cancer via maintaining the durability of anti-tumor immune response in vivo Tumor tissues were
analyzed 70 days after treatment. Quantitative analysis of BrdU (A) and F4/80 (B) immunohistochemistry. (C) The mRNA expression levels of CD86, CD209, CD163,
MHC-II, IL-10, TNF-a, IFN-g, IL-6 and IL-12 in DMBA-induced breast tumors in rats were determined by real-time PCR. Data were normalized to the untreated
group. (D) IHC was performed on tumor sections for the marker CD8. Quantitation as a percentage of total tissue is shown to the right of representative images.
(E) IHC was performed on tumor sections for the marker granzyme-B. Quantitation as a percentage of total tissue is shown to the right of representative images.
(F) Immunofluorescence staining of tumor vessels (CD31+: green) and representative images are shown. Each data point in the graphs was from three independent
experiments (mean ± SD). P-values were calculated by Student’s t-test (*P < 0.05, **P < 0.01).
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reduced in the combination treatment groups (P <0.01). The
results suggested that VPA/HPTA not only can activate
macrophage-mediated anti-tumor immunity but also can activate
macrophage-CD8+ T cell-mediated anti-tumor immunity to
enhance the effects of RT to tumor, thus supported the earlier
in vivo results.
DISCUSSION

In this study, we demonstrate that VPA/HPTA evokes immune
activation by mobilizing myeloid-derived macrophages and
triggering M1 polarization in a DMBA-induced rat breast
cancer model. These reprogrammed macrophages led to
subsequent T cell recruitment and activation, vascular
normalization, and tumor suppression (Figure 8). Our findings
support the proposition of VPA/HPTA as an adjuvant therapy to
low-dose radiotherapy in breast cancer; VPA/HPTA enhances
and prolongs the RT effect on breast cancer by activating and
maintaining the anti-tumor immune function.
Frontiers in Immunology | www.frontiersin.org 11
Persistent Immune Activation Is the Key to
Prevent Tumor Recurrence
RT has been the mainstay of oncological treatment of breast cancer
since the 1900s; today, about 50–60% of cancer patients continue to
receive this treatment modality. However, the resistance of tumor
cells to RT and high cancer recurrence rate has been reported (56).
Understanding the mechanism of radiation resistance in breast
cancer is of clinical importance. The tumor microenvironment has
been known to influence the response to RT, specifically
lymphocytes, monocytes and macrophages are particularly
radiosensitive. Furthermore, ionizing radiation has an effect on
the vascular endothelium and affects the recruitment of anti-tumor
T cells into the tumor site, as well as initiating adaptive and innate
immune responses that can result in systemic anti-tumorigenic
effects both inside and outside of the irradiation field.

Studies have shown that cancer immunotherapy achieves a
durable clinical response in patients with advanced cancer, who
are refractory to conventional treatment (57). While RT can also
activate the immune system to some extent (58), it is limited by
the dose and frequency of RT. Such RT-induced immune
A B D
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G

C

FIGURE 7 | VPA/HPTA can directly promote M1 polarization of macrophages to activate anti-tumor response of CD8+ T cells in vitro (A) Protocol for MCF7
conditional medium and macrophage polarization experiment. (B) qRT-PCR analysis of markers (CD86 and CD209) of reprogrammed RAW264.7 macrophages
under different treatment conditions. (C) qRT-PCR and ELISA analysis of cytokines (TNF-a, IFN-g, IL-10 and IL-12) of reprogrammed RAW264.7 macrophages under
different treatment conditions. (D) The survival of MCF7 cells treated with macrophage lysate was detected by MTT assay. (E) Protocol for extraction and activation
of PBMCs and the co-culture with MCF7 cells. (F) Flow cytometric analysis of the effect of macrophage lysates on CD8+ T lymphocytes. (G) MTT results of survival
of MCF7 cells after co-culture. Each data point in the graphs was from three independent experiments (mean ± SD). P-values were calculated by Student’s t-test
(*P < 0.05, **P < 0.01).
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activation is short-lived and tumors are prone to recurrence.
Therefore, safer and more effective immune activators are
needed to supplement and complement RT.

VPA-Like Compounds Are Ideal Immune
Activators, Which Can Activate the Anti-
Tumor Response of CD8+ T Cells and
Enhance and Prolong the Curative Effect
of Radiotherapy
The microenvironment plays an important role in the progress of
breast cancer and its resistance to treatment (36). Most solid
tumor microenvironments tend to have a certain amount of
TAMs and are associated with tumor invasion and poor
prognosis (17–19, 59). TAMs were found to enhance
malignancy by stimulating angiogenesis, inducing tumor cell
migration, invasion and infiltration, and inhibiting anti-tumor
immunity in mouse models (60). In our working model, VPA/
HPTA induces an increase in myeloid-derived macrophages and
activates polarization toward a M1 phenotype that is pro-
inflammatory and has phagocytic capacity.

Analysis of breast cancer patients indicates that a low ratio of
macrophages to CD8+ T cells is associated with poorer survival,
suggesting that macrophages may play a major role in suppressing
T cell activity against tumors (61). CD8+ T cells play a key role in
anti-tumor immunity, but their activity is inhibited in the tumor
microenvironment, therefore tumors can escape immune attack
by various mechanisms of immunosuppression (62–65). The
Frontiers in Immunology | www.frontiersin.org 12
cytotoxicity of reactivated CD8+ T cells has important clinical
significance in cancer immunotherapy. Here, we explored a novel
combination treatment modality that activates the anti-tumor
CD8+ T ce l l s t h rough r e gu l a t i on o f t h e tumor
microenvironment to enhance the efficacy of RT. We
demonstrate that VPA/HPTA can reprogram macrophages in
tumors, activate CD8+ T cell-mediated anti-tumor immune
response, and enhance radiotherapy efficacy.

Additional Implementation of Immune
Checkpoint Inhibitors May Have a Further
Positive Impact on the Treatment Efficacy
in Our Model
Immune checkpoints are immunosuppressive pathways that
maintain self-tolerance and protect surrounding tissues by
modulating immune responses, a property that tumor cells
exploit to evade attack by immune cells. Currently, two of the
most extensively studied immune checkpoint targets in tumors
are Cytotoxic T lymphocyte associated antigen 4 (CTLA-4) and
the PD-1 receptor. Immune checkpoint inhibitors release the
“immune brakes” in the tumor microenvironment, reactivate the
immune response effect of T cells on tumors, thereby achieving
anti-tumor effects. It is also of interest whether immune
checkpoint inhibition and other immunotherapies can be
combined to better exert anti-tumor effects.

Studies have reported that the triple combination of anti-
CTLA-4, anti-PD-1, and G47D-mIL12 was able to cure most
FIGURE 8 | The model of VPA/HPTA to enhance and prolong the radiotherapy effect by activating and maintaining anti-tumor immune response. Breast tumors in
rats induced by DMBA contain abundant vasculature and pro-tumor macrophages (TAMs) that suppress the function of CD8+ T cells (left). Myeloid-derived cells are
recruited to tumor sites, differentiate into macrophages, and further polarize toward M1 phenotype, thus promote inflammatory response. CD8+ T cells are activated,
granzyme-B is secreted possibly through the IL-12 pathway, thereby killing tumors. The vasculature of tumors becomes sparse, possibly due to stimulation by IFN-g.
At the same time, the combination treatment not only effectively improve the effect of radiotherapy during the immediate exposure, the concurrent therapy also delay
the growth of tumors and prolong the anti-tumor effect by continuously activating the immune response to compensate for recurrence after radiotherapy.
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mice of glioma (66, 67). This treatment was associated with
macrophage influx and M1-like polarization, along with increased
T effector to T regulatory cell ratios. Among them, G47D-mIL12
induces M1-like polarization in TAMs. This synergy may permit
low dose of the immune checkpoint inhibitors to reduce potential
adverse effects (67). In our study, VPA/HPTA seems to act similarly
to G47D-mIL12 by mobilizing macrophages to recruit and trigger
M1 polarization, suggesting that administration of immune
checkpoint inhibition (anti-CTLA-4, anti-PD-1) in our model
may potentially achieve better therapeutic outcomes.
Furthermore, VPA has been used clinically for decades and is a
low-cost alternative to the currently available immune checkpoint
inhibitor such as ipilimumab, pembrolizumab and nivolumab,
especially so for resource-constraint countries.

It was previously shown that the combination of RT, anti-
CTLA4, and anti-PD-L1 promotes immunity through distinct
mechanisms. Anti-CTLA4 predominantly inhibits T regulatory
cells (Tregs) to increase the CD8 T cell to Treg (CD8/Treg) ratio.
RT enhances the diversity of the T cell receptor (TCR) repertoire
of intratumoral T cells. Together, anti-CTLA4 promotes
expansion of T cells, while RT shapes the TCR repertoire of
the expanded peripheral clones. PD-L1 blockade reverses T cell
exhaustion and attenuates the decrease in the CD8/Treg ratio,
further encourages oligo-clonal T cell expansion (68). This
suggests that the combination of RT with immune checkpoint
inhibitor can improve tumor immunotherapy efficacy. Thus, we
speculate that the addition of immune checkpoint inhibitor to
existing treatment modalities may have a further positive impact
on treatment efficacy.

The Specific Immune Activation
Mechanism and More Reasonable
Strategies of VPA-Like Substances Need
to Be Further Explored
We found that CD11b+ cells infiltrate tumors, but did not determine
which stimuli and receptors were involved in this recruitment. There
are several possibilities for the exact source of recruitment of
CD11b+ cells and we cannot completely exclude the presence of
CD11b+ MDSCs (Myeloid-derived suppressor cells). However,
MDSCs, as immunosuppressive cells, induce the generation of
Tregs (Regulatory cells) (69), promote the transformation of
macrophages from M1 to M2 phenotype (70), thus leading to
increased TAMs differentiation and vascular endothelial cells (71)
as well as inhibiting the killing of tumor cells by T cells (72) to
achieve anti-tumor immunosuppression. In our study, TAMs were
polarized from M2 phenotype to M1 with VPA/HPTA-alone
treatment as well as in combination with RT. Meanwhile, CD8+ T
cells were induced to secrete granzyme B to restrain tumor, and
CD31 immunofluorescence staining also indicated that the tumor
vessels became sparse. These findings all confirmed that the
recruited CD11b+ cells were not MDSCs; if any, minimal. Study
has reported additional roles for CD11b (45): CD11b activation
promotes pro-inflammatory macrophage polarization by
stimulating the expression of microRNA Let7a. In contrast,
inhibition of CD11b prevents Let7a expression and induces cMyc
expression, leading to immune suppressive macrophage
Frontiers in Immunology | www.frontiersin.org 13
polarization, vascular maturation, and accelerated tumor growth.
This suggests that CD11b may serve as a positive regulator of
immune activation and a target for cancer immunotherapy.

At the same time, we also found that although the growth of
tumor volume was inhibited after the combination treatment as
compared with radiotherapy alone, the tumor nonetheless
continued to grow abide at a much slower growth rate,
suggesting that rebound effect may nonetheless occur after
stopping combination treatment (73). If we are to extend the
duration of VPA/HPTA treatment, the stability of reprogramming
phenotype and toxicology would warrant further exploration.

The strikingly different effects of VPA/HPTA on macrophage
polarization demonstrated in the cell model in vitro, with and
without the tumor cell medium environment, allow us to make
bold speculation that in the animal model, in addition to
promoting M1 polarization of macrophages to activate anti-
tumor response of CD8+ T cells, VPA/HPTA may also exhibit
protection against the injury of distant normal tissues induced by
RT, as it is possible to mediate anti-inflammatory effects via
macrophage M2 type polarization.

As for how CD8+ T cells may kill the tumor cells, the perforin/
granzyme-B apoptosis pathway is a likely candidate (74), but
there are also reports that T cell-promoted tumor ferroptosis is
an anti-tumor mechanism (75), which needs further exploration.

Regardless of these hitherto untested possibilities, VPA/
HPTA interventions are safe and effective options for the
treatment of breast cancer: persistent immune activation and
intensive radiotherapy. Our study may provide a more rational
and long-term strategy for breast cancer treatment in clinic.
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