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The field of immunology is rapidly progressing toward a systems-level understanding of
immunity to tackle complex infectious diseases, autoimmune conditions, cancer, and
beyond. In the last couple of decades, advancements in data acquisition techniques have
presented opportunities to explore untapped areas of immunological research. Broad
initiatives are launched to disseminate the datasets siloed in the global, federated, or
private repositories, facilitating interoperability across various research domains.
Concurrently, the application of computational methods, such as network analysis,
meta-analysis, and machine learning have propelled the field forward by providing
insight into salient features that influence the immunological response, which was
otherwise left unexplored. Here, we review the opportunities and challenges in
democratizing datasets, repositories, and community-wide knowledge sharing tools.
We present use cases for repurposing open-access immunology datasets with
advanced machine learning applications and more.
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INTRODUCTION

Over the last decade, the field of immunology has exploded in an unprecedented way with exciting
scientific breakthroughs, the rapid expansion of immunologic techniques, and the development of
cutting-edge analytical tools (1–3). Studies have shown that complex diseases such as cancer,
autoimmune disorders, and infections can be tackled by manipulating the immune system to fight
against disease anomalies (4). The community is witnessing a plethora of data generated from high-
throughput technically advanced experiments, large-scale clinical trials, multi-institution
government-funded projects resulting in a data-rich environment.

In the 21st century, the democratization of domain-specific knowledge has become essential and
vital to disrupt the silos created over many decades. There are several ongoing efforts to democratize
datasets, circumvent gatekeepers and reduce bottlenecks to the data gateways. Large government
funded projects are launched to encourage the research investigators for collaboration, conduct
academic training, and workshops for promoting the field of data science (5, 6). Here, we discuss the
opportunities and challenges posed to biomedical research in democratizing immunology datasets.
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HARNESSING LARGE-SCALE
IMMUNOLOGY DATASETS

There are numerous open science initiatives launched globally
with the support and recognition from the research community
in the last decade (7–9). As a result, there is an exponential
growth in the number of repositories with a broad range of
applications funded by government agencies, private and non-
profit organizations. Scientific publishers and research funders
are also releasing new data-sharing mandates to make the
scientific findings transparent and reproducible. According to
one registry of research data repositories (re3data.org), there are
more than 2000 open, 1000 closed, and 350 embargoed research
data repositories (10). Some repositories require users to submit
data access proposals reviewed by independent data access
committees, which can be a very time consuming and tedious
process (11). This suggests that one needs to jump through
many hoops to search and access public datasets in the
existing systems.

Moreover, research has become more interdisciplinary than
ever before, and scientists must broaden their search across
disciplines or less familiar areas. With advances in technology
and the availability of big data, there is a paradigm shift toward
data-driven hypothesis to get novel biological insight (12). To
advance scientific discoveries, the data management practices
including data collection, ingestion, integrity, and governance
following the Findability, Accessibility, Interoperability and
Reusability (FAIR) principles are extremely necessary for
responsible data sharing (13).

Discoverability
There is a wide gap between articles in journals and associated
data. The research community has an unmet need to store and
share well-annotated large volumes of discrete experimental data
to facilitate data reuse. For example, there has been a rapid
expansion of flow cytometry applications in the last few years.
However, only a handful of cytometry data deposition and
sharing portals such as ImmPort (immport.org) (14) and
Flowrespository.org (15) collect and share raw and/or
processed data associated with experimental findings. A large
portion of other immune measurements such as Enzyme-Linked
Immunosorbent assay (ELISA), Hemagglutination Inhibition
Assay (HAI), Luminex assays for cytokine profiling are
primarily found embedded in supplementary files associated
with the publication and are hard to discover.

In 2019, The Google Dataset Search (https://g.co/
datasetsearch), a web-based dataset-discovery tool, was built
using a crowdsourcing approach for sharing information about
data repositories across a broad scope – social science, life
science, physics, climate science, and beyond (16). The
flexibility in sharing the datasets in flat files, tabular, or any
other digital format based on indexing the metadata (data about
data) makes it unique. The portal relies on an open ecosystem
where dataset providers publish semantically enhanced metadata
on their sites. The tool aggregates, normalizes, and reconciles
metadata, providing a search engine that lets users find datasets
on the web. Dataverse (dataverse.org) is a major international
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collaborative project led by Harvard’s Institute for Quantitative
Social Science (IQSS), that facilitate public distribution of
persistent, authorized, and verifiable data. Each dataset in the
Dataverse contains descriptive metadata and data files (including
documentation and analysis code that accompany the data).
Dataverse has developed data citation standards that offers
proper recognition to authors and permanent identification
through global identifiers (17, 18).

Accessibility
Data accessibility is one of the key drivers in accelerating
reproducible science, increasing transparency, and repurposing
the shared data to enhance scientific knowledge. In the last
decade, the data sharing awareness through generalist and
domain-specific repositories are exponentially growing and
embraced by the community (19).

To facilitate accessibility, data sharing sites are developing
Graphical User Interface (GUI), Applied Programming Interface
(API) tools, and cloud-based resources to cater broad spectrum
of users - experimentalists, clinicians, computational biologists,
citizen scientists (5, 14). Furthermore, several projects have been
launched that deliver harmonized immunology datasets around
a specific theme using the Shiny web appl ica t ion
(shiny.rstudio.com) with R (r-project.org). For example, we
developed a curated immunology reference set of 10,000
Immunomes (10kimmunomes .ucsf .edu) , which was
synthetically built from a subset of healthy individuals, with no
experimental manipulation. These datasets were harmonized
and aggregated across many studies, and available for free
download to the research community (20). Another data
management and analysis resource, ImmuneSpace, leverages
large-scale datasets, generated by the Human Immunology
Project Consortium (HIPC) to characterize the immune system
under normal conditions and in response to various stimuli
(21, 22).

Interoperability
The research field of systems immunology uses mathematical
approaches and computational methods to examine the
interactions between cellular and molecular networks within
the immune system. One of the major barriers in integrating
multi-scale immunology datasets from disparate sources is lack
of annotation and metadata standardization, variation in analyte
names, ambiguity in measurement units, data aggregation and
more. For example, immunophenotyping experiments requires
careful attention to reagents, sample handling, instrument setup,
and data analysis, and is essential for successful cross-study and
cross-center comparison of data (23). The HIPC data standards
working group leveraged the ontologies to cross-compare cell
types and marker(s) expression of each cell type referred as
gating definitions in immunophenotyping. They crowdsourced
large sets of gating definitions and corresponding cell types from
ImmPort studies to examine the ability to parse gating
definitions using terms from the Protein Ontology (PRO) and
cell type descriptions from Cell Ontology (CL) (24). The
Adaptive Immune Receptor Repertoire (AIRR) Community is
developing a set of standards for describing, reporting, storing,
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and sharing adaptive immune receptor repertoire data, such as
sequences of antibodies and T cell receptors (TCR) (25). As we
move toward the use of machine learning and artificial
intelligence, controlled vocabularies are critical. Even more
critical is the need for robust definitions of the clinical
phenotypes and diagnoses that accompany these samples to
ensure the accurate comparison between cases and controls.

The crosstalk between the federated resources hosted by
private, public, and government-funded agencies is minimal
under the existing condition. For example, cancer researchers
seeking clinical and omics data from other disease areas such as
rheumatology have no easy solution to retrieve datasets. There is
a lack of common data elements that would facilitate
interoperability between two disease areas. The National
Cancer Institute (NCI) Cancer Research Data Commons
(CRDC) had started integrating datasets and analytical tools to
share, integrate, analyze, and visualize cancer research data
to enable interoperability between the NIH cloud resources
and external resources (26). One such great example of
interoperability was initiated between Cancer Genomics Cloud
(CGC) and ImmPort powered by Seven Bridges (27). A pilot
project was launched to host specialized rheumatology datasets
from ImmPort within the CGC ecosystem and create
opportunities for cancer researchers to integrate disease
datasets beyond cancer.
BENEFITS OF DEMOCRATIZING
IMMUNOLOGY RESOURCES

With the growing importance of open data for promoting
reproducible science and building data ecosystems, the
challenge is to conglomerate immunology related datasets and
repositories to facilitate information exchange and ultimately
facilitate broader adoption and democratization of datasets and
tools by the biomedical research community.

Democratization of Immunology Datasets
In the past few years, democratizing clinical research, trials,
patient health record data is on the rise. There are long term
benefits of minimizing the duplicative effort of building and
supporting multiple independent database systems across
institutions. Connecting data resources would drastically
reduce the labor, time, and effort for the discoverability and
accessibility of the datasets. Instead, funding can be effectively
used to build the infrastructure to support interoperability.

Data commons and ecosystems are getting widely adopted
for distributing biomedical data with cloud computing
infrastructure and commonly used software services, tools, and
applications for the large-scale management, analysis,
harmonization, and sharing of biomedical data (28). For
example, The NIH’s Big Data to Knowledge (BD2K) initiative
established a virtual environment to facilitate interoperability
and discoverability of shared digital objects accessible by a
diverse community of researchers through the biomedical and
healthCAre Data DIscovery Ecosystem (bioCADDIE) data
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discovery index commonly referred as DataMed (datamed.org)
(17). ImmPort shares disparate immunology and clinical trials
datasets spanning more than 30 National Institute of Allergy and
Infectious Diseases (NIAID) programs and other external
projects (14). ImmGen established by the Immunological
Genome Project Consortium is a collaborative project between
immunologists and computational biologists to understand the
gene expression and regulatory networks in immune cells of the
mouse (29). The iReceptor Scientific Gateway links distributed
(federated) Adaptive Immune Receptor Repertoire (AIRR)-seq
repositories provides access to a suite of tools for a complete
analysis workflow, including modules for preprocessing and
quality control of sequence reads, V(D)J gene segment
assignment, repertoire characterization, and repertoire
comparison (30).

With the recent outbreak of COVID-19 pandemic, data
democratization and knowledge dissemination has become
even more crucial. Large amounts of mechanistic and clinical
immunology data are pouring in from the research and clinical
community to understand the disease mechanism. For example,
NIAID-funded multi-site Immunophenotyping Assessment in a
COVID-19 Cohort (IMPACC) study is tracking and collecting
the immunological measures from hospitalized patients to
predict the clinical severity. The COVID-19 Prevention
Network (COVPN) is a centralized clinical trial network
established to test various vaccines and monoclonal antibodies
as a preventive measure against COVID-19. There are ongoing
efforts to build Human Cell Atlas, a comprehensive map of
immune cells in health and disease (31).

Democratization of Computational
Applications
With increasing awareness for data sharing and dissemination,
there is a rapid development of bioinformatics tools for
harnessing such data. The day-to-day experience for many
bench scientists, bioinformatic researchers, and tool developers
involve generating new hypotheses, dealing with implementation
details, overcoming technical barriers, and creating a distributed
computing environment. The recent advances in cloud
computing have democratized access to scalable and
reproducible distributed systems for bioinformaticians
and immunologists.

In 2015, the implementation of on-demand cloud-based
storage and computing resources commonly known as Cloud
Credits Model was developed by BD2K initiative which is now
becoming popular in the biomedical research community. This
model has three primary benefits: 1) provide access to datasets
without having to download on the local machine 2) reduce
economic and technological barriers to accessing and computing
on large biomedical data sets via the STRIDES Initiative (8) cost
and time efficient, as well as benefits such as speed, scalability,
and interoperability from using cloud resources.

The open-source bioinformatics software platform has been a
great success over the years (32). One such great example is
Bioconductor project (bioconductor.org), an open-source, open-
development software project hosting wide-range of
April 2021 | Volume 12 | Article 647536
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bioinformatic and statistical applications used for the analysis of
high-throughput biological data, spanning from single-cell
genomics to cytometry, and the list is rapidly growing (33).
This distributed framework facilitated large-scale data
integration and meta-analyses projects to promote secondary
use of public datasets such as recount2 resource for RNA-Seq
analysis (34) and other immunology datasets (35, 36). In
addition, well cited bioinformatic analyses pipelines hosted on
Galaxy (galaxyproject.org), GenePattern (genepattern.org), and
other independent resources also provide flexibility to
democratize bioinformatics tools. However, computational
reproducibility and sharing analysis code with the published
immunology studies is still lacking. The advent of software
source code distribution and version control systems such as
GitHub (github.com) and Docker Software (docker.com) which
deploys all software dependencies required to run computational
pipelines are some of the best practices that allows other people
to more easily reproduce the analysis results. See Figure 1.
USE CASES: REUSE OF SHARED
IMMUNOLOGICAL DATASETS

The number of available immunological datasets is growing
faster than ever before, providing an unprecedented
opportunity for researchers to repurpose data and generate
Frontiers in Immunology | www.frontiersin.org 4
new hypotheses. In this section, we highlight a few studies that
leveraged publicly available datasets to address immunological
questions. See Table 1.

Machine Learning Applications
Immune-profiling data are highly complex, with high-
dimensionality and diverse sample types. Machine learning
techniques are well suited to analyze complex immunological
data. Multiple studies have demonstrated the potentials of
machine-learning models to predict clinical related
information (37, 45). Researchers have also leveraged various
methods to interpret the machine-learning model and identified
key immunological components (e.g., cytokines or cell subsets)
that are associated with the clinical outcome of interest (38).

Orange et al. used supervised and unsupervised machine
learning techniques to identify rheumatoid arthritis subtypes
from the datasets generated by the Accelerating Medicines
Partnership RA/SLE program, a public-private initiative of
NIH. The study first used unsupervised clustering to identify
three subtypes of rheumatoid arthritis from RNA-sequencing
data. The researchers then trained a support vector machine
(SVM) to predict the rheumatoid arthritis subtypes using
histology features. The machine-learning algorithm allows
doctors to classify rheumatoid arthritis into clinically relevant
subtypes (37).

Hu et al. developed a deep learning model to analyze
cytometry data. Using a convolutional neural network model,
FIGURE 1 | Democratization of datasets and computational tools. The Jupyter logo was used under Copyright © 2017 Project Jupyter Contributors. https://github.
com/jupyter/jupyter.github.io/blob/master/assets/main-logo.svg; The Scikit learn logo is under Copyright © The scikit-learn developers. Source:-https://commons.
wikimedia.org/wiki/File:Scikit_learn_logo_small.svg; NumPy logo source:- The NumPy logo is created by NumPy Team, 2020; https://github.com/numpy/numpy/
blob/main/branding/logo/logomark/numpylogoicon.svg; Python logos are trademarks or registered trademarks of the Python Software Foundation, used with
permission from the Foundation. Source:- https://legacy.python.org/community/logos/; Galaxy Project: https://galaxyproject.org/images/galaxy-logos/; Gen3:- The
logo was used under the permission from Center for Translational Data Science at University of Chicago. Shiny- Shiny are trademarks of RStudio, PBC. https://
github.com/rstudio/hex-stickers/blob/master/PNG/shiny.png; The R logo is © 2016 The R Foundation. (CC-BY-SA 4.0); Docker- Docker and the Docker logo are
trademarks of Docker, Inc. in the United States and/or other countries. https://www.docker.com/company/newsroom/media-resources; Github- GITHUB®, the
GITHUB® logo design are exclusive trademarks registered in the United States by GitHub, Inc, source:-https://github.com/logos.
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the deep learning model was able to take the raw cytometry
matrices as input to predict clinical outcomes of interest. The
study demonstrated that the deep learning model is able to
accurately diagnose asymptomatic cytomegalovirus infection
using Mass cytometry (CyTOF) data from the peripheral
blood. In addition, the study developed a procedure to
interpret the deep learning model. The procedure identified a
subset of CD8+ T cells (CD27- CD94+ CD8+ CD3+) as a
biomarker of latent cytomegalovirus infection (38). The deep
learning model can also potentially be applied to diagnose other
immune-related diseases, such as leukemia and autoimmunity.

Gielis et al. developed machine learning models to predict
antigen specificity of TCR. The study utilized a massive amount
of antigen-specific TCR sequences from immune repertoire
databases, including McPAS-TCR and TCRdb. The study built
a random forest-based machine learning model to identify TCR
clones specific to a group of well-characterized antigens (39). The
application allows researchers to identify disease or conditions
that affect the antigen-specific T cells of known antigens.

Meta-Analysis of Open-Access
Immunology Datasets
Computational immunologists have also combined datasets
from multiple studies to address scientific questions. A meta-
analysis of existing data across different studies offers multiple
benefits. The aggregated data allow researchers to test hypotheses
with increased statistical power. The involvement of multiple
independent studies increases the robustness of conclusions
drawn. In addition, the complexity of aggregated data allows
researchers to test or generate new hypotheses.

Berry et al. performed a cross-platform analysis of
transcriptome data and identified transcript signatures to
classify patients with active and latent tuberculosis, and later
compared active tuberculosis with other inflammatory and
infectious diseases. In addition, the study performed modular
and pathway analysis and revealed that the tuberculosis disease
signatures were dominated by interferon-induced gene
expression change (40).

Sweeney et al. performed a meta-analysis to identify a
transcriptional signature that can classify bacterial and viral-
Frontiers in Immunology | www.frontiersin.org 5
induced sepsis from eight public datasets containing 426 patient
samples (142 viral and 284 bacterial infections). By comparing
the viral and bacterial infections, the study identified a seven-
gene signature that can classify viral and bacterial-induced sepsis.
The signature was validated in 30 independent cohorts (41).

Jiang et al. leveraged large tumor cohorts from The Cancer
Genome Atlas to identify signatures of T cell dysfunction that
can predict cancer immunotherapy response (27). The study
used Cox proportional hazards models to identify signatures of T
cell dysfunction by testing how the expression of each gene in
tumors interacts with the CTL infiltration level to influence
patient survival. The signature predicted the outcome of
melanoma patients treated with cancer immunotherapy. In
addition, the approach was able to identify novel molecular
targets to improve cancer immunotherapy, including
SERPINB9, a granzyme B inhibitor (42).

During the COVID-19 pandemic, the scientific community
has come together and started to share COVID-19 related
datasets in the public domain, allowing other researchers to get
additional insight into the datasets. For example, McClain et al.
studied the transcript profiling differences between COVID-19
subjects and individuals with similar respiratory illnesses such as
seasonal coronavirus, influenza, bacterial pneumonia, and
matched healthy controls (43). The RNAseq analysis from
peripheral blood mononuclear cells (PBMCs) revealed a
distinctive interferon response, as well as the activation of
coagulation and JAK/STAT signaling pathways, unique to
COVID-19 patients. The study also derived two signatures that
can distinguish COVID-19 patients from other respiratory
infections and differentiate COVID-19 patients with mild and
severe symptoms. The authors further validated the signatures
using an independent datasets that is publicly available at Gene
Expression Omnibus (GEO) (46, 47).

Computational Drug Repurposing
The immune system plays critical roles in a variety of diseases.
Modulating immune cells has been a common strategy for
treating immune-related conditions. The shared immunological
data has also been used to identify drugs that can modulate the
immune system. Kidd et al. leveraged the datasets from the
TABLE 1 | List of publications leveraging open-access immunological datasets.

Authors Pubmed
ID

Datasets Study type Description

Orange et al. (37) 29468833 Transcriptomics and histology Machine learning Identify RA subgroups using machine learning models
Hu et al. (38) 32801215 CyTOF Machine learning Identify latent CMV infection using a deep learning model
Gielis et al. (39) 31849987 TCR sequencing Machine learning Predict antigen specificity using a machine learning

model
Berry et al. (40) 20725040 Transcriptomics Meta-analysis Identify transcription signature

specific to active tuberculosis
Sweeney et al.
(41)

27384347 Transcriptomics Meta-analysis Classify viral and bacterial infections using transcription
signature

Jiang et al. (42) 30127393 Transcriptomics Meta-analysis Identify T cell suppression and exclusion signatures.
McClain et al.
(43)

32743603 Transcriptomics Biomarker analyses and validation using public
datasets

Host response to SARS-CoV-2 infection through RNA
sequencing

Kidd et al. (44) 26619012 Transcriptomics Drug repurposing Mapping the effects of drugs on the state-transition of
immune cells
April 2021 | Volume 12 | Article 647536

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bhattacharya et al. Opportunities and Challenges in Democratizing Immunology Datasets
Library of Integrated Network-based Cellular Signatures
(LINCS) project (48) and the ImmGen project to
systematically characterize the interaction between drugs and
immune cells (29). The study matched the drug-induced
transcriptional signature with the signature of immune cell
state transitions. The approach predicted 69,995 known and
novel interactions. The study further validated the top
predictions using electronic health record data and mouse
models (44).
FUTURE PERSPECTIVE

The field of Immunology is burgeoning with plenteous
opportunities to understand the multicellular immune system
at aggregate and single-cell resolution. To facilitate scientific
discoveries without duplicative efforts, data democratization is a
crucial step combined with the infrastructure and tools that
support sharing and integration across multiple sources. One of
the major goals of data accessibility is to allow a rich stream of
data flow freely from source systems to researchers. To promote
open-access data usage, data exploration tutorials, hands-on-
workshops, and application programming training would better
prepare future scientists. This should begin from ground level by
introducing a data science course from high school to graduate
curriculum across all the disciplines. To take advantage of the big
data in immunology harbored in generalist or domain-specific
repositories and ecosystems, streamlining data access, leveraging
cloud-based resources, commonly used bioinformatics tools by
the immunologists and researchers across various domains
would help to scale the datasets and its usage globally.
Frontiers in Immunology | www.frontiersin.org 6
AUTHOR CONTRIBUTIONS

SB formulated the original idea, and AB reviewed and approved
the manuscript. SB contributed to the design of the review. SB
and ZH wrote and reviewed the manuscript and designed the
table and figure. All authors contributed to the article and
approved the submitted version.
FUNDING

This work was supported by the National Institute of Allergy and
Infectious Diseases ImmPort contract HHSN316201200036W.
The content is solely the responsibility of the authors and does
not necessarily represent the official views of the National
Institutes of Health.
ACKNOWLEDGMENTS

We thank Drs. Patrick Dunn and Anupama Gururaj, Katherine
Hypes, and Elizabeth Thomson for their valuable comments. The
graphics for “Measurement Techniques” in Figure 1 were
created with BioRender.com. The logo credits in Figure 1 are
provided in the Supplemental Materials.
SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647536/
full#supplementary-material
REFERENCES
1. Bendall SC, Simonds EF, Qiu P, Amir ED, Krutzik PO, Finck R, et al. Single-

cell mass cytometry of differential immune and drug responses across a
human hematopoietic continuum. Science (2011) 332:687–96. doi: 10.1126/
science.1198704

2. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. Cytometry by time-
of-flight shows combinatorial cytokine expression and virus-specific cell
niches within a continuum of CD8+ T cell phenotypes. Immunity (2012)
36:142–52. doi: 10.1016/j.immuni.2012.01.002

3. Cohen L, Fiore-Gartland A, Randolph AG, Panoskaltsis-Mortari A, Wong S-
S, Ralston J, et al. A Modular Cytokine Analysis Method Reveals Novel
Associations With Clinical Phenotypes and Identifies Sets of Co-signaling
Cytokines Across Influenza Natural Infection Cohorts and Healthy Controls.
Front Immunol (2019) 10:1338. doi: 10.3389/fimmu.2019.01338

4. Demaria O, Cornen S, Daëron M, Morel Y, Medzhitov R, Vivier E.
Harnessing innate immunity in cancer therapy. Nature (2019) 574:45–56.
doi: 10.1038/s41586-019-1593-5

5. Margolis R, Derr L, Dunn M, Huerta M, Larkin J, Sheehan J, et al. The
National Institutes of Health’s Big Data to Knowledge (BD2K) initiative:
capitalizing on biomedical big data. J Am Med Inform Assoc (2014) 21:957–8.
doi: 10.1136/amiajnl-2014-002974

6. Van Horn JD, Fierro L, Kamdar J, Gordon J, Stewart C, Bhattrai A, et al.
Democratizing data science through data science training. Pac Symp
Biocomput (2018) 23:292–303.

7. FAIRsharing Registry WG. connecting (meta)data standards, repositories and
policies. RDA (2014). Available at: https://www.rd-alliance.org/group/
fairsharing-registry-connecting-data-policies-standards-databases.html
(Accessed February 17, 2021).
8. STRIDES Initiative | Data Science at NIH. Available at: https://datascience.
nih.gov/strides (Accessed February 17, 2021).

9. Open-Access Data and Computational Resources to Address COVID-19 | Data
Science at NIH. Available at: https://datascience.nih.gov/covid-19-open-
access-resources (Accessed February 17, 2021).

10. Vierkant P, Pampel H, Ulrich R, Scholze F, Kindling M, Witt M, et al. re3data
- Open infrastructure for Open Science. Available at: https://gfzpublic.gfz-
potsdam.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_
4323890 (Accessed October 6, 2020).

11. Geifman N, Bollyky J, Bhattacharya S, Butte AJ. Opening clinical trial data: are
the voluntary data-sharing portals enough? BMC Med (2015) 13:280.
doi: 10.1186/s12916-015-0525-y

12. Bui AAT, Van Horn JD NIH. BD2K Centers Consortium. Envisioning the
future of “big data” biomedicine. J BioMed Inform (2017) 69:115–7.
doi: 10.1016/j.jbi.2017.03.017

13. Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak
A, et al. The FAIR Guiding Principles for scientific data management and
stewardship. Sci Data (2016) 3:160018. doi: 10.1038/sdata.2016.18

14. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et al.
ImmPort, toward repurposing of open access immunological assay data for
translational and clinical research. Sci Data (2018) 5:180015. doi: 10.1038/
sdata.2018.15

15. Spidlen J, Breuer K, Rosenberg C, Kotecha N, Brinkman RR. FlowRepository: A
resource of 389 annotated flow cytometry datasets associated with peer-reviewed
publications.Cytometry Part 390A (2012) 81A:727–31. doi: 10.1002/cyto.a.22106

16. Brickley D, Burgess M, Noy N. , in: Google Dataset Search: Building a search
engine for datasets in an open Web ecosystem. in The World Wide Web
Conference WWW ‘19, New York, NY, USA: Association for Computing
Machinery (ACM) (2019). pp. 1365–75. doi: 10.1145/3308558.3313685
April 2021 | Volume 12 | Article 647536

https://www.frontiersin.org/articles/10.3389/fimmu.2021.647536/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647536/full#supplementary-material
https://doi.org/10.1126/science.1198704
https://doi.org/10.1126/science.1198704
https://doi.org/10.1016/j.immuni.2012.01.002
https://doi.org/10.3389/fimmu.2019.01338
https://doi.org/10.1038/s41586-019-1593-5
https://doi.org/10.1136/amiajnl-2014-002974
https://www.rd-alliance.org/group/fairsharing-registry-connecting-data-policies-standards-databases.html
https://www.rd-alliance.org/group/fairsharing-registry-connecting-data-policies-standards-databases.html
https://datascience.nih.gov/strides
https://datascience.nih.gov/strides
https://datascience.nih.gov/covid-19-open-access-resources
https://datascience.nih.gov/covid-19-open-access-resources
https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_4323890
https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_4323890
https://gfzpublic.gfz-potsdam.de/pubman/faces/ViewItemOverviewPage.jsp?itemId=item_4323890
https://doi.org/10.1186/s12916-015-0525-y
https://doi.org/10.1016/j.jbi.2017.03.017
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2018.15
https://doi.org/10.1038/sdata.2018.15
https://doi.org/10.1002/cyto.a.22106
https://doi.org/10.1145/3308558.3313685
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Bhattacharya et al. Opportunities and Challenges in Democratizing Immunology Datasets
17. King G. An Introduction to the Dataverse Network as an Infrastructure for
Data Sharing. Sociological Methods Res (2007) 36:173–99. doi: 10.1177/
0049124107306660

18. Trisovic A, Durbin P, Schlatter T, Durand G, Barbosa S, Brooke D, et al.
Advancing Computational Reproducibility in the Dataverse Data Repository
Platform. P-RECS ‘20: Proc 3rd Int Workshop Pract Reproducible Eval Comput
Syst. (2020) 15–20. doi: 10.1145/3391800.3398173

19. Burns NS, Miller PW. Learning What We Didn’t Know — The SPRINT Data
Analysis Challenge. New Engl J Med (2017) 376:2205–7. doi: 10.1056/
NEJMp1705323

20. Zalocusky KA, Kan MJ, Hu Z, Dunn P, Thomson E, Wiser J, et al. The 10,000
Immunomes Project: Building a Resource for Human Immunology. Cell Rep
(2018) 25:513–22.e3. doi: 10.1016/j.celrep.2018.09.021

21. Computational resources for high-dimensional immune analysis from the
Human Immunology Project Consortium | Nature Biotechnology. Available
at: https://www.nature.com/articles/nbt.2777 (Accessed November 24, 2020).

22. Sauteraud R, Dashevskiy L, Finak G, Gottardo R. ImmuneSpace: Enabling
integrative modeling of human immunological data. J Immunol (2016)
196:65–124.

23. Finak G, Langweiler M, Jaimes M, Malek M, Taghiyar J, Korin Y, et al.
Standardizing Flow Cytometry Immunophenotyping Analysis from the
Human ImmunoPhenotyping Consortium. Sci Rep (2016) 6:20686.
doi: 10.1038/srep20686

24. Maecker HT, McCoy JP, Nussenblatt R. Standardizing immunophenotyping
for the Human Immunology Project. Nat Rev Immunol (2012) 12:191–200.
doi: 10.1038/nri3158

25. Rubelt F, Busse CE, Bukhari SAC, Bürckert J-P, Mariotti-Ferrandiz E, Cowell
LG, et al . Adaptive Immune Receptor Repertoire Community
recommendations for sharing immune-repertoire sequencing data. Nat
Immunol (2017) 18:1274–8. doi: 10.1038/ni.3873

26. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al.
Toward a Shared Vision for Cancer Genomic Data. N Engl J Med (2016)
375:1109–12. doi: 10.1056/NEJMp1607591

27. Lau JW, Lehnert E, Sethi A, Malhotra R, Kaushik G, Onder Z, et al. The
Cancer Genomics Cloud: Collaborative, Reproducible, and Democratized—A
New Paradigm in Large-Scale Computational Research. Cancer Res (2017) 77:
e3–6. doi: 10.1158/0008-5472.CAN-17-0387

28. Welcome to Gen3. Available at: http://gen3.org/ [Accessed March 16, 2021]
29. ImmGen at 15 | Nature Immunology . Available at: https://www.nature.com/

articles/s41590-020-0687-4 (Accessed November 24, 2020).
30. Breden F, Luning Prak ET, Peters B, Rubelt F, Schramm CA, Busse CE, et al.

Reproducibility and Reuse of Adaptive Immune Receptor Repertoire Data.
Front Immunol (2017) 8:1418. doi: 10.3389/fimmu.2017.01418

31. Building a high-quality Human Cell Atlas | Nature Biotechnology . Available at:
https://www.nature.com/articles/s41587-020-00812-4 (Accessed February 19,
2021).

32. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al.
Orchestrating high-throughput genomic analysis with Bioconductor. Nat
Methods (2015) 12:115–21. doi: 10.1038/nmeth.3252

33. Amezquita RA, Lun ATL, Becht E, Carey VJ, Carpp LN, Geistlinger L, et al.
Orchestrating single-cell analysis with Bioconductor. Nat Methods (2020)
17:137–45. doi: 10.1038/s41592-019-0654-x

34. recount workflow: accessing over 70,000 human RNA-seq samples with
Bioconductor. Available at: https://bioconductor.org/packages/release/
workflows/vignettes/recountWorkflow/inst/doc/recount-workflow.html
(Accessed February 22, 2021).

35. Haynes WA, Vallania F, Liu C, Bongen E, Tomczak A, Andres-Terrè M, et al.
Empowering Multi-Cohort Gene Expression Analysis to Increase
Reproducibility. Pac Symp Biocomput (2016) 22:144–53. doi: 10.1142/
9789813207813_0015

36. Hu Z, Jujjavarapu C, Hughey JJ, Andorf S, Lee H-C, Gherardini PF, et al.
MetaCyto: A Tool for Automated Meta-analysis of Mass and Flow
Cytometry Data. Cell Rep (2018) 24:1377–88. doi: 10.1016/j.celrep.
2018.07.003

37. Orange DE, Agius P, DiCarlo EF, Robine N, Geiger H, Szymonifka J, et al.
Identification of Three Rheumatoid Arthritis Disease Subtypes by Machine
Learning Integration of Synovial Histologic Features and RNA Sequencing
Data. Arthritis Rheumatol (2018) 70:690–701. doi: 10.1002/art.40428
Frontiers in Immunology | www.frontiersin.org 7
38. Hu Z, Tang A, Singh J, Bhattacharya S. Butte AJ. A robust and interpretable
end-to-end deep learning model for cytometry data. Proc Natl Acad Sci USA
(2020) 117:21373–80. doi: 10.1073/pnas.2003026117

39. Gielis S, Moris P, Bittremieux W, De Neuter N, Ogunjimi B, Laukens K, et al.
Detection of Enriched T Cell Epitope Specificity in Full T Cell Receptor
Sequence Repertoires. Front Immunol (2019) 10:2820. doi: 10.3389/
fimmu.2019.02820

40. Berry MPR, Graham CM, McNab FW, Xu Z, Bloch SAA, Oni T, et al. An
interferon-inducible neutrophil-driven blood transcriptional signature in
human tuberculosis. Nature (2010) 466:973–7. doi: 10.1038/nature09247

41. Sweeney TE, Wong HR, Khatri P. Robust classification of bacterial and viral
infections via integrated host gene expression diagnostics. Sci Transl Med
(2016) 8:346ra91.

42. Jiang B, Sun Q, Tong Y, Wang Y, Ma H, Xia X, et al. An immune-related gene
signature predicts prognosis of gastric cancer. Med (Baltimore) (2019) 98:
e16273. doi: 10.1097/MD.0000000000016273

43. McClain MT, Constantine FJ, Henao R, Liu Y, Tsalik EL, Burke TW, et al.
Dysregulated transcriptional responses to SARS-CoV-2 in the periphery. Nat
Commun (2021) 12:1079. doi: 10.1038/s41467-021-21289-y

44. Kidd BA, Wroblewska A, Boland MR, Agudo J, Merad M, Tatonetti NP, et al.
Mapping the effects of drugs on the immune system. Nat Biotechnol (2016)
34:47–54. doi: 10.1038/nbt.3367

45. Plasma Proteomics Identify Biomarkers and Pathogenesis of COVID-19:
Immunity. Available at: https://www.cell.com/immunity/fulltext/S1074-7613
(20)30449-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%
2Fretrieve%2Fpii%2FS1074761320304490%3Fshowall%3Dtrue (Accessed
February 23, 2021).

46. Wilk AJ, Rustagi A, Zhao NQ, Roque J, Martıńez-Colón GJ, McKechnie JL, et al.
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