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Cutaneous leishmaniasis caused by L. braziliensis induces a pronounced Th1
inflammatory response characterized by IFN-g production. Even in the absence of
parasites, lesions result from a severe inflammatory response in which inflammatory
cytokines play an important role. Different approaches have been used to evaluate the
therapeutic potential of orally administrated heat shock proteins (Hsp). These proteins are
evolutionarily preserved from bacteria to humans, highly expressed under inflammatory
conditions and described as immunodominant antigens. Tolerance induced by the oral
administration of Hsp65 is capable of suppressing inflammation and inducing
differentiation in regulatory cells, and has been successfully demonstrated in several
experimental models of autoimmune and inflammatory diseases. We initially administered
recombinant Lactococcus lactis (L. lactis) prior to infection as a proof of concept, in order
to verify its immunomodulatory potential in the inflammatory response arising from L.
braziliensis. Using this experimental approach, we demonstrated that the oral
administration of a recombinant L. lactis strain, which produces and secretes Hsp65
from Mycobacterium leprae directly into the gut, mitigated the effects of inflammation
caused by L. braziliensis infection in association or not with PAM 3CSK4 (N-a-Palmitoyl-
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https://www.frontiersin.org/articles/10.3389/fimmu.2021.647987/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647987/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647987/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647987/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.647987/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:claudia.brodskyn@fiocruz.br
https://doi.org/10.3389/fimmu.2021.647987
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.647987
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.647987&domain=pdf&date_stamp=2021-06-24


Guerra et al. HSP65-L. lactis Reduces Inflammation in CL

Frontiers in Immunology | www.frontiersin.
S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-L-cysteine, a TLR2 agonist). This was evidenced
by the production of anti-inflammatory cytokines and the expansion of regulatory T cells in
the draining lymph nodes of BALB/c mice. Our in vitro experimental results suggest that
IL-10, TLR-2 and LAP are important immunomodulators in L. braziliensis infection. In
addition, recombinant L. lactis administered 4 weeks after infection was observed to
decrease lesion size, as well as the number of parasites, and produced a higher IL-10
production and decrease IFN-g secretion. Together, these results indicate that Hsp65-
producing L. lactis can be considered as an alternative candidate for treatment in both
autoimmune diseases, as well as in chronic infections that cause inflammatory disease.
Keywords: Leishmania braziliensis, heat shock protein 65, Lactococcus lactis, oral tolerance, IL-10, TLR2, TGF-b
INTRODUCTION

Leishmaniasis, the second most important protozoan infectious
disease in the world, is considered endemic in 98 countries,
and ranks among the 11 most prevalent parasitic diseases (1).
Based on clinical manifestations, leishmaniasis is classified
into tegumentary (cutaneous, mucocutaneous, disseminated
and diffuse) and visceral forms [review in (2)]. Cutaneous
leishmaniasis (CL), the most common form of tegumentary
leishmaniasis, is characterized by a rounded ulcer with nodular
or thick borders. In Brazil, the main etiological agent of CL is
Leishmania braziliensis (3–7). Approximately 3% of patients can
evolve to mucosal disease, with nasopharyngeal involvement that
may cause disfiguring lesions (8). CL lesions are characterized by
an exacerbated inflammatory response, with few to no parasites
(9). Accordingly, the inflammatory responses mediated by
proinflammatory cytokines, such as TNF, IL-1b, IL12 and
IFN-g, participate in the immunopathogenesis observed in CL
(10). On the other hand, the production of IFN-g by Th1 cells is
essential to the elimination of parasites, since it activates
macrophages, thereby increasing their leishmanicidal effects,
which leads to the killing of Leishmania sp. (11). Therefore, to
control the exacerbation of disease, it is necessary to modulate
these inflammatory responses, while still maintaining sufficient
quantities of proinflammatory mediators necessary for
parasite elimination.

Our group developed a mouse model for CL caused by
L. braziliensis that closely resembles disease of humans (12).
BALB/c mice were infected in the ear dermis, provoking
ulcerated dermal lesions that healed spontaneously. Histological
analysis of infected ear tissue revealed the presence of mixed
inflammatory infiltrate consisting of both mononuclear and
polymorphonuclear cells. In vitro restimulation of draining
lymph node cells followed by intracellular staining indicated
the upregulation of IFN-g production, as well as a higher
frequency of IFN-g-secreting CD4(+) and CD8(+) T cells (12).
This model has been used in many reports in the literature aimed
at furthering our understanding of CL caused by this parasite
species (12).

Several studies have shown that the oral administration of
antigens is one of the most effective ways of inducing regulatory
org 2
T cell differentiation and peripheral tolerance. Oral tolerance
(OT) is a well-known phenomenon, defined as a state of
suppressed immunological reactivity against previously orally
administered external antigens (13). It has been well-established
that oral tolerance is more efficiently induced by the continuous
low-dose feeding of antigens (14, 15). This feeding regimen has
been shown to suppress inflammatory responses and induce the
differentiation of regulatory T cells that produce inhibitory
cytokines (16, 17).

In recent years, several types of T cells that exert regulatory
functions have been identified. The principal subpopulation of
regulatory T cells (Treg) responsible for self-tolerance are those
that originate in the thymus, characterized by CD4+CD25+Foxp3+
(18). Other subsets of peripherally induced Tregs are also found,
including CD4+CD25+Foxp3+ T cells, which originate in the
intestinal mucosa (19), and CD4+ T cells, characterized by the
surface expression of the latency-associated peptide (LAP), which is
the N-terminal propeptide of the TGF-b precursor (20). The
inhibitory functions of Tregs are mediated by different
mechanisms, such as the modulation of APC function, metabolic
disruption of target cells, cytotoxicity and inhibitory cytokine
production (IL10, TGF-b and IL-35) (21, 22). CD4+CD25+LAP+
and CD4+CD25−LAP+ Tregs mediate suppressive cellular
functions through TGF-b production (23–25).

Heat Shock Proteins (HSP), a functional class of proteins
found in all living organisms, present similarities across different
species. When cells are exposed to high temperatures or
inflammatory stress, HSP expression becomes upregulated.
Under normal conditions, lower concentrations of these
proteins play a vital role in cellular housekeeping (26, 27).

Hsp60, the 60 kDa heat shock protein, seems to affect
inflammation by two different mechanisms: first, as a ligand
for innate immunity receptors, such as Toll-like 2 (TLR2)
receptors (28), which inhibit the migration of T cells to
inflammatory sites, decrease IFN-g production and increase the
release of IL-10 by T cells (29, 30); second, as an antigen
recognized by receptors of adaptive immunity (31). Studies
have shown that Hsp60 plays an important role in both the
survival and function of regulatory CD4+CD25+Foxp3+ T cells
(28). Oral administration of the endotoxin-free form of
Mycobacterium leprae Hsp65, a protein similar to mammalian
June 2021 | Volume 12 | Article 647987
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Hsp60, has been shown to induce oral tolerance (16, 17, 32, 33).
The present study employed a novel strategy originally
developed by De Azevedo et al. to deliver Mycobacterium
leprae Hsp65 directly to the gut mucosa by continuous feeding
(34). This was accomplished through the generation of a
recombinant Lactcoccus lactis (L. lactis) strain capable of
producing M. leprae Hsp65, which is secreted in an
extracellular medium via a xylose-induced expression system
(XIES) (34). L. lactis is a Gram-positive, non-invasive and non-
pathogenic bacterium that does not produce endotoxins (35) and
gradually releases antigens into the mucosa. This model has
shown promising potential in promoting oral tolerance in
humans by reproducing effects previously demonstrated in
experimental models of continuous voluntary ingestion (36).
The strategy has also been used in different models of
autoimmune disease, such as autoimmune encephalomyelitis
(16), inflammatory intestinal disease (17) and antigen-induced
arthritis (32).

The oral administration of Hsp65-producing L. lactis prior to
the infection of BALB/c mice with L. braziliensis resulted in a
reduction in the inflammatory reaction without altering the
immune response to the parasite. This first part of this study
serves as a proof-of-concept that demonstrates the possibility of
modulating the inflammatory response caused by L. braziliensis
using oral tolerance induced by recombinant L. lactis.
Interestingly, the pre-infection administration of PAM3CSK4,
a potent inflammatory agent known to promote a pronounced
innate immune response (37, 38), triggered and accelerated the
anti-inflammatory responses induced by Hsp65, which
resulted in significantly decreased lesion severity. We chose
to introduce PAM in order to test whether the induction of
an inflammatory response prior to infection would amplify
the immunomodulatory effects of regulatory T cells on
inflammation. The effects induced by Hsp65-producing L.
lactis were found to be associated with the production of IL-10
and the induction of CD4+Foxp3+ and CD4+LAP+ Tregs. The
oral administration of recombinant L. lactis post-L. braziliensis
infection also elicited a decrease in lesion size and reduced
parasite load. In addition, an increase in the IL-10 and a
decrease in IFN-g production was observed, suggesting an
immunomodulatory effect that led to improved healing of
experimental CL lesions.

To the best of our knowledge, this is the first time that Hsp65-
producing L. lactis has been used to attenuate infection. This
experimental approach may lead to the development of novel
candidates for the treatment of L. braziliensis infection.
MATERIAL AND METHODS

Animals
All animal procedures were approved by the Committee for
Ethical Animal Use in Experimentation (CEUA N° 006/2013
IGM/Fiocruz-Bahia). Female BALB/c mice, aged 6-8 weeks, were
supplied by the Animal Care Facility of the Gonçalo Moniz
Frontiers in Immunology | www.frontiersin.org 3
Institute/Fiocruz-Bahia (IGM-FIOCRUZ) in Salvador, Brazil.
Mice were kept under specific pathogen-free conditions.

Generation of Hsp65-L. lactis
As previously described by De Azevedo et al. (34), a recombinant
L. lactis strain (NCDO2118) capable of secreting M. leprae
Hsp65, was generated using a xylose-inducible expression
system (XIES). The constructed vector (pSEC:hsp65) directed
the expression of Hsp65 into extracellular medium. L. lactis
NCDO2118 harboring an empty vector (pXylT : SEC without
hsp65) was used as a negative control in all experiments. Dr.
Faria provided these bacteria strains for our study.

Bacterial Strain Growth and
Xylose Induction
L. lactis NCDO2118 strains were grown in Difco M17 broth,
supplemented with 0.5% glucose (GM17) or 1% xylose (XM17),
at 30°C in the absence of agitation. When necessary,
chloramphenicol (Cm) (10 µg/ml) was added to the medium.
On the first day, a single colony of recombinant L. lactis
harboring an empty vector (pXylT : SEC) or recombinant L.
lactis NCDO2118 (pXylT : SEC:hsp65) was grown in 5 ml of
GM17 containing chloramphenicol (Cm) (10 µg/ml). On the
second day, after the culture was allowed to grow overnight, it
was diluted 1:10,000 in fresh 1% xylose M17 (XM17)
supplemented with Cm (10 µg/ml) to induce the expression of
theM. leprae hsp65 gene. Cultures were ready for administration
on the third day, after achieving an optical density of 2.0 at a
wavelength of 600 nm, corresponding to 2.5 × 108 CFU/ml.

L. lactis Administration
For four days, either prior to or 4 weeks after infection with L.
braziliensis, BALB/c mice were continuously fed either water
(Lb), medium (GM17) with empty-vector-bearing L. lactis
(Empty) or medium XM17 containing M. leprae-Hsp65-
producing L. lactis (HSP). Fresh L. lactis culture was offered to
mice daily. Assuming that each mouse consumed approximately
5 ml of culture per day (data not shown), corresponding to
7 µg/ml (34) of M. leprae Hsp65, we estimated the total daily
dose of M. leprae Hsp65 to be around 35 µg per mouse.

Parasites
The L. braziliensis promastigotes (strain MHOM/BR/01/BA788)
used in experimentation were cultured in Schneider’s medium
(Sigma Chemical Co., St Louis, MO, USA) supplemented with
10% inactivated fetal bovine serum (Gibco, USA), L-glutamine
(2 mM), penicillin (100 U/ml) and streptomycin (100 µg/ml), at
23°C for approximately 7 days to enable parasites to reach
stationary phase.

Experimental Infection, Lesion
Measurement, and Parasite
Load Estimation
Five experimental groups of mice were formed, firstly
considering those that received water (Lb), medium GM17
June 2021 | Volume 12 | Article 647987
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with empty-vector-bearing L. lactis (Empty) and medium XM17
with Hsp65-producing L. lactis (HSP). At 48 hours prior to
infection, an intraperitoneal dose of 20µg PAM3CSK4
(InvivoGen) was administered in two additional groups: one
that received medium with Hsp65-producing L. lactis
(HSP+PAM) and another that received medium alone (PAM).
Ten days after oral administration with L. lactis strains, all mice
were challenged in the ear dermis with stationary-phase
metacyclic L. braziliensis promastigotes (2 x 105 parasites in
10µl of sterile saline). Metacyclic forms were purified using
Bauhinia purpurea lectin [as previously described by Pinto-da-
Silva et al. (39)]. In the case of treatment post-infection, at
4 weeks after infection mice received empty or recombinant
L. lactis for four days. Ear lesion thickness was monitored weekly
using a digital caliper (Thomas Scientific, USA). Parasite load
was determined individually using a quantitative limiting
dilution assay as previously described (40).

Cell Cultures and Cytokine Assay
Ear draining lymph nodes from each mouse were carefully and
aseptically collected, macerated individually using a cell strainer
and the cell suspensions were centrifuged at 400 x g for 10
minutes at 4°C. Cells were counted, adjusted to a concentration
of 1x106 cells/well and cultured in complete RPMI [RPMI 1640
supplemented with 10% inactivated fetal bovine serum (Sigma-
aldrich), 2 mM/ml-glutamine, 100 µl/ml penicillin, 100 µg/ml
streptomycin (Sigma-aldrich)] stimulated or not with live
stationary-phase L. braziliensis promastigotes at a ratio 1:5
parasites for 72h at 37°C under 5% CO2. Supernatants were
collected and levels of IL-10, IFN-g, IL-4 and TGF-b were
determined by ELISA using a commercial kit (Ebioscience).

Flow Cytometry for Cell Characterization
Cell suspensions from ear draining lymph nodes were obtained
as described above, then stimulated with L. braziliensis, or with
soluble anti-CD3 and anti-CD28, which was used as an internal
control for our flow cytometry analysis or left unstimulated for
18h at 37°C under 5% CO2. Cells were washed and stained using
anti-CD4 (PerCyP 5.5), anti-LAP (TGF-b1) (PeCy7 and Alexa
Fluor 405- eBioscience) and fixable viability dye (APC-Cy7).
Cells were then washed and pre-incubated with a fixation/
permeabilization solution (eBioscience). For intracellular
staining, anti-FoxP3 (PE) was used. Flow cytometric analysis
was performed on a FACS Fortessa (FACS, BD® Biosciences)
using FlowJo software (Tree Star Inc.). Each mouse was analyzed
individually in all four experiments.

Histopathology
Mouse ears from all experimental groups were fixed in 10%
formaldehyde. Samples were processed and embedded in paraffin
to obtain 5-µm thick sections, followed by staining with
hematoxylin and eosin (H&E). Using an optical microscope
(Olympus), all sections were evaluated for histopathological
changes, including inflammation intensity and the presence of
inflammatory cell infiltrate. Scores for each parameter were
Frontiers in Immunology | www.frontiersin.org 4
determined according to intensity: 0 (absence), 1 (presence of
1–25%), 2 (presence of 25-50%) and 3 (> 50%). Healthy animal
ears were used as a negative control.

In Vitro Experimentation
To obtain bone marrow-derived murine macrophages, mice were
euthanized and their tibias and femurs were collected. After
removing the epiphyses from bones, a syringe filled with sterile
RPMI 1640 (Sigma-Aldrich) culture medium was used to extract
bone marrow cells. After centrifugation, (400 x g for 10 minutes)
the supernatant was discarded and the pellet was resuspended in
6 ml of culture medium [RPMI 1640 supplemented with 20%
inactivated fetal bovine serum (Sigma-aldrich), 2 mM/ml-
glutamine, 100 µl/ml penicillin, 100 µg/ml streptomycin
(Sigma-aldrich) and 30% of L929 culture supernatant] and
then plated in Petri dishes. Cells were incubated for seven days
at 37°C under 5% CO2 until differentiating into macrophages.
Next, macrophages were removed using ice and a cellstripper.
Finally, macrophages were counted and adjusted to 1x106/ml
and incubated on 24 well-plates overnight.

Macrophages derived from the bone marrow of BALB/c mice
were infected for 24 hours with L. braziliensis promastigotes at a
ratio of 1:10 parasites. Co-culturing was performed, involving the
infected macrophages, cells obtained from the ear draining
lymph nodes of animals 10 weeks after infection and cells from
the mesenteric lymph nodes of animals that received Hsp65-
producing L. lactis (collected after 10 days of treatment). All cells
were incubated in the presence or absence of anti-IL-10 at
concentration of 4µg/ml, anti-LAP 4µg/ml (TGF- b1) and anti-
TLR2 3µg/ml (CD282) (Biolegend) at 37°C under 5% CO2. All
concentrations were adjusted according to the manufacturer’s
data sheet. An IgG1 isotype (4µg/ml) was also employed as a
negative control. Supernatants were collected after 72h of culture
and levels of IFN-g and IL-10 were determined by ELISA using
commercial kits (Ebioscience).

Statistical Analysis
Our results were submitted to D’Agostino-Pearson normality
testing to verify data distribution. All statistical analyses were
performed using GraphPad Prism v.5 Software (San Diego, CA,
USA). To compare parametric data between groups, One-Way
Analysis of Variance (ANOVA) with Tukey’s post-test was used,
while Krukal-Wallis with Dunn’s post-test was employed for
nonparametric data. To evaluate disease burden in each mouse,
ear thickness and parasite loads were recorded weekly in all
treated and control mice following challenge. These parameters
were plotted individually for experimental and control mice
throughout the course of infection. Disease burden was
calculated as the Area Under the Curves (AUC) in plots of ear
thickness and parasite load. AUC was calculated using
measurement data from ear thickness and parasite load in each
group. AUC values were then compared using Kruskal-Wallis
with Dunn’s post-test. Results were presented as means ±
standard deviation (SD) or medians and interquartile range.
P-values <0.05 were regarded as statistically significant.
June 2021 | Volume 12 | Article 647987
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RESULTS

Oral Administration of Hsp65-Producing
L. lactis Reduces L. braziliensis Lesion
Size and Parasite Load
To evaluate the effects of Hsp65-producing L. lactis, lesions
caused by L. braziliensis infection were monitored weekly
(Figure 1A). The administration of Hsp65-producing L. lactis
significantly decreased lesion size at weeks 7, 8 and 9 post-
infection compared to mice that received the empty vector
(Figure 1B), yet without significance in AUC values
(Figure 1C). Interestingly, a balanced response was triggered
in animals receiving PAM by i.p. route prior to infection in
association with Hsp65 treatment, although no significant
differences were found in lesion size compared to mice only
receiving PAM (Figure 1D). However, our analysis of the area
under the curve, which represented the evolution of disease,
revealed significant reductions in lesion size in HSP+PAM mice
compared to their respective controls (PAM) (Figure 1E).
Frontiers in Immunology | www.frontiersin.org 5
To assess whether lesion thickness was related to parasite
numbers at the inoculation site and in the ear draining lymph
nodes, parasite load was determined at 2, 6, 10 and 12 weeks
post-infection. In the HSP group, parasite numbers in the ear
were significantly higher at 2 and 6 weeks post-infection
compared to animals receiving the empty vector (Empty)
(Figure 2A). However, the HSP group was observed to control
infection as evidenced by decreased parasite burden at 10 and 12
weeks post-infection, similarly to Lb and Empty groups
(Figure 2A). No significant differences were seen in parasite
burden in the draining lymph nodes (Figure 2A-right panel).
Despite a lack of significance, the HSP+PAM group presented
lower parasite numbers in both the lesion site and draining
lymph nodes at all time points evaluated (Figure 2B). Lower
parasite numbers were seen in the PAM group at all timepoints
compared to the Lb group, providing evidence that lesion size is
directly related to inflammatory response (Figure 2B). AUC
analysis did not reveal any significant differences in the groups
treated with HSP versus controls (Empty vector and Lb)
A

B

D

E

C

FIGURE 1 | Experimental design and lesion development. Mice were treated with water (Lb and PAM), GM17 Medium containing empty vector-bearing L. lactis
(Empty) or XM17 medium containing Hsp65-producing L. lactis (HSP and HSP+PAM) for 4 consecutive days, then infected with L. braziliensis metacyclic
promastigotes via inoculation in the ear 10 days later. Two days prior to infection, the HSP+PAM and PAM groups received an intraperitoneal administration of
PAM3CSK4. Lesion course was measured weekly using digital caliper. (A) Schematic drawing of the experimental protocol in BALB/c mice. (B, C) Ear thickness and
area under the curve in Lb, Empty and HSP groups. The area under the curve was constructed using ear measurement data from each group. (D, E) Ear thickness
and area under the curve of Lb, HSP+PAM and PAM groups. (B, D) Data are representative of means ± SD. (C, E) Data are representative of medians and
interquartile range. Data are representative of four independent experiments using 10 animals per group. For nonparametric data, Kruskal-Wallis with Dunn’s post-
test was used. (*) indicates P < 0.05 and (**) indicates P < 0.01 between Empty and HSP groups at 7, 8 and 9 weeks in (B).
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(Figure 2C-left panel). However, AUC values were significantly
lower in infected mice treated with HSP+PAM (Figure 2D-right
panel). No significant differences in parasite load were observed
among the groups in the draining lymph nodes (Figure 2D). No
dissemination of parasites to other visceral organs, such as the
spleen, liver or bone marrow, was observed in any of the
experimental groups (data not shown).

Oral Administration of Hsp65-Producing
L. lactis Is Associated With Decrease of
Inflammatory Cytokines
To evaluate changes in immune profile following the
administration of Hsp65-producing L. lactis, a panel of
cytokines was quantified at 2, 6, 10 and 12 weeks after L.
braziliensis infection. Cells from the ear draining lymph nodes
were obtained and re-stimulated in vitro with L. braziliensis,
followed by cytokine quantification in culture supernatants
by ELISA.

At two weeks after infection, the Lb-infected groups treated or
not with the empty vector or Hsp65 showed similarly low
amounts of IFN-g. At 6 weeks of infection, the levels of this
Frontiers in Immunology | www.frontiersin.org 6
cytokine increased across all groups, yet mice treated with the
empty vector or Hsp65 presented relatively constant levels of
IFN-g compared to Lb; however, the latter group exhibited a
consistent increase in IFN-g levels until 10 weeks post-infection,
followed by a decline at 12 weeks (Figure 3A). Regarding IL10
production, animals treated with Hsp65 presented higher levels
of this cytokine at all timepoints, despite a lack of statistical
significance. The ratio between these cytokines is depicted in
Figure 3B, revealing higher IL-10 compared to IFN-g in the
groups treated with the empty vector and Hsp65 at 6 and 10
weeks after infection. Significant differences in the balance
between IL-10 and IFN-g production were observed at 10
weeks after infection.

Six weeks following infection, the HSP+PAM group
presented significantly lower IFN-g production than the PAM
group (Figure 3C), which was also the case at 10 weeks after
infection. Higher IL-10 concentrations were seen in the treated
group (HSP+PAM) compared to PAM after 6 weeks of infection
(Figure 3C). At 12 weeks post-infection, decreased levels of IFN-g
and IL-10 were observed in all groups, in contrast to increased
levels of TGF-b observed across most groups, yet without
A

B

DC

FIGURE 2 | Kinetics of parasite load. Mice were treated with water (Lb and PAM), GM17 Medium with empty vector-bearing L. lactis (Empty) or XM17 medium
containing Hsp65-producing L. lactis (HSP and HSP+PAM) for 4 consecutive days, then inoculated with L. braziliensis metacyclic promastigotes in the ear 10 days
later. Two days prior to infection, the HSP+PAM and PAM groups received an intraperitoneal administration of PAM3CSK4. After euthanizing animals at 2, 6, 10 and
12 weeks post-infection, ears and draining lymph nodes were collected, cultured and parasite loads were then individually determined by limiting dilution assay.
(A) Lb, Empty and HSP groups, (B) Lb, HSP+PAM and PAM groups, (C) area under the curve of Lb, Empty and HSP groups, (D) area under the curve of Lb,
HSP+PAM and PAM groups. The area under the curve was constructed using parasite load data from each group. (A, B) Parasite numbers are represented as the
means ± SD. (C, D) Parasite numbers are represented as medians and interquartile range. Data are representative of four independent experiments involving 10
animals per group. For nonparametric data, Kruskal-Wallis with Dunn’s post-test was used; (*) indicates P < 0.05 (between Lb and HSP groups at 6 weeks in (A),
Lb and HSP+PAM groups at 2 and 10 weeks in (B) and (**) P < 0.001 [between Empty and HSP groups at 2 and 6 weeks in (A)].
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significance (data not shown). IL-4 levels remained undetectable
throughout infection (data not shown). With regard to the IL-10:
IFN-g ratio, predominantly higher IL-10 compared to IFN-g was
seen in the HSP+PAM group (Figure 3D), indicating that these
animals achieved control of inflammation through increased
IL-10 production.
Administration of Hsp65-Producing
L. lactis Induces a Higher Frequency of
Regulatory T Cells in Mice
The frequencies of CD4+ LAP+ T cells (expressing membrane
TGF-b) and CD4+ Foxp3+ T cells were investigated by flow
cytometry in draining lymph nodes. Figure 4A shows the
strategy for gating the different subpopulations analyzed. At
two weeks after infection, no significant differences were found
Frontiers in Immunology | www.frontiersin.org 7
(Figures 4B, C). At 10 weeks of infection, higher proportions of
CD4+ Foxp3+ T cells were found in the HSP group compared to
Lb controls (Figure 4B). A higher frequency of this subset was
also found in the HSP+PAM group compared to Lb at this time
point (Figure 4C). At 12 weeks of infection, the HSP group
presented a significantly higher frequency of CD4+ LAP+ T cells
compared to Lb, whereas significantly lower frequencies of
CD4+ Foxp3+ T cells were seen in HSP+PAM mice at this
timepoint (Figure 4C).
Oral Administration of Hsp65-Producing
L. lactis Reduces Inflammation at the
Infection Site
Macroscopic lesion observations and histological analysis were
employed to evaluate inflammatory response. Decreased severity
A

B

D
C

FIGURE 3 | Cytokine production in draining lymph node cells following re-stimulation with L. braziliensis. Mice were treated with water (Lb and PAM), GM17 Medium
with empty vector-bearing L. lactis (Empty) or XM17 medium containing Hsp 65-producing L. lactis (HSP and HSP+PAM) for 4 consecutive days, then inoculated
with L. braziliensis metacyclic promastigotes in the ear 10 days later. Two days prior to infection, the HSP+PAM and PAM groups received an intraperitoneal
administration of PAM3CSK4. After euthanizing animals at 2, 6, 10 and 12 weeks post-infection, draining lymph node cells were collected, cultured and restimulated
in vitro with live promastigotes of L. braziliensis (1 cell:5 parasites). After 72h, the cell culture supernatants were collected to measure cytokines by ELISA. (A) IL-10
and IFN-g production in Lb, Empty and HSP mouse groups. (B) IL-10:IFN-g ratio in HSP, Empty and Lb mouse groups. (C) IL-10 and IFN-g production in Lb, PAM
and HSP+PAM mouse groups. (D) IL-10:IFN-g ratio in Lb, PAM and HSP+PAM mouse groups. Dashed lines represent cytokine production in the absence of
stimulus. (A, C) cytokine production is represented the mean ± SD. (B, D) IL-10:IFN-g ratio is represented as medians and interquartile range. Data are
representative of four independent experiments involving 10 animals per group. For nonparametric data, Kruskal-Wallis with Dunn’s post-test was used; (*) indicates
P < 0.05 Lb and HSP+PAM at 6 and 10 weeks in (C), PAM and HSP+PAM at 10 weeks in (C).
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of L. braziliensis infection was observed by macroscopy in the
HSP and HSP+PAM groups at 6 and 10 weeks of infection
(Figures 5A, B).

Although no significant differences in lesion size were found
after 6 weeks of infection (Figures 1B, D), more intense
inflammation was detected in the Lb group compared to both
Hsp65-treated groups, with reduced ulceration (Figures 5C, D).
Histopathological analysis revealed higher inflammation
intensity in the Lb control group compared to the Hsp65-
treated groups (HSP, HSP+PAM) (Figures 5E, F), yet without
statistical significance. Differences were also evident in the
analysis of the area under curve shown in the right panel of
Figures 5E, F.
Frontiers in Immunology | www.frontiersin.org 8
IL-10, TLR2, LAP Seem Important to the
Regulation of Immunomodulatory Effects
Mediated by the Oral Administration of
Hsp65-Producing L. lactis
To investigate mechanisms underlying the immunomodulatory
effects observed in Hsp65-treated BALB/c mice infected by L.
braziliensis, we performed in vitro experiments that mixed cells
from the mesenteric and draining lymph nodes in an attempt to
mimic an in vivo setting. These experiments were performed in
vitro due to convenience, as it is important to emphasize that
BALB/c background knockout mice are not readily available. In
addition, reports in the literature have shown that IL-10 and
A

B

C

FIGURE 4 | CD4+ LAP+ and CD4+ FoxP3+ regulatory T cell expression following re-stimulation with L. braziliensis. Mice were treated with water (Lb and PAM),
GM17 medium with empty vector-bearing L. lactis (Empty) or XM17 medium containing -producing Hsp65-producing L. lactis (HSP and HSP+PAM) for 4
consecutive days, then inoculated with L. braziliensis metacyclic promastigotes in the ear 10 days later. Two days prior to infection, the HSP+PAM and PAM groups
received an intraperitoneal administration of PAM3CSK4. After euthanizing animals at 2, 6, 10 and 12 weeks post-infection, draining lymph nodes were collected, cell
suspensions were cultured with live L. braziliensis for 18h and stained using surface antibodies (anti-CD4 and anti-LAP) and intracellular molecules (anti-Foxp3).
(A) Representative scatter plots of gating strategy. (B) Relative frequencies of CD4+ LAP+ and CD4+ Foxp3+ regulatory T cells in the draining lymph nodes of Lb,
Empty and HSP groups. (C) Relative frequencies of CD4+ LAP+ and CD4+ Foxp3+ regulatory T cells in the draining lymph nodes of Lb, PAM and HSP+PAM groups.
All frequencies of regulatory T cells are represented as medians and interquartile range. Data are representative of four independent experiments involving 10 animals
per group. For nonparametric data, Kruskal-Wallis with Dunn’s post-test was used; (*) indicates P < 0.05.
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TLR2 knockout mice are highly resistant to infection by Leishmania
spp. (37–39). We hypothesized that regulatory cells from Hsp65
treated mice would migrate to the lesion site, mitigating the
inflammatory response mainly with respect to IFN-g production.

Cells from the mesenteric and draining lymph nodes were co-
cultured in the presence or absence of neutralizing monoclonal
antibodies (IL-10, LAP and TLR-2). Higher IFN-g production
was seen in the draining lymph nodes of infected mice compared
to treated co-cultures of mesenteric and draining lymph nodes in
the presence of anti-IL-10, anti-TLR2 or anti-LAP (Figure 6A).
On the other hand, decreased levels of IL-10 were detected in co-
cultures stimulated with infected macrophages with neutralizing
monoclonal antibodies added in comparison to non-treated
cultures, suggesting that these three components play an
important role in regulating the immunomodulatory effects
observed in our model (Figure 6B). Another important control
Frontiers in Immunology | www.frontiersin.org 9
group consisted of cells from mesenteric lymph nodes of Hsp65-
treated mice co-cultured with cells from draining lymph nodes of
infected mice with isotype IgG1 added; no differences were
observed between this group and controls that did not receive
an addition of monoclonal antibodies. In addition, despite a lack
of statistical significance, higher levels of IL-10 were seen in co-
cultures containing mesenteric lymph node cells from uninfected
mice treated with Hsp65-producing L. lactis in the absence of
monoclonal neutralizing antibodies compared to infected
co-cultures.

Oral Treatment With Hsp65-Producing
L. lactis Modulates Inflammation at the
Site of Leishmania braziliensis Infection
Since the experiments described above suggest that the oral
administration of Hsp 65-producing L. lactis before infection
A B

D

E F

C

FIGURE 5 | Lesion appearance, histological evaluation and quantitative score of inflammation intensity. Mice were treated with water (Lb and PAM), GM17 medium with
empty-vector-bearing L. lactis (Empty) or XM17 medium containing Hsp65-producing L. lactis (HSP and HSP+PAM) for 4 consecutive days, then inoculated 10 days later
with L. braziliensis metacyclic promastigotes in the ear. Two days prior to infection, the HSP+PAM and PAM groups received an intraperitoneal administration of
PAM3CSK4. For nonparametric data, Kruskal-Walliis with Dunn’s post-test was used. (A, B) Representative lesion aspects at 6 and 10 weeks after infection in respective
animal groups. (C, D) Ears were collected, fixed in 10% formaldehyde, processed and stained with hematoxylin and eosin. All sections were evaluated for histopathological
changes, including inflammation intensity and the presence of inflammatory cell infiltrate. Scores for this parameter were determined according to intensity: Scores for each
parameter were determined according to intensity: 0 (absence), 1 (presence of 1-25%), 2 (presence of 25-50%) and 3 (> 50%). Healthy animal ears were used as a
negative control. (E) Kinetics of histological parameters in Lb, Empty and HSP groups (left panel) and Lb, PAM and HSP+PAM (right panel). Data are representative of
means from each group. (F) Area under the curve analysis of histological scores obtained for each parameter evaluated. Quantitative scores are represented as medians
and interquartile range. Data are representative of four independent experiments involving 8 animals per group. For nonparametric data, Kruskal-Wallis with Dunn’s post-test
was used, no significance was found.
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decreases the inflammation caused by L. braziliensis, it was
crucial to investigate these effects in a therapeutic strategy by
administering recombinant L. lactis after infection. Accordingly,
the oral administration of Hsp65-producing L. lactis was
performed at 4 weeks after infection when lesions began to
appear (Figure 7A).

To verify this immunomodulatory effects, ear thickness were
measured weekly. Hsp65-treated animals showed smaller lesions
during the entire period after treatment (at 5, 8, 9 and 10 weeks
post infection) compared to those receiving an empty plasmid.
This reduction was also reflected in the area under the curve of
lesion size compared to controls (Figure 7B). In order to
investigate whether Hsp65-producing L. lactis treatment had
an effect on parasite load, ears and draining lymph nodes were
collected to quantify parasite burden. Oral treatment with
Hsp65-producing L. lactis led to a reduction in parasite burden
at the infection site and in draining lymph nodes at 6 weeks after
infection compared to L. braziliensis-infected controls. At 10
weeks of infection, no significant differences were seen between
the experimental groups (Figure 7C). To evaluate changes in
immune response profile after the oral administration of Hsp65-
producing L. lactis, the quantification of inflammatory and anti-
inflammatory cytokines was performed. Hsp65-treated animals
showed a significant decrease in IFN-g production compared to
controls at 6 weeks of infection. However, at 10 weeks post-
infection, significantly higher IL-10 and IFN-g production was
observed in animals treated with Hsp65-producing L. lactis-
compared to the empty group (Figure 7D). No significant
differences were observed between the experimental groups
with regard to the IL-10:IFN-g ratio (Figure 7E). No
dissemination of parasites was observed in visceral organs in
Lb, Empty and HSP.
Frontiers in Immunology | www.frontiersin.org 10
DISCUSSION

Cutaneous leishmaniasis caused by L. braziliensis is
characterized by chronicity, latency and the tendency to
metastasize in the human host (41). The pathology observed in
most CL cases results from an exacerbated inflammatory
response. The modulation of this response is important for the
control of disease and lesion healing.

Oral tolerance induced by dietary proteins has been shown to
be an effective way to induce the development of antigen-specific
regulatory cells (42, 43). The continuous oral administration of
antigens was shown to generate regulatory T cells capable of
suppressing the inflammatory response in experimental models
of autoimmune disease (14, 15). Therefore, the induction of
regulatory T cells, such as CD4+Foxp3+ and CD4+LAP+, as well
as the production of anti-inflammatory cytokines, e.g., IL-10 and
TGF-b, appears to be crucial to the induction of oral
tolerance (43).

Most studies attempting to induce oral tolerance by
producing an anti-inflammatory response to decrease
inflammation in autoimmune disease have intravenously
administered the same antigen that originally induced the
pathology [for instance, oligodendrocyte myelin glycoprotein
in experimental encephalomyelitis and type I diabetes] (44,
45). However, it has been confirmed that antigens unrelated to
the original pathology can also inhibit inflammatory processes
via a phenomenon known as “bystander” suppression. This
experimental approach is useful when the target antigen
triggering the pathology is unknown (46). This suppression is
associated with oral tolerance due to inhibitory effects against
other antigens, possibly resulting from the action of regulatory T
cells producing non-specific cytokines (47–49). In the search to
A B

FIGURE 6 | Evaluation of in vitro immune response. Macrophage-derived bone marrow cells from BALB/c mice were infected with L. braziliensis promastigotes at a
ratio of 1:10 (cells:parasites) for 24 hours. Co-culturing was performed with infected macrophages, cells from the draining lymph nodes of animals at 10 weeks after
infection and cells from the mesenteric lymph nodes of uninfected animals receiving Hsp65-producing L. lactis (collected after 10 days of treatment). Cells were
incubated or not in the presence of anti-IL-10, anti-LAP or anti-TLR2. White and colored bars represent co-cultures of infected macrophages with draining and
mesenteric lymph nodes cells, while striped bars represent infected draining lymph node cell cultures and hatched bars represent the IgG1 isotype negative control.
Cytokine quantification of (A) IFN-g and (B) IL-10 performed in cell supernatants. For parametric data, Student’s t-test was used: (**) P < 0.001; (****) P < 0.0001.
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identify these antigens, emphasis has been placed on heat shock
proteins as these proteins participate in many inflammatory
events (50, 51), are highly conserved among species and exert
regulatory activity over the immune system. Hsps are considered
immunodominant autoantigens as these molecules are easily
recognized by the repertoire of autoimmune lymphocytes
under physiological conditions (52). The anti-inflammatory
role of Hsp in inflammatory and autoimmune diseases has
been demonstrated in several models, e.g., diabetes, arthritis,
atherosclerosis and multiple sclerosis (32, 53–55). The oral
administration of recombinant Hsp65 has been shown to
induce tolerance and protect rats against adjuvant arthritis
(56), as well as mice against atherosclerosis (32, 57). The
present study represents the first attempt to use Hsp65 to
mitigate an inflammatory disease caused by a protozoan
species, such as Leishmania.
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In this study, we showed that the oral administration of
Hsp65-producing L lactis prior to L. braziliensis infection
attenuated lesion development and decreased inflammatory
aspects, preserving mouse ear tissue in the experimental groups
(HSP and HSP+PAM), despite the absence of significant
differences in histological scores. Surprisingly, in a set of
experiments involving the Lb, Empty and HSP groups,
significant differences in lesion size and parasite load were
observed between the Empty and HSP groups, suggesting that
the administration of bacteria alone before infection aggravated
the inflammation associated with disease. Accordingly, we may
hypothesize that this bacterium also could induce regulatory T
cells earlier than HSP, which could explain the observed
outcome. In the set of experiments involving PAM or
treatment with Hsp65 after infection, differences were noted
between the Lb and HSP-treated groups: PAM induced a strong
A
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C

FIGURE 7 | Oral treatment with L. lactis-Hsp65 post-infection. Mice were infected with Leishmania braziliensis metacyclic promastigotes in the ear, and four weeks
after infection received oral treatment consisting of water (Lb), GM17 medium with empty-vector-bearing L. lactis (Empty) or XM17 medium containing Hsp65-
producing L. lactis (Lb and HSP) for 4 consecutive days. (A) Experimental design of the post-infection treatment protocol in BALB/c mice. (B) Ear thickness was
measured weekly. The area under the curve (right panel) was constructed using measurement data from each group. Data are representative of three independent
experiments involving 10 animals per group. (C) Parasite load in the ear and draining lymph node lesions was determined by limiting dilution at 6 and 10 weeks post-
infection. (D) Mice were euthanized at 6 and 10 weeks post-infection; draining lymph node cells were cultured and restimulated in vitro with live metacyclic
promastigotes of L. braziliensis for 72 hrs. Cell culture supernatants were then collected for cytokine quantification by ELISA. (E) Ratio of IL-10/IFN-g production.
Data are representative of medians and interquartile range from each group. For nonparametric data, Krukal-Wallis with Dunns post-test was used. (*) P < 0.05
[between Lb and HSP groups at 5 and 8 weeks, (B)]; (**) P < 0.001 [between Empty and HSP groups at 9 and 10 weeks, (B)].
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inflammatory response capable of parasite elimination, while
HSP downmodulated this exacerbated inflammation. Another
interesting point is that Hsp65 treatment after infection also led
to decrease disease severity, clearly suggesting that Hsp65
represents a potential alternative therapeutic strategy. In
addition, no parasite dissemination was observed, regardless of
when Hsp65-producing L. lactis was orally administered (prior
to or after infection). It is also important to emphasize that when
HSP was administered after infection, PAM was not employed as
the inflammation provoked by the parasite was sufficient to
trigger an anti-inflammatory response elicited by recombinant
L. lactis.

In experimental control groups (Lb, Empty and PAM),
extensive tissue destruction resulting from intense cellular
immune response activity was observed, along with high IFN-g
production characteristic of the cutaneous leishmaniasis model
(58). However, in draining lymph node cells from mice receiving
Hsp65-producing L. lactis, decreased IFN-g production and
increased IL-10 secretion was observed, albeit despite a lack of
significance. At the beginning of infection, it is possible that
decreased levels of IFN-g are responsible for a transitory
enhancement in the number of parasites; nonetheless, this was
evidently controlled and inflammation was modulated at later
times of infection.

Rezende et al. (16), using the same protocol as that employed
in the present study, demonstrated that the induction of oral
tolerance prevented the development of experimental
encephalomyelitis via increased IL-10 production by regulatory
T cells present in the mesenteric lymph nodes and spleen.

IL-10, an anti-inflammatory cytokine produced by a variety
of cells, has been shown to inhibit the Th1-type response
induced by Leishmania sp. infection (59). Despite being
associated with parasite persistence, IL-10 acts as an important
immunoregulator in tissue remodeling during the healing
process, minimizing the damage caused by an exacerbated
immune response and associated inflammatory cytokine
production, notably IFN-g (60–64). Although significant
differences between IL-10 and IFN-g production were not
observed among the experimental groups herein, our results
showed a predominance of IL-10 production compared to IFN-g
in mice treated with Hsp (HSP or HSP+PAM), which
contributed to decreased lesion severity, as well as the absence
of ulceration. In addition, the production of IFN-g also appeared
to have contributed to the control of parasite load in these
animals. The treatment of Hsp65 after infection resulted in low
levels of IFN-g at 6 weeks after infection comparing to Lb and
Empty control groups. It is possible that decreased amounts of
IFN-g were sufficient to eliminate parasites and that IL-10
concentrations, despite no significant differences between other
groups, controlled inflammation, which led to better L.
braziliensis infection outcomes. Although higher levels of IL-10
were seen at 10 weeks after infection in the Lb group, at this point
exacerbated inflammation and high numbers of parasites
worsened lesions caused by L. braziliensis infection.

As our results concerning regulatory T cells were variable
throughout the experiments, a clear pattern did not emerge. We
Frontiers in Immunology | www.frontiersin.org 12
intended to investigate these cell populations in ear lesions in
situ; unfortunately, the concentrations of cells in mouse ears were
very limited, and small numbers of regulatory T cells were
identified. The lack of significant differences between empty
and Hsp-65 producing L. lactis lymph node cultures seems to
suggest that L. lactis alone may also influence the induction of
regulatory T cells in the gut, yet not at the intensity seen in the
HSP group.

The fact that Hsp increases IL-10 induction has already been
evidenced in some experimental studies. In an atherosclerotic
model, the oral administration of Hsp65 was shown to increase
IL-10 levels at the site of inflammation, along with reduced
inflammatory activity (32). Another study showed that disease
pathogenesis, as well as endothelial damage, were attenuated by
the effects of increased IL-10 and a reduction in IFN-g induced
by oral tolerance to Hsp65 (33). Consistent with the important
role of IL-10, Wieten et al. demonstrated that immunization with
Hsp70 in mice 10 days before the induction of arthritis inhibited
the clinical and histological signs of disease via the production of
IL-10 (65). In a model of colitis, the administration of L. lactis
Hsp65 prevented a reduction in IL-10 levels in colon tissue,
which was shown to be critical to immunoregulation (17). A
similar effect was observed in experimental models of
encephalomyeli t is and arthrit i s , in which the oral
administration of Hsp65-producing L. lactis was shown to
prevent disease development in association with increased IL-
10 production (16, 66), as well as in an IL-10-dependent
fashion (66).

An experimental model of cutaneous leishmaniasis
demonstrated that the presence of Foxp3+ Treg cells in the
epidermis was associated with a controlled immune response
that limited tissue pathology (67, 68). Although no significant
differences were found in the frequency of CD4+Foxp3+ T cells
between all groups evaluated at the beginning of infection (2 and 6
weeks post-infection), we found that the oral administration
of Hsp65-producing L. lactis increased the frequency of
CD4+Foxp3+ (at 10 weeks of infection) in cultures of draining
lymph node cells, indicating that regulatory T cells may be involved
in mitigating the inflammation caused by L. braziliensis. Several
experimental models of chronic inflammatory disease, such
as atherosclerosis (32, 69), rheumatoid arthritis (65) and diabetes
(70), have shown that the administration of Hsp65 induced
Treg cells.

Recently, two studies using Hsp65-producing L. lactis
demonstrated that pre-treatment with Hsp65 prevented the
development of colitis (17) and arthritis (66) in mice by
inducing CD4+Foxp3+ and CD4+LAP+ Treg cells in a TLR2-
dependent manner; in addition, reduced inflammatory cytokine
production in the colon (17) and draining lymph nodes (66)
were seen. The oral administration of Hsp60, which binds to
TLR2, was shown to inhibit the production of TNF-a and IFN-g,
and increase IL-10 secretion by T cells, which acts on the
maintenance and function of Treg cells via TLR2 (28).

The intestinal mucosa is known to be a privileged site for the
generation of surface-expressing LAP+ Treg cells (23–25). Here
we observed that animals receiving Hsp presented an increased
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frequency of CD4+LAP+ T cells (after 12 weeks of infection),
which suggests the role of this T cell type in our model. Results
from an experimental model of autoimmune encephalomyelitis
indicate that the high numbers of CD4+LAP+ Treg cells found in
mesenteric lymph nodes can be induced in the intestinal
mucosa following the administration of Hsp65-producing L.
lactis, which then migrate to secondary lymphoid organs (16).
A similar effect could be occurring in the present model, since
CD4+Foxp3+ and CD4+LAP+ regulatory T cells were also
found in the draining lymph nodes at L. braziliensis infection
lesion sites.

Our in vitro experiments that mixed mesenteric and draining
lymph node cells demonstrated that the production of IFN-g
and IL-10 is dependent on TLR2, LAP and IL-10, since the
monoclonal antibodies neutralizing these molecules induced
increased IFN-g and decreased IL-10 production, confirming
previous data found in models of colitis and arthritis (17, 66).

Resistance to infection is a function of the immune system,
which acts by detecting, neutralizing and destroying pathogens,
thereby reducing the pathogen burden. Both innate and
adaptive immune systems contribute to infection resistance
(71). Resistance to infection was seen in the group of animals
treated with PAM, as evidenced not only by the killing of
parasites, but also the destruction of ear tissue resulting from
the exacerbated immunopathology caused by the parasite
and PAM. A favorable immune response is a result of the
balance between an acceptable level of immunopathology and
pathogen elimination (72). Indeed, the factor required to
reduce the burden of the pathogen is the same that causes
immunopathology (73). Tolerance to the pathogen reduces the
negative impact of an infection on the host without directly
affecting parasite load (73–75).

Our data in the HSP and HSP+PAM groups leads us to
believe that the administration of Hsp65-producing L. lactis is
capable of controlling tissue damage by way of mechanisms
related to infection tolerance, a host defense strategy that reduces
the negative impact of tissue destruction resulting from infection.
Unlike resistance mechanisms, tolerance does not directly bear
on parasite load; rather it mitigates the damage caused to the host
by pathogens, or host immune response (76).

Another remarkable finding was the role played by TLR2 in
the regulatory effect mediated by Hsp65. Hsp65 and PAM are
both ligands of TLR2. However, they trigger distinct effects when
administered. It is plausible that strong agonists, such as PAM,
would promote an inflammatory response in innate cells
(monocytes and DCs), whereas analogues of endogenous
ligands, such as Hsp65, trigger balanced mix of cytokines.

Our results demonstrate the ability of Hsp65-producing
L. lactis to mitigate the effects of inflammation caused by
L. braziliensis infection through the evaluation of anti-
inflammatory cytokine production and the expansion of
regulatory T cells in the draining lymph nodes of BALB/c
mice. We therefore suggest that Hsp65-producing L. lactis can
be considered as a potential candidate for treatment not only in
autoimmune disease, but also in chronic inflammatory diseases
caused by pathogens.
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