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Innate lymphoid cells (ILCs) are a branch of the immune system that consists of diverse
circulating and tissue-resident cells, which carry out functions including homeostasis and
antitumor immunity. The development and behavior of human natural killer (NK) cells
and other ILCs in the context of cancer is still incompletely understood. Since NK cells and
Group 1 and 2 ILCs are known to be important for mediating antitumor immune
responses, a clearer understanding of these processes is critical for improving cancer
treatments and understanding tumor immunology as a whole. Unfortunately, there are
some major differences in ILC differentiation and effector function pathways between
humans and mice. To this end, mice bearing patient-derived xenografts or human cell line-
derived tumors alongside human genes or human immune cells represent an excellent
tool for studying these pathways in vivo. Recent advancements in humanized mice enable
unparalleled insights into complex tumor-ILC interactions. In this review, we discuss ILC
behavior in the context of cancer, the humanized mouse models that are most commonly
employed in cancer research and their optimization for studying ILCs, current approaches
to manipulating human ILCs for antitumor activity, and the relative utility of various mouse
models for the development and assessment of these ILC-related immunotherapies.

Keywords: humanized mice, innate lymphocyte cells, natural killer cell, cancer immunotherapy, oncoimmunology,
PDX models
INTRODUCTION

Natural killer (NK) cells are lymphocytes of the innate immune system capable of killing cancerous
or precancerous cells as well as virally infected cells. NK cell functions are tightly regulated by the
balance of signals from activating receptors and inhibitory receptors (1, 2). It was first observed in
the 1970s that these “naturally occurring killer lymphocytes” can kill tumor cell lines without the
need for prior sensitization (3, 4). Later studies in mice showed an increase in tumor growth and
metastasis after NK cells were depleted genetically or therapeutically, supporting the crucial role of
NK cells in cancer immunosurveillance (5, 6).

NK cells belong to a family of immune cells called innate lymphoid cells (ILCs) (7). The ILC
family is a heterogeneous class of immune cells that are increasingly studied for their emerging roles
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in cancer. ILC family members have differential effects on
tumors; some ILC subgroups inhibit tumor growth while
others promote it (8). Numerous studies have contributed to
the understanding of mouse ILC biology (9). It is important to
note, however, that there are species-specific markers and
potential developmental differences between mouse and human
ILC subsets (10–12).

Human ILCs, especially NK cells, have been leveraged to treat
cancer through a variety of modalities including antibody-based
therapies , ce l l -based therapies and bioengineered
immunomodulatory therapies. While some of these therapies
have shown remarkable success, especially with hematopoietic
cancers, many are limited in their efficacy against solid tumors
(13–15). This highlights the need for solid tumor mouse models
that allow for more accurate studies of human ILCs and their
related therapies.

Many murine models have been developed to study cancer
development and treatment. While these mouse models are
valuable tools, some have limitations due to species differences
between mice and humans. In contrast to most human cells,
mouse cells have a higher basal metabolic rate, shorter lifespan
and active telomerase (16), all resulting in differential
susceptibility to cancer between the two species. Xenograft
models, in which cancer cell lines derived from patients are
injected into immunodeficient mice, are often used for
preclinical drug testing (17, 18). However, tumors produced by
cell line xenograft models lack the heterogeneity and tumor
microenvironment (TME) seen in human tumors.

Given the significant influence of the tumor
microenvironment on immune cells, a better model is
needed to study cancer immunology and immunotherapy.
Patient-derived tumor xenograft (PDX) models preserve the
genetic and cellular heterogeneity of the tumor, as well as
some aspects of the tumor microenvironment (19). For this
reason, PDX models are increasingly used in cancer
research. Yet unfortunately, PDX models similarly lack
crucial components of the human immune system such as
circulating T and B cells. To study the biology and efficacy
of cancer treatments, a more accurate recapitulation of both
the TME and the human immune system is needed. To
this end, humanized mouse models have been developed in
which immunodeficient mice are reconstituted with
representative subsets of human immune cells (20–22).

To study human ILCs and their role in cancer, humanized
mouse models can serve as useful tools. In this review, we will
discuss the role of ILCs in cancer, existing humanized mouse
models that can be leveraged for more precise studies of ILCs,
and therapeutics that employ ILCs against cancer along with
mouse model considerations for accurate assessment of
those therapies.
INNATE LYMPHOID CELLS

The origins of innate lymphoid cells (ILCs) in humans were
elucidated from reconstitution of ILC groups in patients with
Frontiers in Immunology | www.frontiersin.org 2
hematopoietic stem cell transplantations (23) and in humanized
mouse models engrafted with human CD34+ stem cells (24).
Human ILCs are derived from Lin− CD34+ CD45RA+ CD117+
IL-1R1+ RORgt+ hematopoietic progenitors (25, 26) and
represent a family of developmentally-related cells involved in
immunity and in tissue development and homeostasis. ILC
subgroups can remain circulating in the body or become
tissue-resident (24). In 2013, Spits et al. proposed a
classification for ILCs (27). According to this classification,
these largely tissue-resident cells (28) are divided into three
groups, based on similarities to adaptive T helper (Th) cell
subsets. ILCs are distinguished by the reliance on transcription
factors that dictate their development and maintenance and by
their ability to produce signature Th cytokines mirroring those of
the Th cell subsets (27). This section provides an overview of the
different human and murine ILC lineages and their complex
roles in cancer; following sections will elaborate on the
humanized mouse models available to study ILC-based
immunotherapies and drugs that influence ILC activation
directly or indirectly.

Group 1 ILCs
Group 1 ILCs are characterized by their capacity to produce IFN-
g and their dependence on transcription factor T-BET (27, 29).
Group I ILCs include conventional NK cells and subsets of innate
lymphocytes, termed ILC1s, which differ from NK cells in their
phenotypes, locations, functions, or transcription factor
dependence (30). One important difference between both
human and murine NK cells and ILC1s is that NK cells
express the transcription factor Eomesodermin (EOMES),
which is important for their differentiation and function (27,
29, 31).

In contrast to ILC1s, which are mainly tissue-resident cells,
NK cells are found in both peripheral blood and tissues (30).
Human peripheral blood NK cells were originally divided into
two subsets, CD56bright and CD56dim NK cells. More recently,
additional distinct populations of tissue-resident NK cells have
been described in human and murine tissues such as the gut,
kidney, and liver, each displaying tissue-specific phenotypes and
functions (32–35). Some NK cells in mice and humans express Fc
receptors, which are functional surface molecules that bind to the
conserved regions of antibodies and can induce killing of
antibody-coated target cells (36).

The phenotypes and functions of ILC1s depend on the tissue
microenvironment, and ILCs with a mixed NK cell and ILC1
phenotype have been observed in humans (29, 30, 37). For
instance, human intra-epithelial ILC1 (ieILC1) cells possess
features shared by conventional NK cells and helper ILC1; they
produce IFN-g and express both transcription factors EOMES
and T-BET (30). Both NK cells and ILC1s represent a first line of
defense for humans and mice against infections with viruses and
certain bacteria, and are essential for the clearance of
intracellular microbial infections (38–40). NK cells appear to
be more potent in mediating cytotoxicity, while the primary role
of ILC1s is the production of pro-inflammatory cytokines
(30, 40).
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Group 2 ILCs
Human and murine ILC2s require the transcription factor
GATA-binding protein 3 (GATA-3) for their differentiation
and maintenance, similar to Th2 cells, and produce cytokines
such as IL-5 and IL-13 in response to activation by IL-25 and IL-
33 (27, 41, 42). Human ILC2s express CRTH2 and high levels of
CD161, whereas most mouse ILC2s express ST2 (29). ILC2s in
both mice and humans are important in the immune defense
against helminth infections and in the pathogenesis of asthma
(41, 43–45).

Group 3 ILCs
Group 3 ILC3s in humans and mice produce IL-17 and IL-22,
similarly to Th17 cells, and are dependent on the transcription
factor retinoic acid receptor-related orphan receptor-gt (RORgt;
encoded by RORC) for their development and function (27).
Group 3 ILCs are abundant at mucosal sites and are involved in
immune responses to extracellular bacteria and the containment
of intestinal commensals. Human ILC3s produce IL-22, by
which they promote intestinal homeostasis (46). Both human
and mouse ILC3s can also produce granulocyte–macrophage
colony-stimulating factor (GM-CSF) (7). Two subsets of ILC3s
can be distinguished on the basis of cell surface expression of
NKp44 (also known as NCR2) in humans and NKp46 (also
known as NCR1) in mice, termed NCR+ or NCR- (41).

ILCs and Cancer
As the scientific community continues to unravel the biology of
ILCs in cancer, many studies have investigated the efficacy of
targeting or employing ILCs as a cancer therapy. Among ILC1s,
NK cells are heavily studied for their potential in cancer
immunotherapy (47). However, the role of ILCs in tumor
immunity is yet to be fully elucidated. ILCs are enriched in
many human cancers (48, 49) and there is increasing evidence
showing that they exhibit phenotypic and functional plasticity.
For instance, after TGF-b exposure, both murine and human NK
cells can convert to an ILC1-like phenotype (50–52). ILC lineage
plasticity has also been observed; human ILC2s can convert to an
ILC3 phenotype with IL-1b, IL-23, and TGF-b stimulation (53).
Additionally, Gury-BenAri et al. found that upon perturbation of
the mouse microbiome by administration of broad spectrum
antibiotics, the transcriptional profiles of mouse intestinal ILC1s
and ILC2s became more similar to that of ILC3s (54). ILC
plasticity has potential consequences on tumor growth and
behavior. For example, a decrease in mouse ILC1s and
transdifferentiation within ILC2 subtypes correlated with
colorectal cancer progression (55, 56).

Recent investigations into the complex biology of ILCs have
revealed the strong influence of the tumor microenvironment
(TME) on ILC responses (57). For example, human tumor cells
under stressful TME conditions upregulate MICA, MICB, and
ULBP1-6, which are ligands for the NK activating receptor
NKG2D (58). Chronic engagement of NKG2D can result in
NK cell tolerance (59). Furthermore, the TME can adopt an
immunosuppressive environment by exploiting cytotoxic T
lymphocyte associated protein 4 (CTLA-4), programmed cell
Frontiers in Immunology | www.frontiersin.org 3
death protein 1 (PD-1), and other immune cell reprogramming
pathways (60). These pathways are further discussed in the ILC
Immunotherapeutics section.

The hypoxic, immunosuppressive milieu of the TME has been
shown to cause immune cell dysfunction, leading to treatment
failure (61, 62). Certain cytokines within the TME can also
prevent antitumor activity by ILCs. IL-33, a cytokine that
activates ILC2s, has been shown to be pro-tumorigenic in
humans and mice by promoting tumor growth, metastasis, and
angiogenesis (63, 64). Its presence in the TME causes ILC2s to
produce IL-13, which recruits myeloid-derived suppressor cells
(MDSCs) to induce tumor tolerance (65, 66). Similarly, IL-23 can
induce ILC3s to express immunosuppressive IL-17 and IL-22 in
colon cancer models (67). It is critical to account for the role of
the TME when studying the effects of ILCs and ILC treatments
on cancer, and strategies to target and specifically block
these inhibitory pathways may represent potential
new immunotherapies.
HUMANIZED MOUSE MODELS

Mouse Models for Improved Human
Immune System Engraftment
Humanized mice were originally defined as mice bearing
functional human genes, cells, or tissues. In more recent years,
the term humanized mice has generally been used for genetically
modified immunodeficient mice that are permissive to the
development of human immune cells (Figure 1 and Table 1).
In this review, we briefly discuss immunocompetent mice
carrying functional human genes, but our primary focus is on
immunodeficient mice bearing human immune cells, as these are
significantly more useful for cancer immunotherapy research.
Early humanized mouse models were generated by transferring
human peripheral blood mononuclear cells (PBMCs),
hematopoietic stem and progenitor cells (HSPCs), or fetal
h ema topo i e t i c t i s sue s in to the s eve r e comb ined
immunodeficient mouse strain, CB17-scid (75–77). CB17-scid
mice are deficient in the Prkdc gene, which encodes the catalytic
subunit of the DNA-dependent protein kinase. The Prkdc gene
product is crucial for V(D)J recombination to generate
functional T and B cells. The absence of T and B cells in
Prkdc-defic ient mice promotes host acceptance of
xenografts. However, CB17-scid mice have NK cells and other
innate immune cells that can restrict efficient engraftment of
human immune cells.

The development of a non-obese diabetic-scid (NOD-scid)
mouse model led to increased human immune cell engraftment
levels, compared to CB17-scid mice (78). Later, it was reported
that the better engraftment in NOD-scid vs. CB17-scid is due a
polymorphism in the signal-regulatory protein a (SIRPa) gene
(79, 80). The polymorphism allows for engagement of SIRPa on
mouse myeloid cells to CD47 on human cells. This gives the “do
not eat me” signal and inhibits phagocytosis of human cells by
mouse myeloid cells. Thus, in NOD-scid mice, the SIRPa
polymorphism supported better development of human
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hematopoiesis (79). However, the residual activity of NK cells
and other innate cells in the NOD-scid mice prevented optimal
engraftment of human cells. This was overcome with the usage of
mice with germline mutations in the interleukin 2 receptor
subunit gamma (Il2rg) gene, which encodes a receptor
component called the common gamma chain. This mouse
strain, termed NOD-scid Il2rg-/- (NSG), is hospitable to
transplanted human immune cells because the host mice
completely lack NK cells (81).
Frontiers in Immunology | www.frontiersin.org 4
Humanized Knock-in Models
to Study Cancer
Mouse strains harboring human gene knock-ins have also been
developed to al low for the robust development of
human immune cells in the mouse microenvironment. As
previously described, the NOD-scid mouse strain contains a
polymorphism in SIRPa, which reduces phagocytosis of
engrafted human cells. With this knowledge, researchers
attempted to improve the engraftment of human cells with
FIGURE 1 | Different mouse models to study oncoimmunology. In knock-in models, mouse genes are replaced with human counterparts. MISTRG mice have
human genes replaced that encode M-CSF, IL-3, GM-CSF, TPO and SIRPa. NOG-IL-15 tg mice have human IL-15 transgene expression. hIL-7xhIL-15 double
knock-in mice express human IL-7 and IL-15. SRG-15 mice have the mouse IL-15 gene replaced with the human IL-15 gene. BRGSF mice are Flt3-deficient mice in
a BRGS background with exogenous administration of human Flt3L. The O-PDX model consists of orthotopic patient-derived xenografts placed in MISTRG mice.
The Hu-PDX mouse model consists of patient-derived xenografts placed in NSG mice with reconstituted human immune systems. Human cancer cell lines can be
used in place of PDX in basic cancer immunology and immunotherapy studies. However, PDX models are ideal for the studies of TME biology and certain
immunotherapies, e.g. combination immunotherapies.
TABLE 1 | Humanized mice to study ILC-cancer interactions.

Mouse
Model

Human Tumor Cells
Administered

Human Cells Engrafted Human Lineage Reconstitution (*lineages with improved
reconstitution compared to NSG mice)

References

MISTRG Me275 melanoma cells CD34+ HSPCs *monocytes, *macrophages, *DCs, T, B and *NK cells (21)
SRG-15 Raji tumor cells and

K562 tumor cells
CD34+ HSPCs myeloid cells, *T, B *NK cells and *ILCs (68)

NOG-IL-15
Tg

NCI-N87 human gastric
cancer cell

Peripheral blood NK cells and in
vitro-expanded NK cells

*NK cells (69)

hIL-7xhIL-
15 KI

- CD34+ HSPCs T and *NK cells (70)

BRGSF - CD34+ HSPCs *myeloid cells, T, B, DC, *NK cells and *ILCs (71)
O-PDX
(MISTRG)

Neuroblastoma CD34+ HSPCs *NK cells (72)

Hu-PDX
(NSG)

Lung adenocarcinoma CD34+ HSPCs T, B and NK cells (73)

HTM
(NSG)

Breast cancer CD34+ HSPCs T, B, NK cells and macrophages (74)
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transgenic expression of human SIRPa in the mice (82).
Continued genetic manipulations of mouse strains led to an
advanced mouse model called MISTRG which exhibits enhanced
engraftment of human immune cells by replacing several mouse
cytokines genes with corresponding human genes (21). In the
MISTRG strain, mouse genes are replaced with human genes
encoding M-CSF, IL-3, GM-CSF, thrombopoietin and SIRPa.
These cytokines support the survival of myeloid and lymphoid
cells in mouse peripheral blood and tissues.

IL-15 is an essential cytokine for the development and
differentiation of NK cells. Human NK cells show poor
engraftment or impaired development in mice, as mouse IL-15
is not sufficient for the development of fully functional human
NK cells (83, 84). Although there is no expression of human IL-
15 by mouse cells in MISTRG mice, the engrafted human
monocytes and macrophages produce human IL-15 to support
the endogenous development of human NK cells. Rongvaux et al.
used the MISTRG mouse model for the in vivo investigation of
NK cell activity against melanoma tumor xenografts (21).

Because of the importance of IL-15 in NK cell development
and survival, routine injections of recombinant human IL-15
have also been used to promote survival of human NK cells after
adoptive transfer (85). In one study, researchers differentiated
NK cells in vitro from CD34+ HSPCs obtained from human cord
blood. With subcutaneous injections of recombinant human IL-
15 every 48 hours, they then demonstrated that adoptive transfer
of human NK cells can control the growth of ovarian cancer
xenografts in NSG mice and promote survival of the mice (85).
However, recombinant human IL-15 is expensive and routine
injections every 2-3 days can be laborious. Consequently,
transgenic and knock-in mice expressing human IL-15 have
been developed such as NOG-IL-15 Tg, hIL-7xhIL-15 KI NSG
mice, and SRG-15 mice (68, 70).

The NOG-IL-15 Tg mouse model is generated from the
NOD/Shi-scid-IL-2Rgnull mouse background with the addition
of human IL-15 transgene expression (69). This enables long
term maintenance of transferred human NK cells isolated from
peripheral blood. Using this model, Katano et al. showed that the
transfer of in vitro-cultured NK cells in the presence of anti-Her2
antibody can suppress Her2-positive gastric cancer (69). To
refine the murine host for human NK cell development in
vivo, double gene knock-in of human IL-7 and IL-15 was done
in NSG mice, which were termed hIL-7xhIL-15 KI NSG mice
(70). These IL-15 producing mice are useful tools for the
assessment of tumor models and combinat ion
immunotherapies involving NK cells.

A particularly attractive HIS model is called SRG-15 and
involves two human gene replacements to encode human IL-15
and SIRPa. Upon injection of human CD34+ HSPCs, the SRG-
15 mice can develop human T cells, B cells, NK cells and myeloid
cells. Importantly, the SRG-15 mouse model allows for study of
human tissue-resident immune cells, including the development
of tissue-resident CD8+ T cells (IELs) and tissue-resident ILC
subsets (68). The secretion of human IL-15 from mouse stromal
and epithelial cells in the SRG-15 mice was sufficient to produce
functional human NK cells following CD34+ HSPC engraftment
Frontiers in Immunology | www.frontiersin.org 5
(68). Furthermore, the NK cells from the reconstituted human
immune system in SRG-15 mice (following CD34+ HSPC
engraftment) were shown to successfully hinder CD20+ Raji
tumor growth with co-administration of rituximab (68). This
demonstrates that the SRG-15 mice model can be used to
establish and evaluate novel combination therapy protocols.

Di Santo et al. developed another HIS mouse model to study
human ILC, called Flt3-deficient BALB/c Rag2−/−Il2rg−/
−SirpaNOD (BRGSF). Flt3, the FMS-related tyrosine kinase 3, is
a cytokine crucial for dendritic cell (DC) homeostasis. In mice
lacking Flt3, the endogenous mouse DCs will no longer compete
with CD34+ HSPC derived human DCs for Flt3 ligand (Flt3L)
signaling. Upon exogenous administration of Flt3L, the
expanded human DCs in this mouse strain provide the
cytokine environment for the development of NK cells and
other ILCs (71). Specifically, the researchers engrafted human
CD34+ HSPCs in BRGSF mice and were able to isolate
phenotypically and functionally mature human NK cells and
other ILC subsets (71).

Notably, out of the many HIS mouse models described in this
section, the endogenous development of human NK cells from
CD34+ HSPC has only been shown in hIL-7xhIL-15 KI NSG,
MISTRG, SRG-15, and BRGSF mice. This is important to
consider when selecting a humanized mouse model for the
study of any immunotherapy that may rely on modulation of
NK cell or ILC behavior, or the survival of adoptively transferred
NK cells or ILCs. In conclusion, the mouse models discussed
here serve as useful tools for the study of NK cell development
and cytotoxicity, and some can even be used to study the
development and behavior of other ILC subsets.

Cancer Cell Line Derived Xenograft (CDX)
Models for ILC Studies
In cancer cell line derived xenograft (CDX) models, established
human cancer cell lines are subcutaneously transplanted into
mice to form tumors. During the injection, tumor cells can be
mixed with effector cells such as NK cells to evaluate the impact
of the human immune cells on tumors in vivo. Alternatively,
instead of co-injection of effector immune cells and tumor cells,
effector cells can be injected after successful engraftment of
tumor cells. One such study demonstrated the effective
elimination of B-cell Non-Hodgkin lymphoma tumors with
anti-CD20 chimeric antigen receptor (CAR) NK cells. To
establish the CDX, Raji-Luc cells, a human Non-Hodgkin
lymphoma cell line expressing luciferase, were injected into
NSG mice and allowed to grow for several weeks. NK cells
were expanded from peripheral blood NK cells, engineered to
express the anti-CD20 CAR construct, and injected into the NSG
mice bearing Raji-Luc cell line xenografts. Treatment with anti-
CD20 CAR NK cells showed significant reduction in tumor size,
as demonstrated by the decrease in luciferase signal from the
tumors. The study also demonstrated that CAR NK cells could
inhibit dissemination of the tumor into other organs (86). Cany
et al. established an acute myeloid leukemia (AML) xenograft
model by injecting GFP and luciferase expressing K562 leukemia
cells (K562.LucGFP) intrafemorally in NSG mice. They showed
April 2021 | Volume 12 | Article 648580
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that NK cells, derived from umbilical cord blood, could target the
leukemia cells residing in the bone marrow (87).

Cancer cell lines are advantageous for their ease in genetic
manipulations and for establishing early proof of concept
studies, but continuous passage of cell lines in 2D culture
could result in the loss of epithelial to mesenchymal transition
(EMT) potential (88). The tumors generated from cell lines also
fail to reflect tumor vascularization and tumor
microenvironment observed in human cancers (89).
Fortunately, patient-derived xenograft models can
overcome some of these drawbacks (90).

PDX Humanized Models to Study ILCs
Patient-derived tumor xenografts are becoming an increasingly
popular tool to dissect the intrinsic properties of cancer initiating
cells and the interaction between tumor and immune cells in vivo
(91). Cancers are heterogenous mixtures of cells containing
malignant cells, nonmalignant stromal cells, vascular
endothelial cells and immune cells. Initial cancer drug
development studies did not consider the involvement of the
immune system, as most of the studies were performed in
immunodeficient mice with tumor explants (92). The emerging
improved PDXmodels involve the transplantation of both tumor
explants from patients and human immune cells to establish a
human immune system in the mouse host.

Several studies have attempted co-transplantation of human
HSPCs and tumors in mice. One such model is orthotopic
patient-derived xenograft (O-PDX) for neuroblastoma, in
which MISTRG mice undergo double transplantation of CD34
+ HSPCs and neuroblastoma xenografts. This allows for long-
term hematopoiesis and PDX engraftment simultaneously (72).
The NK cells in this model exhibit antibody-dependent cell-
mediated cytotoxicity (ADCC), which shows potential for
preclinical testing of different monoclonal antibodies in
neuroblastoma (72). In a separate study, Meraz et al. also co-
transplanted cord blood derived CD34+ HSPCs and lung cancer
PDX to form a NSG mouse model with a humanized immune
system and PDX, which they named Hu-PDX (73). The
reconstituted humanized immune system showed an antitumor
response of T cells but not NK cells after administration of the
checkpoint inhibitor antibody pembrolizumab (73). Thus, such a
model can be used for studying immune responses to cancer and
developing immunotherapy treatments against cancer.

Another category of PDX models are immunoavatar cancer
models, which are highly suited for preclinical trials of
immunotherapy and can also be used to develop personalized
treatment strategies. In this model, human immune cells (such as
PBMCs) and tumor tissue (e.g. melanoma) are taken from the
same patients or individuals in autologous fashion. This model
more accurately recapitulates the unique immune responses
against tumors originally occurring in the patient, as they are
from the same source of origin (93, 94). One issue with this
model, however, is that it suffers from GVHD responses in which
human T cells from the engrafted PBMCs mount immune
responses against mouse cells after several weeks (92, 94).

Overall, these mouse models aid in proof-of-concept studies
to better understand immune cell interactions with tumors in
Frontiers in Immunology | www.frontiersin.org 6
vivo. Engrafted PDX tissues demonstrate pathohistological and
genetic resemblance to the original tumor, in addition to
preserving parental solid tumor architecture (95). These
properties make them an attractive model for personalized
therapy testing, pre-clinical drug screening and basic cancer
research (96).

Limitations of Humanized Mouse Models
for Cancer Research
Although humanized mouse models act as excellent models to
study solid tumors, there are a few shortcomings that still need to
be addressed. Many PDX transplant methods are subcutaneous,
even if the original tumor was not located in that type of tissue.
As a result, the environment around the tumor lacks organ-
specific factors and the chronic inflammatory milieu. Developing
solid tumors in the abdomen or by orthotopic transplantation
into organs can also make it challenging to measure tumor size or
assess tumor growth via in vivo imaging analysis. A potential
utility of humanized cancer models is to interrogate
simultaneous development of immune cells and cancer cells in
vivo. Yet even though tumor cells and HSPCs can be co-
transplanted intrahepatically into newborn humanized mice at
same time, the development of the tumor sometimes precedes
the reconstitution of multilineage human immune cells (74).

Mice bearing PDX could be a useful tool to dissect the role of
human ILCs in cancer. However, these studies must reconcile the
differences between mouse and human biology. While the
original human cancer cells survive and proliferate within a
PDX, over time the human stromal cells within the tumor are
replaced by mouse stromal cells; this can affect the maintenance
and behavior of tumor-infiltrating human immune cells (97).
Hence, humanized mouse models reconstituted with multiple
human immune cell lineages and engrafted with tumors are
being developed to facilitate their application in designing better
immunotherapy strategies.
ILC IMMUNOTHERAPEUTICS STUDIES IN
MURINE HOSTS

Mouse Model Development and
Considerations for Antibody-
Based Therapies
Antibody-based immunotherapies are less expensive than cell-
based therapies and represent a promising area to explore as
combination therapeutics, since they can be administered
alongside another therapeutic agent that stimulates the
adaptive or innate immune system for a synergistic effect (98).
A treatment that activated both ILCs and adaptive immune cells
in a safe and specific manner could potentially avoid the
possibility of antigen escape, be more likely to succeed in
controlling metastases, and induce a systemic immune
response and immune memory. However, these treatments are
difficult to study in immunocompetent mice as most clinically
relevant antibodies are highly specific for their human targets
and thus do not exhibit cross-reactivity to their murine
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counterparts (99). For these reasons, researchers use humanized
mice as a more accurate tool to study complex immune
responses during antibody treatments. Antibodies being
studied for their ability to modulate NK cell and ILC behavior
include checkpoint inhibitors, Bispecific Killer cell Engagers
(BiKEs), Trispecific Killer cell Engagers (TriKEs), NK Cell
Engagers (NKCEs), and other novel recombinant antibodies
such as drug-conjugated antibodies (Figure 2).

Checkpoint inhibitors block an inhibitory ligand on a tumor
cell or the cognate receptor on a tumor-targeting immune cell to
prevent the inhibitory signal from impacting the immune cell
(100). Checkpoint molecules such as PD-1 and CTLA-4 can
modulate the functionality of both adaptive and innate immune
cells (101). For example, secretion of cytokines such as IL-5 and
IL-13 by human ILC2s (102) or degranulation and secretion of
IFN-g by human NK cells (103) can be inhibited. NK cells
express inhibitory receptors that recognize MHC class I
molecules (KIRs in humans and Ly49s in mice). Human NK
cells also express CD94/NKG2A, PD-1, TIM3, TIGIT, and LAG3
in certain contexts (104, 105). Other human ILCs also express
inhibitory receptors in both normal and pathological conditions
(106). ILC1s express TIM-3, LAG-3, CD96, and TIGIT; ILC2s
express PD-1 and KLRG1; and ILC3s express TIGIT and CD96
(65). Blockade of these pathways in vivo can result in the
reactivation of NK cells and ILCs, which may generate a strong
antitumor response (105). Human inhibitory receptors such as
KIRs are difficult to study in immunocompetent mouse models,
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since they diverge structurally between human and mouse NK
cells and do not exhibit cross-reactivity - murine Ly49s would
not bind to human MHC and human KIRs would not bind to
murine MHC (107). As a result, early work surrounding NK/ILC
checkpoint inhibitors relied on the use of immunodeficient mice
with transplanted human tumor cells and single human immune
cell types - a time consuming and limited approach.

A major advance towards targeting immune checkpoints was
the generation of humanized CTLA-4 or PD-1 knock-in mouse
models. Murine cells are modified to express the human form of
the protein of interest under the same genetic regulation as its
murine counterpart; the mice retain an intact functional murine
immune system with the exception of the single altered protein
and intracellular signaling through these molecules is largely
preserved (108, 109). These models recapitulate immune
modulation by tumor cells because human CTLA-4 is capable
of interacting with mouse B7-1 and B7-2 (108) and human PD-1
is capable of interacting with mouse PD-L1 (110). Since human
PD-1 interacts in subtly different ways with human PD-L1
compared to murine PD-L1 (111), a further improvement to
the accuracy of these models is a mouse that expresses both
human PD-1 and human PD-L1.

These mice are not considered human immune system (HIS)
mice as they do not possess human immune cells, but they
represent a robust model system that can be utilized to validate
the binding and antitumor efficacy of antibodies against
individual human checkpoint molecules. Mice expressing
FIGURE 2 | ILC based immunotherapeutics and mouse models as tools to study them. Immunotherapies that involve ILC antitumor activity can be categorized as
antibody-based, cell-based, or other bioengineered immunomodulators. Mouse models such as PD-1 and CTLA-4 knock-in can be used to study checkpoint
inhibitors. SCID mice bearing PDX or CDX can be used to study the efficacy of single agent cell therapies such as CAR NK cells or NK92 cells. HIS mice are the
most optimal tool to study combination therapies or immunomodulators that may alter the behavior of multiple immune cell types.
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human CTLA-4 and dual humanized mice expressing human
PD-1 and CTLA-4 or both human PD-L1 and PD-1 without
expression of murine PD-L1 or PD-1 are now commercially
available (112). Knock-in models are a useful tool for studying
direct and secondary effects of targeted antibody therapies on
tumor growth in vivo, minimizing off-target toxicities, and
optimizing antibody binding kinetics to decrease the frequency
of severe immunotherapy-related adverse events.

To study the effects of checkpoint inhibitors on human
immune cells, immunodeficient mice are required. Marasco
et al. used NSG mice with transplanted human T and NK cells
to study the efficacy of CAR T cells that secrete anti-PD-L1
antibodies, so they could observe the effects of the antibodies on
NK cells alongside T cells and tumor cells (113). However, NSG
mice are not optimized to ensure NK cell engraftment. Models
such as the MISTRG, SRG-15, and NOG-IL-15 Tg mice will
further enable longer-term study of NK cell responses to
antibody therapies as they can provide a constant cytokine
signal to ensure NK cell survival (69). Future research using
humanized mice should include the screening and optimization
of a wide variety of Fc regions, receptor targets, and drug
conjugates to strongly induce ILCs to kill tumor cells.

In addition to checkpoint inhibitors, other antibodies are in
development that directly activate NK cells. BiKEs induce NK
cell killing by binding to CD16 on the surface of NK cells and a
tumor antigen simultaneously, while TriKEs target CD16, a
tumor antigen, and an IL-15 molecule to activate the NK cells
(114). By binding to CD16 and colocalizing tumor cells with NK
cells, the antibodies trigger ADCC pathways and induce target
cell killing. These antibodies show promise in vitro and in vivo,
but most clinical research has been restricted to hematologic
malignancies (115). To study the antibodies in mice, researchers
have used xenogenic models such as NSG mice injected with
human ovarian cancer cells and NK cells (116). Another novel
NK cell stimulating antibody is a trifunctional NKCE that binds
to NKp46 and CD16 on NK cells and a tumor antigen on target
cells. Anti-CD20 NKCEs targeting NKp46 exhibited strong
efficacy against solid tumors and intravenously injected Raji B
cells in SCID mice (117). Drug-conjugated antibodies can also be
used for immunotherapy, such as brentuximab vedotin which
contains a microtubule depolymerizing agent and a variable
fragment targeting CD30 on tumor cells (118). Microtubule
inhibitors have cytotoxic effects on cancer cells and also induce
maturation in some innate immune cells; these drug-conjugated
antibodies were first tested for in vivo efficacy in SCID mouse
xenograft models (119).

While antibody therapies have proven to be successful in
clinical trials and data shows they are able to improve the activity
of NK cells that enter a tumor, antibodies are unable to directly
increase recruitment of immune cells to the tumor (105). Rather,
they rely on activation of tumor infiltrating immune cells to
generate chemotactic signals that will recruit and activate
additional immune cells (120). However, this strategy is not
always successful, as the immunosuppressive TME is capable of
dampening the activation induced by the antibodies and
preventing a strong immune response (121). Much more work
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needs to be done in order to improve the homing of ILCs to
tumors and their activation within the TME, and mice with
human immune systems are a necessary tool for these studies.

NSG or SCIDmice transplanted with NK cells are sufficient to
test the direct activation of NK cells by antibodies and the
resulting tumor cell killing. However, they do not enable
researchers to study whether these NK cells could induce the
activation or recruitment of other tumor-resident or circulating
immune cells through cytokine secretion or other mechanisms.
This is because they do not contain diverse human immune cell
subsets and therefore do not accurately represent the immune
milieu present in a human tumor. For a more thorough
assessment of broad immune activation after administration of
these recombinant antibodies, HIS mice optimized for NK/ILC
survival and proliferation would be required.

ILC-Based Cell Therapies and Mouse
Model Considerations
Adoptive cell therapies for cancer, while at first dominated by
adaptive immune cells, are beginning to show promise using NK
cells. Unfortunately, it is difficult to accurately model the long
term influence of adoptive cell therapies on tumor progression in
immunodeficient mice. Many ILCs require cytokine stimulation
to survive in the absence of other immune cells, and
administering those cytokines frequently can be costly
and time consuming (70). For example, NK cells will survive
and proliferate in NOD Rag gamma (NRG) immunodeficient
mice without exogenous cytokine administration only if the mice
are also transplanted with autologous human cord blood
immune cells (122). Additionally, tumors grown in
immunodeficient mice lack human intratumoral immune cells.
Thus, it is impossible to determine whether adoptively
transferred cells will activate other innate or adaptive immune
cells in the TME - a critical factor for developing a systemic
immune response and immune memory (34). Many cell
therapies are also difficult to test in a precise manner using the
murine immune system because their human cell homologs are
different in ways that range from subtle to potentially significant,
or artificial receptors such as CARs must be modified to function
within murine signaling pathways.

The most ideal models to study the potential success or failure
of adoptively transferred ILCs are humanized mice that have
been optimized to ensure the survival and expansion of ILCs in
the murine host, such as NOG-IL-15 Tg mice with transplanted
human PBMCs or MISTRG, SRG-15, or BRGSF mice
reconstituted with CD34+ stem cells. These transplant models
enable long term studies of cell survival, differentiation, and
proliferation without the added cost of cytokine injections or the
need to engineer cells to produce their own cytokines (70). They
also enable researchers to study a broad range of ILCs in parallel
in the context of their therapy, as multiple populations can be
induced from a single injection of fetal pluripotent stem cells
rather than having to transplant them individually. For example,
Ishikawa et al. used IL-6 knock-in mice engrafted with human
CD34+ stem cells to study the effects of IL-6 on co-activation of
macrophages and T cells (123). However, it is worth noting that
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mouse models endogenously expressing human cytokines can
contain supra-physiological concentrations of those cytokines,
which may alter the results of the studies and make results more
complex to interpret (124).

ILC-based cell therapies currently in development rely on
phenotypically modulated NK cells and ILCs, CAR NK cells, or
NK cell lines (Figure 2). Phenotypic modulation of these cells is
possible because NK cells and ILCs respond to cytokines, growth
factors, pathogens, and other external stimuli in varied manners,
and this can be exploited to enhance the efficacy of cell therapies
or enable production of clinically relevant doses of cells. For
example, briefly activating NK cells with IL-12, IL-15, and IL-18
can improve their long-term cytotoxicity. These cells, known as
cytokine-induced memory-like (CIML) NK cells, exhibit
increased proliferation, persistence, memory-like functionality,
and IFN-g production (125, 126) and show increased cytotoxicity
towards many cancer cell types including ovarian cancer cells,
leukemia cell lines, and primary human AML blasts (127, 128).

Cytokine-induced phenotype modulation can also be
leveraged alongside growth factors to differentiate NK cells
from induced pluripotent stem cells (iPSCs) (129). iPSC-
derived NK cells are capable of ADCC, and CAR NK cells
from this source are currently in preclinical or phase I/II
testing (130). However, since there are large numbers of
developmental pathways involved in these pipelines, it is
difficult to perfectly replicate them using murine cells. It is
equally difficult to study the interactions of human iPSC-
derived NK cells with other immune cells accurately in
immunodeficient mice. HIS mice enable more rigorous studies
of the effects of adoptive cell therapies on other immune subsets.

Several unique subsets of NK cells are also of great interest for
cancer therapies. These include NK cells, which lack expression
of the intracellular signaling protein FceRg, called gNK cells.
gNK cells appear to be induced by CMV infection (131) and
exhibit increased ADCC function; they are being studied for their
ability to enhance antibody therapies in B cell leukemia and
lymphoma (132). Researchers are also developing methods for ex
vivo NK cell activation to improve cell therapies. These strategies
include culture with heat shock protein 70 (Hsp70), TKD
peptide, and IL-2, which has been studied using both murine
and human NK cells (133), and co-culture with feeder cells such
as K562 that can be altered to express stimulatory molecules such
as OX40 ligand (134) or IL-21 (135).

The most s t r ik ing succes ses o f ILC-based ce l l
immunotherapies have involved CAR NK cells. CAR NK cells
target surface molecules on tumor cells and exhibit a more
favorable safety profile than CAR T cells (136). An anti-CD19
CAR NK cell that produces IL-15 achieved a 73% response rate
in HLA mismatched patients with non-Hodgkin’s lymphoma or
chronic lymphocytic leukemia. These cord blood derived CAR
NK cells could show promise as a standardizable off-the-shelf
therapeutic (137). Additional CAR NK cell therapies currently in
clinical trials include cells targeting mesothelin, CD22, PSMA,
and NKG2D ligands on tumor cells, and others currently in
development include variations in cytokine production,
intracellular signaling domains, and costimulatory molecules
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(138). CAR NK cells producing IL-15 were tested for early in
vivo efficacy in a Raji lymphoma NSG xenograft model (138), but
this model did not enable researchers to assess whether other
immune cells were activated by the CAR NK cells. Another type
of CAR used with NK cells is a TGF-b chimeric switch receptor
which uses TGF-b to activate, rather than inhibit, NK cells in the
TME (139). This receptor was studied in NSG mice with
transplanted neuroblastoma cells, CAR NK cells, and
intraperitoneal administration of IL-2. Future work should
incorporate HIS mice to determine whether CAR NKs/ILCs
can activate other immune subsets circulating in the
bloodstream or residing within the TME.

NK cell lines are another area of interest for cell therapies.
NK92 is an immortal cell line that was isolated from a patient
with a rare NK cell lymphoma (140). CAR NK92 cells represent a
potential cell therapeutic that is simple to standardize and
produce in bulk. NK92s were assessed against malignant
melanoma in SCID mice and showed significant potential
(141). The first in human trial involving irradiated NK92 cells
used anti-CD33 CAR NK92s for patients with relapsed and
refractory acute myeloid leukemia, and no significant adverse
events were observed (142). However, it is not yet clear whether
these cells will function well against solid tumors. Due to the
short lifetime of irradiated cells, it also remains to be seen
whether they are capable of initiating an antitumor response
that could generate long-term immunological memory. This is
difficult to model in mice without humanized immune systems,
since the effect of the irradiated cells on tumor size or survival
might be brief or insignificant but their impact on other immune
cells could be what drives tumor eradication.

Non-irradiated NK92 cells could be given to patients if they
were transduced with suicide genes to ensure they could be killed
if they began proliferating too rapidly (143). Researchers are
studying non-irradiated Smad3-silenced NK92 cells (NK-92-
S3KD) in xenograft mouse models to assess their efficacy
against hepatoma and melanoma (144). Other cell lines that
mimic human NK/ILC1 behavior include NK101 (145), NK3.3,
YTS, and NKL (146). However, it will be difficult to assess their
efficacy against solid tumors without a robust in vivo model that
includes other immune cells due to the drastic impacts of the
TME on suppression of immune cytotoxicity and the highly
interactive nature of cell therapies when considering tumor-
resident immune cells. Complex tumor-immune and immune-
immune interac t ions are di fficu l t to model us ing
immunodeficient mice, but are critical in predicting the success
or failure of cell therapies. For these reasons, HIS mice represent
a more optimal tool for studying NK cell therapy in vivo.
DISCUSSION: BIOENGINEERED
IMMUNOMODULATORS AND TARGETED
DRUG DELIVERY AS NEW FRONTIERS

Mode l i ng po t en t i a l t h e r apeu t i c s u s i ng s t anda rd
immunodeficient mice with one or two transplanted human
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immune cell types is not a sufficiently rigorous approach. These
mice inhibit the ability of researchers to broadly identify indirect
effects of their drugs on other immune cells as a result of the
primary effects on their target cell of interest, and tumors grown
in them from cell lines or transplanted tissue do not contain
representative tumor-resident immune cell populations. For
both combination and single agent therapies involving precise
modulation of ILCs, HIS mice optimized to support the
engraftment and development of multiple immune cell types
represent a significant improvement for modeling possible
responses from tumor cells and immune cells. Here we discuss
the next generation of ILC-related immunotherapies and the
mouse models required to study them.

Several new immunotherapies in development could enhance
ILC antitumor functionality (Figure 2) but require humanized
mice for accurate modeling of their effects. Histone deacetylases
(HDACs) and HDAC inhibitors are able to alter transcription of
genes related to tumor growth or suppression (147) and induce
cell cycle arrest in cancer cells (148). HDACs have been shown to
enhance ADCC of NK cells against tumor cells (149), but some
HDAC inhibitors can diminish NK cell longevity and
cytotoxicity (150) while others enhance NK cell functions
(151). These treatments are difficult to study accurately since
they impact both tumor cells and tumor-resident immune cells
in different ways—not all of which are replicated by murine cells.
Further studies in mice optimized for NK cell survival will enable
determination of the effects of HDACs on tumor and NK
cells simultaneously.

Synthe t i c cy tok ines can a l so enhance NK/ILC
immunotherapies, since the broad mechanisms of action of
endogenous cytokines limit the doses that can be safely
administered (152). Artificial cytokines can be engineered to
exhibit modified binding profiles, enhanced stability and
specificity, increased activation of immune cells, multifunctional
capacity, and lower induction of autoimmunity (153). For example,
synthetic IL-2 and IL-2R pairs enable specific activation of only the
engineered immune cells in a patient (154). Synthetic cytokines can
also be targeted to tumor cells to improve activation of immune
cells only within the TME (155). Artificially tethered membrane-
bound IL-15 can improve longevity and cytotoxicity of NK cells
(156), and membrane-bound IL-21 on feeder cells can modulate
NK cell phenotype when expanding them for autologous therapy
(135). In the future, synthetic cytokine and receptor pairs could be
used to specifically activate CAR NK cells or ILCs only when they
are adjacent to tumor cells. Since a major advantage of
bioengineered cytokines is their ability to activate multiple types
of immune cells simultaneously and synergistically, HIS mice
represent an optimal tool for studying their effects on NK cells
and ILCs in addition to other immune cells.

Non-cytokine immunomodulatory drugs (IMiDs) ranging
from snake venom (157) to antimicrobial peptides (AMPs)
such as cathelicidin (158) have been tested for their ability to
improve NK cell antitumor functions. Drugs such as
lenalidomide and pomalidomide can enhance antitumor ILC
behavior as well (159, 160). Bryostatins are protein kinase C
modulators that are currently being engineered to improve CAR
Frontiers in Immunology | www.frontiersin.org 10
NK functionality (161). These and many other drugs have the
potential to broadly or specifically activate NK cells or ILCs in
addition to other immune cells within the TME. However, only
small numbers of murine studies have been carried out thus far
to determine their ability to activate tumor-resident ILCs and
influence tumor eradication in vivo. To accurately assess them,
HIS mice optimized for NK/ILC proliferation such as NOG-IL-
15 Tg mice transplanted with human PBMCs should be used.

Finally, almost all of the therapies discussed in this review can
be further enhanced through targeted drug delivery. This enables
researchers to consider thousands of drugs for cancer therapy that
were previously considered too toxic to administer systemically.
These drugs can be targeted to cancer cells or activated only within
the TME using delivery mechanisms such as oncolytic viruses
(162), coated nanoparticles (163), and ultrasound activation (164).
This also increases the quantity of drugs to which the tumor can be
exposed, potentially increasing their efficacy. Oncolytic viruses can
be used as checkpoint inhibitor delivery vehicles, limiting
autoimmunity and other disorders that might originate from
systemic delivery (165). NK/ILC therapies can also be
strengthened by using transplanted cells as a delivery vehicle or
enhancing their function through separately targeted drugs. This
could improve their killing capacity, localization to tumors, or
activation within the TME. Researchers have used NK92 cells to
bring drug-loaded nanoparticles to a solid tumor and block
inhibitory signals in the TME (166), and local delivery of
chemoattractants such as CCL20 or CXCL16 can increase tumor
infiltration by ILCs (167). There is a great deal of future work that
should be done in the drug delivery space to enhance ILC-related
therapies, and HIS mice are the most ideal tool for early stage
optimization and assessment because these mice can facilitate the
survival and proliferation of ILC/NK cell therapies and their
tumors will contain diverse immune cell populations.
CONCLUDING REMARKS

In order to solve critical unanswered questions surrounding the
dynamic interactions between ILCs, solid tumors, and other
tumor-resident immune cells, researchers should leverage
humanized mouse models to increase the accuracy and utility
of their studies. New generations of mice have been optimized to
ensure ILC survival and enable development of multiple immune
cell types simultaneously, both of which are critical for accurately
studying the direct effects of immunotherapies as well as their
indirect effects on other immune cells. Topics related to ILC-
cancer biology that are in need of further investigation include:
determining why current immunotherapies show limited efficacy
in solid tumors, identifying methods to subvert the signals in the
TME that are suppressing ILCs, assessing the unknown roles and
plasticity of ILCs in cancer both endogenously and after adoptive
transfer, and understanding the signals communicated between
ILCs and other immune or tumor cells and how those correlate
with tumor growth or eradication. For all of these endeavors,
humanized mice represent a useful tool to study these
complex questions.
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The broad range of biotechnology that is being invented at
breakneck speed is inspiring but also daunting. It seems virtually
impossible to test all of these potential immunotherapy-enhancing
agents in an accurate manner - especially in combination with each
other - using standard immunodeficient mouse models. The
potential utilities of combination therapies are much broader
than those of single agent therapies, so it is important to study
them accurately. While the primary effects of these therapies can be
assessed on single types of immune or cancer cells by transplanting
them into immunodeficient mice, that approach misses a large
portion of information that is critical to predicting their efficacy
against solid or liquid tumors: the secondary effects these cells will
have on other cells in the TME or bloodstream. Improved in vivo
modeling using humanized mice would drastically increase our
ability to determine which of these technologies should be
translated to a clinical setting for human trials and potentially
save the lives of many patients, along with the costly sums of
money required to test individual drugs. HIS mice expressing
Frontiers in Immunology | www.frontiersin.org 11
molecules such as IL-15 that improve ILC survival and
proliferation will further enable researchers to design and
optimize cellular and molecular immunotherapies.
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