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Pancreatic cancer is a lethal malignancy with a poor prognosis. This study aims to

identify pancreatic cancer-related genes and develop a robust diagnostic model to

detect this disease. Weighted gene co-expression network analysis (WGCNA) was

used to determine potential hub genes for pancreatic cancer. Their mRNA and protein

expression levels were validated through reverse transcription PCR (RT-PCR) and

immunohistochemical (IHC). Diagnostic models were developed by eight machine

learning algorithms and ten-fold cross-validation. Four hub genes (TSPAN1, TMPRSS4,

SDR16C5, and CTSE) were identified based on bioinformatics. RT-PCR showed that

the four hub genes were expressed at medium to high levels, IHC revealed that their

protein expression levels were higher in pancreatic cancer tissues. For the panel of

these four genes, eight models performed with 0.87–0.92 area under the curve value

(AUC), 0.91–0.94 sensitivity, and 0.84–0.86 specificity in the validation cohort. In the

external validation set, these models also showed good performance (0.86–0.98 AUC,

0.84–1.00 sensitivity, and 0.86–1.00 specificity). In conclusion, this study has identified

four hub genes that might be closely related to pancreatic cancer: TSPAN1, TMPRSS4,

SDR16C5, and CTSE. Four-gene panels might provide a theoretical basis for the

diagnosis of pancreatic cancer.

Keywords: pancreatic cancer, WGCNA, diagnostic model, machine learning, bioinformatics, panel

INTRODUCTION

Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide, and themortality
rate closely parallels the incidence (1). In recent years, deaths associated with pancreatic cancer are
gradually increasing and it is predicted to be the second leading cause of cancer-related death by
2030 (2). In the United States, it is estimated that there will be approximately 56,770 new pancreatic
cancer cases diagnosed, and 45,750 estimated deaths occurring among these new cases (3). From
2003 to 2015 statistics from China show that the age-standardized 5-year relative survival rate for
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pancreatic cancer was only 7.2%(4). Despite advances in
pancreatic cancer treatment strategies, the prognosis remains
poor, largely due to the lack of early diagnostic approaches (5).
Additionally, carbohydrate antigen 19–9 is widely used for the
diagnosis of pancreatic cancer, but its sensitivity and specificity
are only 0.80 (95% CI: 0.77-0.82) and 0.80 (95% CI: 0.77-
0.82), respectively (6, 7). Therefore, the identification of new
biomarkers or a panel with high specificity and sensitivity for
diagnosing pancreatic cancer are important.

In recent years, with the development of microarray and high-
throughput sequencing technologies, gene expression profiles

Abbreviations: WGCNA, Weighted gene co-expression network analysis; DEGs,

differentially expressed genes; TOM, topological overlap matrix; GS, gene

significance; MM, module membership; TCGA, the Cancer Genome Atlas; ICGC,

International Cancer Genome Consortium; GTEx, Genotype-Tissue Expression;

ROC, receiver operating characteristic; Se, Sensitivity; Sp, Specificity.

FIGURE 1 | Flow chart of data preparing, analysis, validation, and model development.

have become an effective source of biomarkers discovery.
Weighted gene expression network analysis (WGCNA) has
been widely used to reveal the phenotype-related genes by
constructing scale-free gene co-expression networks, especially
in cancers, including lung (8), bladder (9), breast (10),
and pancreatic cancer (11). In developing prediction models,
satisfying the sensitivity and specificity requirements are themost
interesting and challenging tasks for tumor biomarker screening.
Previous studies have shown that machine learning method can
improve the accuracy of disease diagnosis or prognosis (12, 13),
and cancer models with higher accuracy have been developed by
applying those methods (14–17).

Therefore, this study was designed to explore novel
biomarkers with high performance using bioinformatics.
Potential genes, screened by bioinformatics, will be validated
using RT-PCR and IHC experiments. Diagnostic models will
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be constructed using different machine learning methods and
ten-fold cross-validation.

MATERIALS AND METHODS

Data Collection and Preprocessing
The study design is shown in Figure 1. A systematic search
on two electronic databases (Gene Expression Omnibus and
ArrayExpress) was performed for potential datasets before 1 June
2019. Datasets with a sample size >20 were included. Eleven
pancreatic cancer microarray datasets from three platforms
were downloaded (Affymetrix Human Genome U133 Plus 2.0
Array, Affymetrix Human Gene 1.0 ST Array, and Affymetrix
Human Genome U219 Array). The raw data were pre-processed
with the “oligo” package and the “affy” packages. The Robust
Multichip Average (RMA) function was used for background
correction and normalization. In this study, GSE28735 was used
to construct a weighted gene co-expression network because

TABLE 1 | Primers sequences of hub genes and internal reference genes.

Gene name Primers sequences Amplified fragment

size

TSPAN1 Forward 5’:TGGGCTGCTATGGTGCTAAG 154 bp

Reverse 5’:GGCACTACCAGCAACGTCAG

TMPRSS4 Forward 5’:GGGAAGTCACCGAGAAGA 107 bp

Reverse 5’:ATGCCACTGGTCAGATTG

CTSE Forward 5’:CTATACCCTCAGCCCAACTG 169 bp

Reverse 5’:GTTATTCCCACGGTCAAAGAC

SDR16C5 Forward 5’:AATGGGCTGGCAGATTACTG 111 bp

Reverse 5’:CACAATCGTGGTTTTGATCC

GAPDH Forward 5’:TGACTTCAACAGCGACACCCA 121 bp

Reverse 5’:CACCCTGTTGCTGTAGCCAAA

it contained the most balanced case and control samples,
nine datasets (E-MEXP-2780, GSE15471, GSE16515, GSE32688,
GSE71989, GSE106189, GSE62452, E-MTAB-6134, GSE62165)
were combined to develop diagnostic models with a total of
818 samples, and the GSE32676 dataset with 32 samples was
chosen to externally validate the model’s performance. The
ComBat algorithm was used to adjust the expression data from
nine datasets for batch effects using the “sva” package (18).
The characteristics of all microarray datasets are summarized in
Supplementary Table 1.

Besides, TCGA data on RNA-sequencing (RNA-Seq) was
downloaded using the “TCGAbiolinks” package (19), the
ICGC data on RNA-Seq was download from Data Portal
(https://dcc.icgc.org/releases/current/Projects), normal sample
data was download from GTEx Portal (https://gtexportal.org/
home/datasets). In total, RNA-Seq data were collected from 598
samples, including 270 cases of carcinoma and 328 cases of
normal tissue.

Weighted Gene Co-expression Network
Analysis
The theoretical framework of the WGCNA algorithm has been
described (20). The “WGCNA” package was used to construct
the co-expression network (21). Firstly, the quality of samples
and genes was checked. Then, outlier samples were removed
by cluster analysis using the average linkage method. When
constructing a weight co-expression network, the soft threshold
power is an important parameter that can emphasize strong
and reduce weak correlations between genes. The power of
β = 8 (scale-free R2 = 0.86) was selected to ensure a scale-
free network. Then, the adjacency was transformed into a
topological overlap matrix (TOM), and the topological overlap
dissimilarity (1-TOM) was used as hierarchical clustering input.
Next, gene modules were identified using a dynamic hybrid
branch cutting method with a minimum size of 30 for the gene

FIGURE 2 | Determination of soft-thresholding power in the weighted gene co-expression network analysis (WGCNA). (A) Analysis of the scale-free fit index for

various soft-thresholding powers (β). (B) Analysis of the mean connectivity for various soft-thresholding powers. (C) Histogram of connectivity distribution when β = 8.

(D) Checking the scale-free topology when β = 8.
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dendrogram (22), and gene modules with a height of <0.25
were combined. An important goal of WGCNA is to detect the
gene module subsets that are closely related to clinical traits.
Genes within an identified module may have great biological
significance. To this end, gene significance (GS) and module
significance (MS) were calculated. Also, module membership

(MM)was defined to select highly correctedmodules with certain
clinical traits.

Identification of the Hub Genes
In gene networks, genes that have many interactions with
other genes are defined as hub genes. Hub genes usually play

FIGURE 3 | Identification of modules associated with the clinical traits of pancreatic cancer. (A) Dendrogram of 18,830 genes clustered based on a dissimilarity

measure (1-TOM). (B) Heatmap of the correlation between module eigengenes and clinical traits of pancreatic cancer. (C) Module membership vs. gene significance

in “greenyellow,” “blue,” and “red” module.
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an important role in a biological system (23). All genes in the
significant module were included to construct a gene-gene
interaction network using the “cytoHubba” Cytoscape plugin

FIGURE 4 | Gene-gene interaction network of the top 20 genes. Through

constructing a gene-gene interaction network by using 171 genes obtained

from WGCNA analysis, the top 20 genes, ranked by degrees of interactions,

were identified.

(24, 25). The top 20 genes, ranked by degrees of interactions,
were selected. These genes may play important roles in the
pathogenesis of pancreatic cancer. Then, differentially expressed
genes (DEGs) were identified for GSE15471, GSE28735,
GSE62165, GSE32688, GSE71989, GSE62452, GSE62165, and
GSE32676 datasets, respectively. The “limma” (26) package was
used to identify DEGs, false discovery rate (FDR) < 0.05 and
|log2 fold change (FC)| > 1 were set as the cut-offs. Overall, the
hub genes were determined by the intersection of the top 20
genes and the results of the eight DEGs analyses.

Validation of the Hub Genes
To validate hub gene expression in pancreatic cancer and normal
tissues, the GEPIA tool (http://gepia.cancer-pku.cn/) was firstly
applied using the RNA-Seq data (27). It is worth emphasizing that
the GEPIA website included the TCGA and GTEx datasets (19,
28). And the transcripts per million (TPM) algorithm was used
to measure RNA expression (29). Using the “DESeq2” package,
further validation was performed based on the negative binomial
distribution model using the raw counts of TCGA, ICGC, and
GTEx data (30).

Reverse Transcription PCR (RT-PCR)
cDNA was synthesized using 1 µg of total RNA isolated
from three pancreatic cancer cell lines (PANC-1, GCC-
PA0001RT; SW1990, GCC-PA0004RT; and AsPC-1, GCC-
PA0006RT) and RT-PCR was performed using 400 ng cDNA
per 12 µl reactions. The primer sequences used in RT-PCR
are described in Table 1. Relative expression abundance was
determined by 1Ct=Ct (hub gene)—(GAPDH). 1Ct≦12, 12<
1Ct <16 and 1Ct≧16 were considered to be a high expression

FIGURE 5 | Identification of four hub genes by eight datasets validation. Forty-one DEGs were identified through the intersection of the DEGs of 8 GEO datasets

(GSE15471, GSE28735, GSE62165, GSE32688, GSE71989, GSE62452, GSE62165, and GSE32676), and then four hub genes were identified by an intersection

with the top 20 genes.
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abundance, moderate expression abundance and low expression
abundance, respectively.

Immunohistochemistry (IHC)
Specimens of 70 pancreatic cancer tissues and 70 adjacent
tissues were deparaffinized and rehydrated. The sections were
incubated with polyclonal anti-TSPAN1 antibody (1:1000
dilution) (SANTA CRUZ BIOTECHNOLOGY, sc-376551),
anti-TMPRSS4 antibody (1:500 dilution) (proteintech, 11283-1-
AP), anti-SDR16C5 antibody (1:300 dilution) (Thermo Fisher,
PA5-55229), and anti-CTSE antibody (1:1000 dilution) (SANTA
CRUZ BIOTECHNOLOGY, sc-166500). Two independent

pathologists evaluated and scored the IHC, and the log2
(H-score) described the semi-quantitative expression of the
four proteins.

Diagnostic Model Development and
Validation
In this analysis, the merged dataset was used to construct
models of pancreatic cancer using four hub genes. A total of
818 samples were randomly assigned into a training cohort
and a validation cohort at 7:3 ratios. The GSE32676 dataset
was used as the external validation cohort. The support vector
machine, random forest, Naive Bayes, neural network, linear

FIGURE 6 | Validation of four hub genes expression by using RNA-Seq data (GEPIA website). *P ≤ 0.05; PAAD, pancreatic cancer (GEPIA website).
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discriminant analysis, mixture discriminant analysis, flexible
discriminant analysis, and logistic regression were used to
classify pancreatic cancer and normal tissues. To strengthen the
robustness of the prediction with these genes, 10-fold cross-
validation was also applied reiteratively 100 times. The receiver
operating characteristic (ROC) curve was drawn to estimate
the diagnostic performance of each model, and the sensitivity
and specificity were determined. All statistical analyses were
conducted using R 3.5.3.

RESULTS

Gene Co-expression Network Construction
and Key Modules Identification
After the quality assessment for the GSE28735 dataset,
GSM711915 and GSM711957 samples were removed. Eventually,
a total of 18,830 genes and 88 samples were included to construct
a gene co-expression network using the “WGCNA” package.
In the current study, to ensure a scale-free network, β =

8 (scale-free R2 = 0.86) was selected (Figures 2A,B), and
scale-free topology (R2 = 0.84, slope = −1.85) was obtained
(Figures 2C,D). Through the obtained scale-free topology,
18,830 genes were classified as 18 modules (Figure 3A). Three
modules were acquired that were significantly related to the
sample category (greenyellow: r = 0.67, P = 9e-13; blue: r =

0.61, P = 3e-10; and red: r = −0.57, P = 7e-9; Figure 3B).
The greenyellow module showed the highest correlation with
clinical information (cor = 0.85, P = 6.5e−49, Figure 3C).
Therefore, the 171 genes of the greenyellow module were used
for subsequent analyses.

Hub Gene Identification and Validation
Based on the interaction parameters of the 171 genes obtained
from WGCNA analysis, the top 20 genes were identified
(Figure 4). DEGs analysis of eight gene datasets revealed a total
of 41 genes, so four hub genes, TSPAN1, TMPRSS4, SDR16C5,
and CTSE was identified (Figure 5). The validation results
showed that four hub genes derived from the GEPIA tool were
differentially expressed in cancer and normal tissues (Figure 6),
as was the result of DESeq2 analysis (Supplemantary Table 2).
The details of the four genes are shown in Table 2.

RT-PCR and IHC
The expression of the four hub genes in three cell lines
showed that TSPAN1 and CTSE were expressed at high
levels, TMPRSS4 and SDR16C5 were expressed at medium
expression levels (Figure 7). IHC staining results are shown
in Figure 8. The expression levels in pancreatic cancer tissues
and adjacent tissues showed as follows: 7.27 ± 0.31 and 6.88
± 0.14; 7.16 ± 0.24 and 7.02 ± 0.13; 7.15 ± 0.24 and
6.99 ± 0.14; 7.00 ± 0.26 and 6.76 ± 0.09. Higher levels
of TSPAN1, TMPRSS4, SDR16C5 and CTSE expression were
observed in pancreatic cancer than in normal pancreatic tissue
(paired t-test, P < 0.0001).

TABLE 2 | Summary of four hub genes identified by weighted gene co-expression

network analysis.

Gene ID Official full name Description References

TSPAN1 Tetraspanin 1 Cell development, activation,

growth, and motility

(31, 32)

TMPRSS4 Transmembrane

serine protease 4

Integral component of

membrane; regulation of gene

expression; scavenger

receptor activity

(33, 34)

CTSE Cathepsin E Antigen processing and

presentation of exogenous

peptide antigen via MHC class

II; protein autoprocessing;

protein catabolic process

(35, 36)

SDR16C5 Short chain

dehydrogenase/

reductase family

16C member 5

Activating transcription factor

binding; keratinocyte

proliferation;

oxidation-reduction process

NA

FIGURE 7 | TSPAN1, TMPRSS4, SDR16C5 and CTSE mRNA expression in

three pancreatic cancer cells.

Diagnostic Model Development and
Validation
In the validation cohort, the AUC of the eight models constructed
by machine learning ranged from 0.87 to 0.92, sensitivity ranged
from 0.91 to 0.94, and specificity ranged from 0.84 to 0.86. In
the external validation cohort, the AUC of the eight models
ranged from 0.86 to 0.98, sensitivity ranged from 0.84 to 1.00,
and specificity ranged from 0.86 to 1.00 (Table 3).
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FIGURE 8 | Immunohistochemical staining of TSPAN1, TMPRSS4, SDR16C5 and CTSE.

TABLE 3 | Diagnostic performance of eight machine learning methods for pancreatic cancer.

Methods Validation (30%) External validation (GSE32676)

AUC Se Sp AUC Se Sp

Support vector machine 0.87 (0.79–0.95) 0.92 0.84 0.90 (0.73–1.00) 0.96 0.86

Random forest 0.91 (0.86–0.97) 0.91 0.86 0.94 (0.83–1.00) 0.96 0.86

Naive Bayes 0.91 (0.86–0.96) 0.93 0.84 0.92 (0.77–1.00) 0.96 0.86

Neural network 0.91 (0.86–0.97) 0.94 0.84 0.97 (0.91–1.00) 0.84 1.00

Linear discriminant analysis 0.91 (0.86–0.96) 0.93 0.84 0.95 (0.86–1.00) 1.00 0.86

Mixture discriminant analysis 0.91 (0.87–0.96) 0.91 0.84 0.98 (0.93–1.00) 1.00 0.86

Flexible discriminant analysis 0.91 (0.85–0.96) 0.92 0.84 0.86 (0.71–1.00) 0.84 0.86

Logistic regression 0.92 (0.87–0.97) 0.93 0.84 0.97 (0.90–1.00) 0.96 0.86

AUC, receiver operating characteristic area under the curve value; Se, Sensitivity; Sp, Specificity.

DISCUSSION

There is an urgent need for a relatively reliable, clinically
easy to use, cost-effective biomarker panel for the diagnosis of
pancreatic cancer. This study identified four hub genes through
bioinformatics, DEGs analysis in multiple datasets, experimental
verification of mRNA and protein levels. Using machine learning
methods, the expression of four hub genes was utilized to
construct models with satisfactory diagnostic value.

Pancreatic cancer is a polygenic and highly heterogeneous
disease, the diagnosis of which is challenging (37). A single
biomarker may not be sufficient for accurate diagnosis, and a
panel consisting of multiple biomarkers might be more beneficial
and accurate (38). In the study of pancreatic cancer, some
diagnostic models have been developed (39–41). However, most
models are not cost-effective for patients, because multiple
biomarkers are difficult to routinely screen and/or identify

clinically. Most importantly, a recent study demonstrated that
a three-miRNA panel can be as effective as the panel of 1800
miRNAs (42). It is necessary to weigh the number of biomarkers
in clinical application and their predictive abilities. Therefore, the
focus of this study is to screen hub genes and explore a diagnostic
model with cost-effective performance.

With the development of next-generation sequencing,
bioinformatics has been used in many ways of research, such
as biomarker screening, molecular mechanism exploration.
Currently, WGCNA was widely applied to screen hub genes in
various cancers (9). This approach can identify critical cancer
driver genes that may be a significant therapeutic target or
diagnostic marker (43). In recent years, several biomarkers
have been identified in the field of cancer research using
WGCNA (44–47). However, most studies only used DEGs
or the first 25% variation genes to construct a weighted gene
co-expression network, which may result in a loss of genetic
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diversity. Moreover, some studies only used the feature selection
method to select biomarkers (17, 43, 48). Although this method
can reduce the dimensionality of data, these genes that play
important roles in the cancer process may be lost.

In this study, transcriptome data related to pancreatic cancer
were systematically retrieved and its raw data were preprocessed.
During the WGCNA analysis process, all genes were included in
the construction of a co-expression network to find diagnostic
biomarkers, which enhanced the diversity of genes. After using
WGCNA to identify a set of genes highly correlated with
pancreatic cancer, hub genes were identified through gene-gene
interaction network analysis and DEGs analysis in independent
eight datasets. It is important to emphasize the interactions
between these genes, it can provide deeper insight into the
mechanism of cancer (9, 49–51). To increase the credibility of the
selected hub genes. DEGs validation was firstly applied using the
RNA-Seq data. And then their gene and protein expression levels
were verified through experimental methods, including RT-PCR
and IHC methods.

In recent years, many studies have suggested that machine
learning can provide promising tools for diagnosis in the cancer
domain (13). For example, Pu et al. (52) identified a diagnostic
model based on five hyper-methylated CpG sites with 0.82%
accuracy using the support vector machine method. It is more
practical to explore an optimal panel with few biomarkers and
high diagnostic performance. Therefore, this study used the
four hub gene expression profiles of 818 samples to construct
the diagnostic models through machine learning. After internal
verification and external verification, the results showed that
panels of the four hub genes had a better diagnostic performance
for pancreatic cancer.

Four hub genes were identified by bioinformatics in this
study. TSPAN1 (31, 32), TMPRSS4 (33, 34), and CTSE (35, 36)
have previously been studied in pancreatic cancer. Among them,
TMPRSS4 was overexpressed in, and identified as a biomarker
of, pancreatic carcinoma (33), TSPAN1, TMPRSS4, and CTSE
are potential diagnostic or prognostic markers for pancreatic
ductal adenocarcinoma (31, 33, 35), and most of these genes are
associated with metastasis and proliferation and in pancreatic
cancer. Although SDR16C5 has not been reported in pancreatic
cancer, a study showed that it is involved in the regulation
of triple-negative breast cancer (53). Its potential as diagnostic
marker warrants further functional investigations on its roles in
the development of pancreatic cancer.

Certain important strengths of this study should be
emphasized. First, the data used in this study are very
comprehensive, and the sample size is the largest in the current
study of pancreatic cancer. Second, multiple validations of hub
genes expression were executed using eight microarray data sets
and RNA-Seq data sets, and the RT-PCR and IHC methods were
used to validate their expression at the gene and protein level.
Those validations can maximize the reliability of the selected hub
genes. Third, logistic regression and several machine learning
methods were applied to evaluate the diagnostic ability of our

panels. Iterative ten-fold cross-validation repeated 100 times was
also used to obtain a robust evaluation of the prediction ability
using these genes. There are also some limitations in this study.
First, the research samples included in this study were from
diverse populations from the USA, France, and Japan. There may
exist some differences in gene expression profiles among various
ethnic groups. Next, our prediction models will be improved
with further validation using independent experimental data.

In conclusion, four hub genes were identified using
bioinformatics and experimental verification approaches.
More importantly, the four-gene panels can accurately predict
pancreatic cancer. Our findings encourage future clinical
research to validate the robustness of the diagnostic model and
additional functional research.
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