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In this study, we sought to characterize synovial tissue obtained from individuals with arthralgia
and disease-specific auto-antibodies and patients with established rheumatoid arthritis (RA),
by applying an integrative multi-omics approach where we investigated differences at the level
of DNA methylation and gene expression in relation to disease pathogenesis. We performed
concurrent whole-genome bisulphite sequencing and RNA-Sequencing on synovial tissue
obtained from the knee and ankle from 4 auto-antibody positive arthralgia patients and
thirteen RA patients. Through multi-omics factor analysis we observed that the latent factor
explaining the variance in gene expression and DNAmethylation was associated with Swollen
Joint Count 66 (SJC66), with patients with SJC66 of 9 or more displaying separation from the
rest. Interrogating these observed differences revealed activation of the immune response as
well as dysregulation of cell adhesion pathways at the level of both DNAmethylation and gene
expression. We observed differences for 59 genes in particular at the level of both transcript
expression and DNA methylation. Our results highlight the utility of genome-wide multi-omics
profiling of synovial samples for improved understanding of changes associated with disease
spread in arthralgia and RA patients, and point to novel candidate targets for the treatment of
the disease.

Keywords: rheumatoid arthritis, arthralgia, DNA methylation, transcriptomics, multi-omics analyses, synovial
biopsies, target identification
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INTRODUCTION

Rheumatoid arthritis (RA) is a complex, multifactorial, and
chronic autoimmune disease that primarily affects the synovial
tissue in joints (1). It affects about 1% of the population and
manifests with significant unmet medical need (2). Investigating
pathogenesis during different stages of disease, or across a
spectrum of disease severity, is critical to optimize appropriate
therapeutic interventions that affect disease progression (3, 4).

Diagnosis of established RA coincides with the development
of painful and swollen joints, although circulating auto-
antibodies can be detected up to 10 years before diagnosis (5,
6). Clinically manifested joint swelling reflects synovial tissue
inflammation (synovitis), which is characterized by infiltration
into the synovium of multiple immune cell types [including T
cells, B cells, macrophages, plasma cells, dendritic cells, natural
killer (NK) cells, and mast cells (7)], with up to 18 distinct
infiltrating cell populations being reported on in a recent single
cell transcriptomics analysis (8). As disease progresses, synovial
fibroblasts adopt an increasingly aggressive and invasive
phenotype, promoting further inflammation and joint damage
together with other processes induced by the inflammatory
environment, such as the differentiation of bone-resorbing
osteoclasts (9, 10). Disease progression in early RA is often
associated with the involvement of an increasing number of
inflamed joints, but the mechanisms responsible for this spread
of disease are poorly understood. Moreover, differences in the
rate of disease manifestation and variability of response to
therapy indicate that different pathophysiological mechanisms
are implicated in disease development and progression
compared to disease etiology (11).

An increasing body of evidence indicates that epigenetic
modifications play an important role in the regulation of RA
pathogenesis (12). Several array-based studies have reported
widespread differences in DNA methylation among peripheral
blood cells from RA patients and controls, suggesting that
epigenetic modifications in circulating cells associate with
disease (13, 14). However, wider conclusions may be limited by
the unknown correlation of these effects to synovial cells directly
at the site of inflammation. Epigenetic modifications have also
been implicated in modulating the function of synovial
fibroblasts in RA, through comparisons of DNA methylation
patterns of cultured cells isolated from RA and osteoarthritis
patients (15–20). Such studies have identified DNA methylation
patterns that distinguish RA from other forms of arthritis, along
with regulatory elements and biomarkers related to the
pathological phenotype of RA. However, to identify novel
candidate genes for therapeutic interventions that affect disease
progression, it is important to study samples from patients across
different stages of disease. Two such studies using cultured
fibroblast-like synoviocytes found small but statistically
significant patterns of hypomethylation in patients with
longstanding RA compared to those with early RA, suggesting
that the DNA methylome could be associated with the
transformation of synovial fibroblasts into invasive cells
capable of joint destruction and the resulting disease
progression (21, 22).
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Here, we gain insights into RA heterogeneity by combining
whole-genome DNA methylome and transcriptome analyses
from the same synovial biopsies and stratifying patients
according to the number of swollen joints, a clinical parameter
reflective of disease evolution. We find that swollen joint count
based on 66 joints (SJC66), which reflects the amount and spread
of inflamed synovial tissue, is associated with major changes in
gene transcription and DNAmethylation at promoters. By cross-
interrogating differentially methylated genomic regions and their
associated genes, we reveal novel candidate loci associated with
the spread of the disease across joints.
MATERIALS AND METHODS

Sample Description
Synovial tissue was collected via a mini-arthroscopic procedure
as described previously (23) from patients at the Amsterdam
University Medical Center, University of Amsterdam. A total of
17 samples were obtained from three cohorts. The first cohort
contained individuals that had either arthralgia and/or a positive
family history for RA, but without arthritis (as determined by a
clinician), and that were positive for IgM Rheumatoid Factor
(IgM-RF) and/or Anti-Citrullinated Protein Antibodies (ACPA)
(Pre-synoviomics; n = 4) (24). The second cohort consisted of
individuals that at inclusion were Disease Modifying Anti-
Rheumatic Drug (DMARD)-naïve with early arthritis, as
defined by a disease duration of less than 1 year (Synoviomics;
n = 9) (25, 26). The third cohort contained samples from patients
with established RA on active treatment with a disease duration
of more than one year who had at least one swollen joint suitable
for synovial tissue sampling (Synoviomics II; n = 4) (27). For all
analyses, samples were prepared simultaneously to mitigate
batch effects.

All subjects provided written informed consent and the
collection and use of the samples received Institutional Review
Board review and approval. Characteristics of patients included
in this study are listed in Table S1.

RNA-Sequencing and Whole Genome
Bisulphite Sequencing
Flash-frozen synovial tissue biopsies were utilized to
simultaneously isolate RNA and DNA using an AllPrep DNA/
RNA Mini kit (Qiagen), with QIAshredder spin columns
(Qiagen) used to disrupt the tissue. RNA samples were
quantified and their integrity assessed using Qubit RNA Broad
Range Assay Kit (Thermo Fisher Scientific) and an Agilent 2100
Bioanalyzer RNA 6000 Nano Kit (Agilent Technologies),
respectively. Depending on sample yield, DNA samples were
quantified using Qubit DNA BR or Qubit DNA HS kits (Thermo
Fisher Scientific).

RNA-Seq libraries were generated from 150 ng of total RNA.
The TruSeq® Stranded Total RNA LT was used with a Ribo-
Zero™ Human/Mouse/Rat kit (Illumina), following the ‘Low
Sample’ protocol except for two modifications. Firstly, the time
of the ‘Elution 2 – Frag – Prime’ program was reduced from 8 to
April 2021 | Volume 12 | Article 651475
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6 min to increase the length of the RNA fragments. Secondly, 11
instead of 15 cycles were used to enrich the DNA fragments.
Libraries were quantified with a KAPA Library Quantification
Kit (KAPA Biosystems) on a QuantStudio 12 K Flex Real-Time
PCR System (Thermo Fisher Scientific). Five samples were
multiplexed per lane and libraries were clustered and
sequenced using HiSeq® PE Cluster Kit v3 – cBot™ and
HiSeq® SBS Kit v3 kits (Illumina). Paired-end sequencing (2 x
76 bp) was performed using a HiSeq 1500 (Illumina) to a depth
of ~40 M reads per sample.

Whole Genome Bisulphite Sequencing (WGBS) libraries were
generated using an EpiGnome Methyl-Seq Library Preparation
Kit (Epicentre, now Illumina) from 100 ng of sample DNA.
Bisulphite conversion was performed using an EZ DNA
Methylation-Lightning Kit (Zymo Research). Each bisulphite
conversion reaction contained 500 pg of unmethylated lambda
DNA (Promega), which was used as a control to verify that
bisulphite conversion efficiencies were at least 98%. Libraries
were quantified using a KAPA Library Quantification Kit (KAPA
Biosystems) on a 7900HT Real-Time PCR System (Thermo
Fisher Scientific). Six samples were multiplexed per lane and
libraries were clustered and sequenced using HiSeq® PE Cluster
Kit v4 – cBot™ and HiSeq® SBS Kit v4 kits (Illumina). Paired-
end sequencing (2 x 125 bp) was performed using a HiSeq 1500
(Illumina) to a depth of ~600M reads per sample. To provide
sufficient coverage each batch was sequenced over 2 high
output runs.

Exploratory Analyses of DNA Methylation
and Gene Expression
To concurrently explore the DNA methylation and gene
expression data, Multi-Omics Factor Analysis (MOFA) was
applied (v1.0.0) (28). In short, MOFA performs unsupervised
dimensionality reduction simultaneously across multiple data
modalities from the same sample through a small number of
inferred latent factors, enabling the detection of co-ordinated
changes between the different data modalities (28). Here, we used
the 5,000 most variable CpGs and genes as input and with the
number of latent factors set to 9, the tolerance to 0.1 and the
factor threshold to 0.02.

Gene Expression Data Analysis
Quality assessment of the raw reads was performed using FastQC
(v0.11.2) (29). Adapters were removed from reads using Scythe
(v0.991) (30) and sequences were quality-trimmed using Sickle
(v1.33) (31) using a quality threshold of 20. Alignment to the
GRCh38 build of the human genome was performed using
Kallisto (v0.44.0) (32).

All subsequent analyses were performed in R (v3.5.0) (33).
Gene-level counts were generated from the transcript
abundances using tximport (v1.12.0) (34). Allosome-associated
genes were removed to mitigate obvious sex effects. Differential
Gene Expression (DGE) analyses were conducted using DESeq2
(v1.22.2) (35) where SJC66high was compared with SJC66low
whilst correcting for sex, age and DMARD usage using the
following design formula:
Frontiers in Immunology | www.frontiersin.org 3
Gene Expression ∼ sex + age + DMARD usage + SJC66dichotomized

DMARD usage was a binary variable defined by the usage of
any medication: conventional DMARDs (cDMARD, including
methotrexate) or biological DMARDs (bDMARD). As Kallisto
provided abundance levels for individual transcripts, Gene
Differential Expression (GDE) analyses were also conducted to
identify genes where particular transcripts were differentially
expressed (36). In short, differential expression analyses was
performed using DESeq2 and the resulting p-values were
combined using the Lancaster aggregation method found in
aggregation (v1.0.1) (36), where observations were weighted by
the base expression. DGEs and GDEs were defined as genes with
a false discovery rate (FDR)-adjusted p-value less than 0.05.

DNA Methylation Data Analysis
Quality assessment of the raw reads was performed using FastQC
(v0.11.2) (29). Adapter and quality trimming was performed
using Skewer (v0.1.123) (37) and a quality filter of 20. To assess
bisulphite conversion rates, Bismark (v0.14.1) (38) was used to
align the reads to the genome of the phage lambda, and again
for alignment to the GRCh38 build of the human genome. Post-
alignment filtering of unmapped reads, reads aligning at multiple
locations and reads with a mapping score lower than 10 was
carried out using SAMtools (39).

All subsequent analyses were performed in R (v3.5.0). CpG
loci located on the allosomes were removed to mitigate the sex
effect. The differential methylation analyses were performed
using dmrseq (v1.2.5) (40), where we contrasted SJC66high with
SJC66low whilst correcting for sex, age and DMARD usage using
the following design formula:

Methylation ∼ sex + age + DMARD usage + SJC66dichotomized

Differentially Methylated Regions (DMRs) were annotated
using ChipPeakAnno (v3.16.1) (41) to genes if the DMR was
located within 5,000 bp upstream or 1,000 bp downstream of the
gene as obtained from Gencode (v29) (42).

Integrated DNA Methylation and Gene
Expression Analysis
Integrated analyses were based on the DMRs and GDEs found
through the separate DNA methylation and gene expression
analyses. The overlap between DMRs and GDEs were called
Genes displaying both Differential Expression and Methylation
(GDEMs). For each GDEM the median percentage methylation
was calculated for all constituent CpGs per sample and correlated
with the log2 transformed expression counts to obtain the
Pearson correlation coefficient. Confidence intervals (95%)
were calculated through 1000 bootstraps for each GDEM. In
short, 17 samples were randomly drawn from the original
samples with replacement, whereupon the Pearson correlation
coefficient was calculated. This process was repeated 1000 times
to generate the empirical distribution function, which was then
used to estimate the confidence intervals (43). The
aforementioned bootstrapping approach was performed using
the boot (v1.3) package (44). For inferential purposes, p-values
April 2021 | Volume 12 | Article 651475
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were calculated by means of a permutation approach. In short,
per GDEM, 1000 sets of consecutive CpGs equal to the length of
the observed DMR were sampled and correlated with the gene
expression signal as described above, after which the proportion
of correlation coefficients higher than the observed correlation
coefficient was calculated yielding the p-value.

Functional Enrichment, Cell Type
Enrichment and Protein-Protein
Interaction Network Analyses
Gene set enrichment analyses were performed using fgsea
(v1.8.0) (45) using the Metabase pathways terms (46) as
reference. Metabase pathway terms with an FDR-adjusted
p-value less than 0.05 were considered significant.

Cell proportions were imputed using xCell (v1.1.0) (47),
where transcripts per million were used to estimate the
proportion of each of the 64 immune and stromal cell types.
Subsequent linear regressions were performed to calculate the
p-values to assess statistical significance. Again, we compared
SJC66high with SJC66low also correcting for age, sex and
DMARD usage.

Protein-protein interaction (PPI) network analyses were
performed using the STRING (v11) database (48), in order to
identify whether a set of genes was over-represented for
interactions. In short, the PPI analysis returned networks of
genes where the encoded proteins interacted, co-expressed or co-
evolved with one another, based on text mining, curated
databases, and experimental data.

Data Availability
The datasets generated and analyzed for this study can be found
in the ArrayExpress repository under accession number E-
MTAB-6638 and E-MTAB-6684 for WGBS and RNA-Seq,
respectively. All code is hosted on GitHub at https://github.
com/enricoferrero/BTCURE.
RESULTS

Swollen Joint Count Is Associated With
the Latent Factor Explaining Variance in
Gene Expression and DNA Methylation
We profiled the DNA methylome and transcriptome of 17
synovial tissue samples (Table S1) using whole genome
bisulphite sequencing (WGBS) and RNA-sequencing (RNA-
Seq). We initially attempted to link gene expression changes to
disease duration as well as to cross-patient variations in the
Disease Activity Score of 28 joints (DAS28) variables, but these
analyses resulted in weak and non-biologically relevant signals,
and were ultimately deemed inconclusive for this set of samples
(data not shown). Principal Component Analysis (PCA)
indicated that variation in both DNA methylation and gene
expression were independently correlated with the swollen joint
count in 66 joints (SJC66; Figures 1A, B). Comparison of the
first principal component of both the DNA methylation and
gene expression data suggested agreement with samples 33, 19, 3,
Frontiers in Immunology | www.frontiersin.org 4
12A and 25 broadly separating from the other samples for both
modalities (Figure 1C). While sample 33 appeared to be an
outlier based on the DNA methylation data the removal thereof
did not alter the correlation substantially (Figure S1). To further
explore DNAmethylation and gene expression at a genome-wide
level in an integrative fashion, we performed variance
decomposition using multi-omics factor analysis (MOFA) (28).
MOFA infers a set of latent factors that capture sources of
variability across different measured -omic modalities of the
same samples. We found that most variance (approx. 70%)
was better explained by gene expression as compared to DNA
methylation (Figure 1D). Further decomposition of the variance
identified 8 latent factors, with LF1 explaining 40% of the
variance in gene expression, whereas variance in methylation
was more evenly distributed amongst all eight latent factors.
Focusing on LF1, we observed a marked separation between
samples with SJC66 of 9 and above compared to those with
SJC66 of 8 or less (Figures 1E and S2A, B). While most samples
were obtained from the knee, two were obtained from the ankle.
Interrogation of the first latent factor did not indicate any
correlation with the source of the sample (Figure S2C).
Importantly, sex was also strongly associated with LF1 (p-value
= 8.8E-03; Figure S2D) where samples with SJC66 of 9 and
above were mostly males and most samples with SJC66 equal to
or fewer than 8 were mostly females. Therefore, subsequent
comparative analyses accounted for the imbalance in sex by
removal of allosome-associated genes as well as including sex as
covariate in linear models. females. Therefore, subsequent
comparative analyses accounted for the imbalance in sex by
removal of allosome-associated genes as well as including sex as
covariate in linear models.

Differences in DNA Methylation and Gene
Expression in Patients With High and
Lower Numbers of Swollen Joints Are
Associated With Immune Response and
Cell Adhesion Pathways
Having observed genome-wide differences through exploratory
analyses in both DNAmethylation and gene expression data that
associated with SJC66, we next investigated which regions and
genes were differentially methylated and expressed. At this point
we investigated DNA methylation and gene expression
separately. While samples with SJC66 = 0 were included for
the aforementioned exploratory analyses, they were excluded
from subsequent comparative analyses as they were medically
not a homogeneous group consisting of very early arthritis as
well as late arthritis with no swelling following medication. The
swollen samples were stratified according to the separation
observed in the exploratory analyses (Figure 1E) and we
compared SJC66high (SJC66 ≥ 9) with SJC66low (SJC66 < 8)
correcting for age, sex and DMARD usage. Comparative methylation
analysis identified 3,536 DMRs (Figure 2A and Table S2), where
2,140 were hypomethylated and 1,396 were hypermethylated. The
majority of DMRs were located within 1 Kb of a TSS or in distal
regions (Figure 2B). Notably, the most statistically significant
DMRs spanned regions larger than 10 Kb (Table S2).
April 2021 | Volume 12 | Article 651475
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For example, the top two DMRs were located within the
promoter regions of the MIRLET7B and MIR3619 genes
(MIRLET7BHG; 22:46,072,724-46,090,732; Figure 2C) and
microRNA 10B (MIR10B; 2:176,147,225-176,162,267; Figure
2D) and exceeded 15 Kb in length. While the MIRLET7BHG-
associated DMR was hypermethylated, the MIR10B-associated
DMR was hypomethylated when comparing SJC66high with
SJC66low. Functional analysis of the DMRs identified several
pathways with evidence of differential methylation. Among the
top 10, we observed that the NGF/TrkA MAPK pathway,
Frontiers in Immunology | www.frontiersin.org 5
immune response pathways including antigen presentation by
MHC class II, macrophage and dendritic cell phenotype shifts, as
well as CCR3 signalling in eosinophils, were hypermethylated
(Figure 2E and Table S3).

Comparing SJC66high with SJC66low at the gene expression
level identified 142 DGEs, of which 106 up-regulated and 36
down-regulated (Figure 3A and Table S4). The top 2 DGEs,
chemokine ligand 13 (CCL13) (Figure 3B) and C-Type Lectin
Domain Containing 10A (CLEC10A) (Figure 3C), were both
found to be more highly expressed in the SJC66high samples.
A B C

D E

FIGURE 1 | Exploratory analysis. Analysis of SJC66 regressed onto the first principal component of (A) DNA methylation and (B) gene expression annotated with
the Pearson r-squared (R2) and the p-value. (C) Comparison of the first principal components for DNA methylation on the x-axis and gene expression together
coloured for SJC66. Trendlines represent the mean and 95% confidence intervals. (D) Results obtained from multi-omics factor analysis, where the figure at the top
depicts a bar chart representing the percentage variance explained by gene expression and DNA methylation, which has been decomposed into the separate latent
factors (LF) at the bottom. (E) Decomposition of the variance observed for LF1 into the loadings assigned by MOFA to the top 20 weighted features for gene
expression (top; colours represent log2(count)) and DNA methylation (bottom; colours represent percentage methylation).
April 2021 | Volume 12 | Article 651475
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A B

C D

E

FIGURE 2 | SJC66high versus SJC66low differential methylation analysis. (A) Volcano plots depicting the -log10(p-value) on the y-axis relative to the difference in %
methylation when comparing the SJC66high with SJC66low samples on the x-axis. Colours represent the non-significant (orange) and significant regions (blue).
Statistical significance is further depicted by a dashed horizontal line. (B) At the top: distribution of the DMRs relative to the transcription start site (TSS) and at the
bottom: upset plot indicating the distribution of the DMRs across the different genetic features. (C, D) DMRs found at genomic co-ordinates (C) 22:46,072,724-
46,090,732 and (D) 2:176,147,225-176,162,267 are located in the promoters of MIRLET7BHG and MIR10B, respectively. DNA methylation is visualized as the
percentage methylation (y-axis) with a smoothed trendline per sample. (E) The 10 most enriched MetaCore gene sets associated to the promoter-bound DMRs. Tick
marks represent gene ranks relative to the direction of the methylation effect and is summarized by the normalized expression score (NES).
Frontiers in Immunology | www.frontiersin.org April 2021 | Volume 12 | Article 6514756
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Functional analyses revealed a striking similarity with the
differential methylation results, where genes associated with
antigen presentation by MHC class II as well as the NGF/TrkA
MAPK pathways were overexpressed (Figure 3D and Table S5).

Transcripts Associated With Differentially
Methylated and Expressed Genes Display
Concordant Expression and Identify Nodal
Points for Key Interactions
Having observed pathway-concordant differences in DNA
methylation and gene expression, we were interested in
identifying specific genes that were both differentially
methylated and expressed. Although DNA methylation has
Frontiers in Immunology | www.frontiersin.org 7
traditionally been associated with gene-level expression,
emerging evidence shows that it also regulates alternative
splicing (49–51). Therefore, we complemented our Differential
Gene Expression (DGE) analysis, which masks transcript-level
dynamics, with Gene Differential Expression (GDE) analysis,
which identifies genes that display transcript-level differences, by
combining the p-values of individual transcripts associated with
a single gene (36). We identified 290 genes that displayed
perturbations in the expression of their transcripts (GDEs;
Table S6). Combining the GDEs with the DMRs yielded 97
unique DMRs associated with 59 unique genes, which we termed
Genes Differentially Expressed and Methylated (GDEMs)
(Figures 4A, B). We observed that most transcripts, those
A B

D

C

FIGURE 3 | SJC66high versus SJC66low differential expression analysis. (A) Volcano plots depicting the -log10(p-value) on the y-axis relative to the difference in log2
fold change when comparing the SJC66high with SJC66low samples on the x-axis. Colours represent the non-significant genes (orange), the significant genes (blue)
and the significant genes with a log2 fold change of larger than 1 (green; “sig. interesting”). Statistical significance is further depicted by a dashed horizontal line.
Mean and standard error bars superposed onto a jitterplot for the two most differentially expressed genes (B) CCL13 and (C) CLEC10A. (D) The 10 most enriched
MetaCore gene sets associated to the DGEs. Tick marks represent gene ranks relative to the direction of the expression effect and are summarized by the
normalized expression score (NES).
April 2021 | Volume 12 | Article 651475
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associated with 52 GDEMs, were concordantly differentially
expressed. Transcripts of the remaining 7 GDEMs were found
to display opposite directions of expression, namely Cytohesin 1
(CYTH1), Eukaryotic Translation Initiation Factor 4 Gamma 1
(EIF4G1), a putative monooxygenase (KIAA1191), Kinesin Light
Chain 1 (KLC1), Cell Division Cycle 16 (CDC16), Fas-Activated
Serine/Threonine Kinase (FASTK) and G protein coupled
receptor 132 (GPR132; Figure 4B). Investigation of the
methylation status of the gene overlaid onto the transcript
location indicated that the observed DMRs for KIAA1191,
Frontiers in Immunology | www.frontiersin.org 8
KLC1, CDC16, FASTK and GPR132 were located in the
promoter shared by most transcripts (Figure 4C). The
mechanisms that could cause opposite direction of expression
in these genes are currently unclear although studies in
Arabidopsis have identified a methylation reader complex that
can enhance rather than suppress gene transcription in the
presence of methylation (52). Our work therefore supports the
rationale for further validation and mechanistic studies.

Functionally, we observed that the 59 GDEMs were primarily
over-represented for immune response-associated pathways,
A C

B

FIGURE 4 | Differential methylation and alternative splicing. (A) Comparison of the -log10(p-values) obtained from gene differential expression analysis and differential
methylation analysis on the x- and y-axis, respectively. Grey, green, blue and purple represent the genes: unchanged for methylation and gene expression (“NS”),
differentially expressed (“GDE”), differentially methylated (“DMR”), differentially methylated and expressed (“GDEM”), respectively. (B) Visualization of the Wald statistic
(a statistic calculated by DESeq2 representing the effect size relative to the variance) calculated for the individual transcripts (represented in dots) associated with
each of the GDEMs. Grey and blue dots represent non-significant and significantly differentially expressed transcripts, respectively. Large red circles left of the gene
symbols indicate genes with transcripts that display opposite effect sizes. (C) Summary visualization of the DNA methylation and gene expression signals for GDEMs:
CYTH1, EIF4G11, KIAA1191, KLC1, CDC18, FASTK and GPR132. The “Transcripts” track represents individual transcripts coloured by the Wald statistic. Stars in
red indicate differentially expressed transcripts. The “Mdifference” track represents the difference in percentage methylation when comparing SJC66high with SJC66low.
The “DMR” track represents the locations of the DMRs as found by dmrseq.
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specifically T-lymphocyte associated pathways (Figure 5A). We
interrogated which of the GDEMs encoded known interaction
partners by querying the STRING database for documented
interactions (48). Almost half (46%) of the GDEMs encoded
for interacting proteins with the most connected GDEMs being
ITGB2 (11 interactions) and LCP2 (9 interactions) (Figure 5C).
Both ITGB2 and LCP2 were differentially methylated at multiple
locations, with the largest visible differences occurring within the
TSS and downstream thereof (Figures 5D, E). Transcript-wise,
ITGB2-transcripts ENST00000498666 and ENST00000397852 as
Frontiers in Immunology | www.frontiersin.org 9
well as LCP2 transcript ENST00000046794 were most
differentially expressed. Expression Quantitative Trait
Methylation (eQTM) analyses confirmed strong inverse
correlations between the differences in methylation in the
promoter regions of ITGB2 (21:44918461-44921815) and LCP2
(5:170295513-170298924) with transcripts ENST00000498666
(r = -0.9; p-value = 1E-04) and ENST00000046794 (r = -0.9;
p-value = 1E-04), respectively (Table 1). While the association
between the ITGB2 promoter DMR and ENST00000397852
expression was non-significant (p-value = 0.2353), the correlation
A

B

D

C

E

FIGURE 5 | Functional analyses GDEMs. (A) The 10 most overrepresented MetaCore gene sets found for the GDEMs depicting the ratio of pathway-associated
GDEMs relative to the total number of pathway-associated genes. The size and colour intensity are proportional to the number of pathway-associated GDEMs and
the -log10(adjusted p-values), respectively. (B) GDEMs were analysed for known interactions by querying the STRING database. Represented here is the protein-
protein interaction network, where the thickness of the edge is proportional to the STRINGdb evidence score and the colour proportional to the Wald statistic,
respectively. (C) Bargraph representing the number of interactions per protein. Summary visualization of the DNA methylation and gene expression signals for
GDEMs: (D) LCP2, (E) ITGB2. The “Transcripts” track represents individual transcripts coloured by the Wald statistic. The “Mdifference” track represents the difference
in percentage methylation when comparing SJC66high with SJC66low. The “DMR” track represents the locations of the DMRs as found by dmrseq.
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TABLE 1 | Differentially methylated and expressed genes.

Gene GDEp-value DMR DMRstat DMRp-value EnsT DTEp-value eQTMr eQTMp-value

ENSG00000233110 2.53E-04 4:185586913-185587794 -9.94 2.78E-04 ENST00000411847.1 2.53E-04 0.88 [0.74;0.95] 2.54E-02
CD74 2.00E-04 5:150410549-150413278 -9.48 3.59E-04 ENST00000009530.11 1.77E-02 -0.88 [-0.96;-0.7] 1.00E-04
CD74 2.00E-04 5:150410549-150413278 -9.48 3.59E-04 ENST00000518797.5 1.23E-02 -0.9 [-0.96;-0.76] 1.00E-04
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000637439.1 5.06E-03 -0.92 [-0.96;-0.78] 1.00E-04
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000637439.1 5.06E-03 -0.92 [-0.96;-0.78] 1.00E-04
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000575513.1 8.19E-04 -0.88 [-0.96;-0.66] 8.10E-03
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000575513.1 8.19E-04 -0.88 [-0.96;-0.66] 8.10E-03
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000572665.1 6.67E-03 -0.86 [-0.94;-0.62] 8.80E-03
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000572665.1 6.67E-03 -0.86 [-0.94;-0.62] 8.80E-03
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000576601.1 3.12E-02 -0.89 [-0.96;-0.67] 2.51E-02
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000576601.1 3.12E-02 -0.89 [-0.96;-0.67] 2.51E-02
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000381835.9 2.59E-02 -0.86 [-0.95;-0.52] 4.06E-02
CIITA 2.93E-10 16:10877103-10878257 -10.23 2.47E-04 ENST00000381835.9 2.59E-02 -0.86 [-0.95;-0.52] 4.06E-02
CMAHP 1.89E-04 6:25232404-25233193 10.46 2.24E-04 ENST00000377993.8 2.12E-04 -0.7 [-0.87;-0.25] 1.00E-04
CMAHP 1.89E-04 6:25232404-25233193 10.46 2.24E-04 ENST00000493257.5 2.08E-02 -0.68 [-0.84;-0.28] 1.00E-04
COL6A1 1.18E-06 21:45978416-45978817 8.14 8.44E-04 ENST00000361866.7 8.83E-08 0.58 [0.07;0.8] 2.20E-03
COL6A1 1.18E-06 21:45983116-45984355 15.46 2.00E-05 ENST00000361866.7 8.83E-08 0.45 [-0.19;0.78] 1.80E-03
CYTH1 1.53E-04 17:78716750-78718002 12.83 7.40E-05 ENST00000589296.5 8.32E-04 -0.42 [-0.78;0.23] 4.12E-02
EIF4G1 4.11E-07 3:184319325-184320192 7.83 1.09E-03 ENST00000342981.8 2.97E-02 0.32 [-0.28;0.72] 1.00E-04
EIF4G1 4.11E-07 3:184319325-184320192 7.83 1.09E-03 ENST00000342981.8 2.97E-02 0.32 [-0.28;0.72] 1.00E-04
EIF4G1 4.11E-07 3:184319325-184320192 7.83 1.09E-03 ENST00000346169.6 3.07E-04 0.68 [0.28;0.9] 1.00E-04
EIF4G1 4.11E-07 3:184319325-184320192 7.83 1.09E-03 ENST00000346169.6 3.07E-04 0.68 [0.28;0.9] 1.00E-04
EIF4G1 4.11E-07 3:184319325-184320192 7.83 1.09E-03 ENST00000411531.5 1.71E-02 0.7 [0.33;0.9] 1.00E-04
EIF4G1 4.11E-07 3:184319325-184320192 7.83 1.09E-03 ENST00000411531.5 1.71E-02 0.7 [0.33;0.9] 1.00E-04
EIF4G1 4.11E-07 3:184319325-184320192 7.83 1.09E-03 ENST00000435046.6 1.78E-06 0.53 [-0.05;0.8] 1.00E-04
EIF4G1 4.11E-07 3:184319325-184320192 7.83 1.09E-03 ENST00000435046.6 1.78E-06 0.53 [-0.05;0.8] 1.00E-04
EVL 2.46E-05 14:100132409-100133139 9.08 4.52E-04 ENST00000556921.1 3.54E-02 0.89 [0.73;0.97] 3.04E-02
FASTK 1.23E-06 7:151081348-151082120 11.88 1.10E-04 ENST00000460980.5 2.32E-03 -0.21 [-0.76;0.52] 1.00E-04
FMN1 1.83E-04 15:33154437-33154950 -7.96 9.88E-04 ENST00000320930.7 2.49E-02 -0.82 [-0.94;-0.59] 1.26E-02
GPR132 3.80E-05 14:105055190-105056414 9.09 4.48E-04 ENST00000329797.7 6.12E-03 0.9 [0.62;0.99] 1.00E-04
GPR132 3.80E-05 14:105063870-105066425 -11.52 1.36E-04 ENST00000549990.1 2.60E-02 -0.38 [-0.72;0.44] 3.57E-02
IKZF1 6.58E-06 7:50305276-50312367 -11.26 1.55E-04 ENST00000471793.1 1.04E-02 -0.8 [-0.92;-0.33] 1.00E-04
IKZF1 6.58E-06 7:50305276-50312367 -11.26 1.55E-04 ENST00000492119.1 3.29E-02 -0.88 [-0.94;-0.7] 1.00E-04
IKZF1 6.58E-06 7:50305276-50312367 -11.26 1.55E-04 ENST00000413698.5 1.30E-02 -0.9 [-0.95;-0.72] 2.55E-02
IL4I1 2.32E-04 19:49895253-49897628 -7.97 9.82E-04 ENST00000391826.6 2.32E-04 -0.96 [-0.98;-0.74] 1.00E-04
ITGB2 7.75E-05 21:44898213-44900097 8.96 4.89E-04 ENST00000498666.5 5.07E-03 0.91 [0.67;0.98] 1.00E-04
ITGB2 7.75E-05 21:44911555-44912533 -11.65 1.24E-04 ENST00000397852.5 5.15E-03 -0.94 [-0.98;-0.72] 1.00E-04
ITGB2 7.75E-05 21:44911555-44912533 -11.65 1.24E-04 ENST00000498666.5 5.07E-03 -0.93 [-0.98;-0.81] 2.00E-03
ITGB2 7.75E-05 21:44911555-44912533 -11.65 1.24E-04 ENST00000522688.5 3.04E-02 -0.9 [-0.97;-0.63] 3.80E-03
ITGB2 7.75E-05 21:44911555-44912533 -11.65 1.24E-04 ENST00000320216.10 6.78E-03 -0.79 [-0.93;-0.57] 4.08E-02
ITGB2 7.75E-05 21:44911555-44912533 -11.65 1.24E-04 ENST00000302347.9 4.31E-02 -0.9 [-0.97;-0.62] 4.71E-02
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000397852.5 5.15E-03 -0.96 [-0.98;-0.88] 1.00E-04
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000397852.5 5.15E-03 -0.96 [-0.98;-0.88] 1.00E-04
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000498666.5 5.07E-03 -0.92 [-0.98;-0.79] 1.14E-02
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000498666.5 5.07E-03 -0.92 [-0.98;-0.79] 1.14E-02
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000302347.9 4.31E-02 -0.92 [-0.97;-0.72] 2.00E-02
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000302347.9 4.31E-02 -0.92 [-0.97;-0.72] 2.00E-02
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000522688.5 3.04E-02 -0.87 [-0.96;-0.61] 3.08E-02
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000522688.5 3.04E-02 -0.87 [-0.96;-0.61] 3.08E-02
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000320216.10 6.78E-03 -0.79 [-0.95;-0.45] 3.97E-02
ITGB2 7.75E-05 21:44913899-44915246 -12.34 9.60E-05 ENST00000320216.10 6.78E-03 -0.79 [-0.95;-0.45] 3.97E-02
ITGB2 7.75E-05 21:44918461-44921815 -18.22 9.00E-06 ENST00000498666.5 5.07E-03 -0.9 [-0.98;-0.55] 1.00E-04
ITGB2 7.75E-05 21:44918461-44921815 -18.22 9.00E-06 ENST00000498666.5 5.07E-03 -0.9 [-0.98;-0.55] 1.00E-04
ITGB2 7.75E-05 21:44918461-44921815 -18.22 9.00E-06 ENST00000320216.10 6.78E-03 -0.85 [-0.93;-0.69] 3.35E-02
ITGB2 7.75E-05 21:44918461-44921815 -18.22 9.00E-06 ENST00000320216.10 6.78E-03 -0.85 [-0.93;-0.69] 3.35E-02
KLC1 7.08E-05 14:103696092-103697307 8.07 9.05E-04 ENST00000246489.11 1.93E-08 0.62 [0.28;0.84] 2.73E-02
LAIR1 6.55E-07 19:54375122-54375966 -8.84 5.29E-04 ENST00000440716.5 9.38E-03 -0.93 [-0.98;-0.73] 3.80E-03
LCP2 1.90E-08 5:170295513-170298924 -13.19 6.10E-05 ENST00000046794.9 1.23E-03 -0.9 [-0.97;-0.66] 1.00E-04
LCP2 1.90E-08 5:170295513-170298924 -13.19 6.10E-05 ENST00000519149.1 8.96E-03 -0.82 [-0.9;-0.62] 1.00E-04
LCP2 1.90E-08 5:170295513-170298924 -13.19 6.10E-05 ENST00000628092.2 6.87E-03 -0.92 [-0.97;-0.74] 1.00E-04
LCP2 1.90E-08 5:170295513-170298924 -13.19 6.10E-05 ENST00000519594.5 2.89E-02 -0.87 [-0.93;-0.72] 3.70E-03
LCP2 1.90E-08 5:170295513-170298924 -13.19 6.10E-05 ENST00000522760.5 7.55E-03 -0.93 [-0.97;-0.8] 8.10E-03
OSM 4.92E-04 22:30266011-30268071 -13.63 5.10E-05 ENST00000215781.2 3.59E-04 -0.68 [-0.95;-0.13] 1.00E-04
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coefficient remained high (r = -0.87) (Table S7). Nonetheless, given
the centrality of ITGB2 and LCP2 among the GDEMs would make
them interesting candidates in future targeted studies.

Estimated Cellular Composition Suggests
Lower Proportion of Neuronal Cells in
SJC66high
Systematic differences in DNA methylation and gene expression
could reflect changes in the cellular composition. To this end, we
estimated the cellular composition using the transcriptome data
as input for xCell, which is capable of estimating enrichment
scores of 64 immune and stromal cell types (47). By comparing
the estimated proportions from SJC66high with SJC66low we
identified significant differences for 6 cell types: neurons,
dendritic cells (DCs: all, conventional and immature),
megakaryocytes and platelets (Figure 6 and Table S8).
Expectedly, higher enrichment scores for DCs (all subtypes)
and platelets were estimated for the SJC66high samples. By
contrast, lower proportions of neuron and megakaryocyte
signatures were observed for the SJC66high samples. Notably,
the difference in neuronal enrichment was found to be the most
statistically significant with an almost fourfold difference when
comparing SJC66high with SJC66low.
DISCUSSION

In this study, we highlight insights into RA progression by
combining the outputs of parallel whole-genome DNA
methylome and transcriptome analyses on extracted
preparations of synovial biopsies, from auto-antibody positive
individuals, early arthritis patients and patients with established
RA, stratified by the number of swollen joints. We observed that
synovia from patients with a higher number of swollen joints
(SJC66 ≥ 9) were different at the level of DNA methylation and
Frontiers in Immunology | www.frontiersin.org 11
gene expression from synovia from patients with a lower number
of swollen joints. Specifically comparing SJC66high with SJC66low
revealed 3536 DMRs and 142 DGEs, with both datasets primarily
enriched for pathways associated with immune responses. The
most significant difference in methylation was found spanning
the promoter regions of MIRLET7B and MIR10B. Interestingly,
mouse miR-let-7b has been shown to provoke arthritic joint
inflammation by remodeling naïve myeloid cells into M1
macrophages via TLR-7 ligation (53) and can augment disease
severity (54). MIR10B has been shown to regulate Th17 cells in
patients with ankylosing spondylitis (55) but no studies have
specifically associated it with RA. At the level of transcription,
CCL13 and CLEC10A were found to be the most differentially
expressed. CCL13 (MCP-4) is an extensively studied chemokine
that is thought to be involved with RA pathogenesis and disease
progression (56–58). By contrast, not much is known about the
role of CLEC10A in RA besides it being highly expressed on
immature dendritic cells (DCs), monocyte-derived DCs and
alternatively activated macrophages (59), as well as having
been observed in the inflamed synovium of patients with active
RA (60). Chemokines CCL13, CCL8, CXCL11, CXCL10, and
CXCL9 regulate the recruitment of leukocytes into tissue and
have therefore been implicated in the pathogenesis of RA (61).
Differential methylation was observed in the vicinity of the
promoter for CCL13, CXCL11, and CXCL9. Such results
support a role for epigenetic/transcriptional processes in the
spread of pathology to additional joints. While definitive
mechanisms of joint spreading remain elusive, possible roles
for immune cell migration due to chemokine expression (62, 63)
could be further evaluated based on our data.

Altogether, we observed that 3% of DMRs associate with 20%
of the differentially expressed GDEs. It is not surprising that not
all DMRs could be linked to genes as a large number are found in
distal intergenic (18.6%) or intronic (28.3%) regions, making any
functional inference challenging. Of the genes that presented
TABLE 1 | Continued

Gene GDEp-value DMR DMRstat DMRp-value EnsT DTEp-value eQTMr eQTMp-value

OSM 4.92E-04 22:30266011-30268071 -13.63 5.10E-05 ENST00000215781.2 3.59E-04 -0.68 [-0.95;-0.13] 1.00E-04
PPP6R1 5.34E-04 19:55251330-55251959 -11.33 1.51E-04 ENST00000592242.1 4.83E-02 -0.86 [-0.94;-0.6] 4.22E-02
PPP6R1 5.34E-04 19:55251330-55251959 -11.33 1.51E-04 ENST00000412770.6 2.83E-03 -0.88 [-0.96;-0.6] 4.54E-02
RASSF4 4.87E-05 10:44977022-44977811 11 1.76E-04 ENST00000489171.5 3.42E-02 0.93 [0.76;0.98] 1.00E-04
RPS6KA4 3.11E-04 11:64359911-64360661 -10.55 2.11E-04 ENST00000334205.8 1.51E-03 -0.7 [-0.86;-0.43] 1.00E-04
RPS6KA4 3.11E-04 11:64359911-64360661 -10.55 2.11E-04 ENST00000334205.8 1.51E-03 -0.7 [-0.86;-0.43] 1.00E-04
SH3TC1 3.47E-04 4:8240533-8241022 -7.96 9.85E-04 ENST00000507891.1 6.46E-05 -0.7 [-0.83;-0.17] 1.64E-02
TMC6 6.31E-05 17:78126612-78127570 -9.6 3.35E-04 ENST00000590602.5 3.31E-02 -0.92 [-0.98;-0.82] 3.02E-02
TMC6 6.31E-05 17:78126612-78127570 -9.6 3.35E-04 ENST00000590602.5 3.31E-02 -0.92 [-0.98;-0.82] 3.02E-02
TMC6 6.31E-05 17:78126612-78127570 -9.6 3.35E-04 ENST00000591436.5 1.21E-02 -0.81 [-0.91;-0.64] 3.78E-02
TMC6 6.31E-05 17:78126612-78127570 -9.6 3.35E-04 ENST00000591436.5 1.21E-02 -0.81 [-0.91;-0.64] 3.78E-02
TMC6 6.31E-05 17:78126612-78127570 -9.6 3.35E-04 ENST00000593044.5 1.28E-02 -0.85 [-0.93;-0.67] 4.06E-02
TMC6 6.31E-05 17:78126612-78127570 -9.6 3.35E-04 ENST00000593044.5 1.28E-02 -0.85 [-0.93;-0.67] 4.06E-02
UCP2 7.66E-10 11:73979728-73982457 -9.4 3.75E-04 ENST00000545562.2 3.59E-02 -0.67 [-0.83;-0.46] 1.33E-02
UCP2 7.66E-10 11:73979728-73982457 -9.4 3.75E-04 ENST00000545562.2 3.59E-02 -0.67 [-0.83;-0.46] 1.33E-02
VAC14 2.54E-04 16:70691109-70693047 11.18 1.56E-04 ENST00000261776.9 4.82E-03 0.88 [0.55;0.96] 2.74E-02
VAC14 2.54E-04 16:70746190-70746702 9.13 4.36E-04 ENST00000261776.9 4.82E-03 0.87 [0.71;0.94] 3.48E-02
April 2
021 | Volume 12 | A
Expression quantitative trait methylation (eQTM) analysis of the GDEMs representing the correlation between methylation and transcript expression. Key in table legend: Gene = HGNC
gene symbol, DMR = co-ordinates of the DMR (GRCh38), DMRp-value = p-value associated to the differential methylation analysis, EnsT = Ensembl transcript ID, DTEp-value = p-value
associated to the differential transcript expression analysis, eQTMr = Pearson correlation coefficient for the methylation-expression correlation and the 95% confidence intervals, eQTMp-

value = p-value associated to the methylation-expression correlation. An extended parsable table including the full eQTM analysis for all GDEMs can be found in Table S6.
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both differentially expression and methylation, protein-protein
interaction networks indicated that half encoded for interacting
proteins, suggesting that the observed GDEMs function together.
The most interconnected GDEMs appeared to be ITGB2 and
LCP2, with multiple regions of differential methylation observed
surrounding both genes. While we observed transcript
differential expression, most transcripts belonging to ITGB2
and LCP2 behaved similarly and all displayed reasonably
strong inverse correlations with the DMRs located in the
promoter area. ITGB2 encodes an integrin, which would
typically be involved in cell-surface mediated signalling. We
observed that the gene encoding ITGB2’s interaction partner
integrin alpha L (ITGAL) was also differentially methylated and
expressed. ITGB2 and ITGAL together form lymphocyte
function-associated antigen (LFA-1), which interacts with
intracellular adhesion molecule 1 (ICAM-1 or CD54) resulting
in an enhanced immune cell influx into the synovial tissue (64,
65). Inhibiting LFA-1 has been reported to reduce inflammation
and joint destruction in murine models of arthritis (66).

Functionally, the 59 GDEMs were primarily over-represented
for immune response-associated pathways, specifically T-
lymphocyte associated ones. It would be fascinating to
understand why the DNA methylome and transcriptome
between patients with a SJC66 of 9 and above relative to
patients with a SJC66 of 8 present with such a sudden split
instead of a gradual difference. It is clear that inflammation is
likely an important factor contributing to the observed
differences as patients with a high SJC66 also generally present
higher levels of inflammation as expressed through using
erythrocyte sedimentation rate (ESR) or concentration
Frontiers in Immunology | www.frontiersin.org 12
C-reactive protein (CRP). Our transcriptomic data indeed
suggested an increased proportion of immune cells among
SJC66high samples, as would be expected while pathology
develops and cells migrate into the affected joints. Previous
work has shown that clinically manifest arthritis in established
RA is associated with increased infiltration of leukocytes. In
synovial tissue samples from clinically involved joints, scores for
infiltration by DCs are consistently higher than in clinically
uninvolved joints obtained simultaneously from the same RA
patients (67). Importantly, when comparing different clinically
inflamed joints from the same RA patient simultaneously,
leukocyte infiltration in one inflamed joint was shown to be
representative of that in other inflamed joints, supporting the
notion that leukocytes migrate from one joint to another (68).
Indeed, there is continuous influx of leukocytes into the joints in
established RA (69). We postulate that if synovial leukocytes
exhibit properties that would facilitate cell migration, arthritis
might spread from one inflamed joint to another. The results
presented here support a disease mechanism in which, after
development of clinically established RA, inflammatory and cell
adhesion-associated processes play a key role in the progression
of RA to greater joint involvement (70–72). Interestingly, we also
observed differences of neuronal signatures suggesting a lower
relative enrichment of neurons among SJC66high samples. In
addition, enrichment analyses on the DMRs suggested
hypermethylation of genes encoding nociception receptors,
which are typically associated with peripheral sensory neurons
(73, 74). A similar decrease in neuronal signature has previously
been associated with RA severity, where the authors noted a
potential role in the maladaptive response towards damage (75).
FIGURE 6 | Cellular composition estimation. Cellular proportions were estimated for 64 cell types using the xCell algorithm. Of these, 6 cell types were found to be
significantly different when comparing SJC66high with SJC66low. Visualized as scatter- and cross-bar plots are the significantly differentially represented cell types,
namely the neurons, conventional dendritic cells (cDC), dendritic cells (DC), immature dendritic cells (iDC), megakaryocytes, and platelets.
April 2021 | Volume 12 | Article 651475

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li Yim et al. Differential Methylation and Expression Associated With SJC66
This is consistent with a more general loss of anti-inflammatory
control by the nervous system in RA (76). Important to note is
that our observations are based on estimates made by xCell,
which can only calculate enrichment scores based on signatures
rather than absolute values of cells. We are therefore unable to
discern whether a population increased in size or a different
population had decreased. Ideally, a similar estimate would have
been generated based on the DNA methylation data, but the
currently available reference datasets do not include the cell types
measured available in xCell.

There are two limitations of this study, namely the fact that
sex confounds the separation between SJC66high and SJC66low
and the limited sample size. While we have sought to mitigate the
confounding effect of sex by removing genes and CpGs located
on the allosomes as well as by including sex as a covariate in our
analyses, we acknowledge that we cannot fully eliminate the
possibility that a sex effect is present. Accordingly, validation
studies would be necessary where the DMEGs are verified using a
larger, independent cohort while controlling for an interaction
effect between sex and SJC66. The observed differences in
transcript expression could be validated using a quantitative
PCR approach with primers designed specifically against
particular transcripts. Similarly, for validating the DMRs,
targeted bisulphite-sequencing using primers for the regions of
interest would be a cost-effective approach.

In conclusion, our study constitutes an exploratory analysis
of whole genome DNA methylation and gene expression data
performed on primary synovial tissue material from auto-
antibody positive arthralgia patients without arthritis as well
as patients with early and established RA patients. Where
previous studies investigated cells from patients with RA
versus disease controls and were potentially limited by their
use of cultured cells, we focus on an integrative analysis of
epigenetic marks and alternative splicing associated with
swelling spread, providing novel insights into the mechanisms
of disease progression towards more severe phenotypes.
Nonetheless, further validation is necessary if the identified
target genes are to be used for monitoring or treatment of the
swelling and associated inflammatory processes in the joints of
RA patients.
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