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Cancer cells are under the surveillance of the host immune system. Nevertheless, a number
of immunosuppressive mechanisms allow tumors to escape protective responses and
impose immune tolerance. Epigenetic alterations are central to cancer cell biology and
cancer immune evasion. Accordingly, epigenetic modulating agents (EMAs) are being
exploited as anti-neoplastic and immunomodulatory agents to restore immunological
fitness. By simultaneously acting on cancer cells, e.g. by changing expression of tumor
antigens, immune checkpoints, chemokines or innate defense pathways, and on immune
cells, e.g. by remodeling the tumor stroma or enhancing effector cell functionality, EMAs can
indeedovercomeperipheral tolerance to transformedcells. Therefore, combinationsof EMAs
with chemo- or immunotherapy have become interesting strategies to fight cancer. Here we
review several examples of epigenetic changes critical for immune cell functions and tumor-
immuneevasionandof theuseofEMAs inpromotinganti-tumor immunity. Finally,weprovide
our perspective on how EMAs could represent a game changer for combinatorial therapies
and the clinical management of cancer.

Keywords: epigenetics, cancer, immune evasion, tumor microenvironment, immunotherapy
HIGHLIGHTS

1. Epigenetic mechanisms control the differentiation, function and memory of innate and adaptive
immune cells.

2. Alterations in epigenetic mechanisms play a key role in tumor immune escape.
3. Epigenetic-targeted therapy increases tumor immunogenicity and triggers anti-tumor immunity.
4. Epigenetic-targeted therapy adds significant value to existing cancer immunotherapies,

including vaccination, adoptive T cell therapy and immune checkpoint inhibition.
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INTRODUCTION

Studies on the epigenome and chromatin states of cancer cells
showed several vulnerabilities that can be exploited for therapy.
Initial studies however, mostly limited their analysis to cancer
cells, ignoring the tumor microenvironment (TME) in which
cancer cells are embedded. The TME comprises the tumor
stroma, blood and lymphatic vessels, infiltrating inflammatory
cells and a variety of associated tissue cells. The continuous cross
talk of the TME with proliferating tumor cells creates a unique
and heterogeneous environment critical for the growth of the
tumor and response to therapy. It is increasingly appreciated that
epigenetic alterations, which occur both in tumor cells and in
immune cells within the TME (such as CD11b+ myeloid cells,
CD4+ and CD8+ lymphoid cells), further increase the complexity
within tumor tissue and represent major determinants of cancer
cell growth, immune evasion and drug resistance (1, 2). This
knowledge has instigated research into the use of epigenetic
modulating agents (EMAs) to manipulate both the tumor and
the TME, and as such induce tumor regression.

Epigenetics is an umbrella term given to all the processes that
mediate changes in gene expression without altering the DNA code
[reviewed in (3)]. The most studied epigenetic mechanisms include
post-translational histone modifications and DNA methylation.

Post-translational histone modifications occur in the N-terminal
regions of histone tails and include methylation, acetylation,
phosphorylation, sumoylation and ubiquitination of lysine,
arginine, serine, threonine and tyrosine residues (4). Of these,
acetylation and methylation of distinct lysine residues of histone
tails have been abundantly studied. Histone acetylation and de-
acetylation in lysine residues are mediated by histone
acetyltransferases (HAT) and histone deacetylases (HDAC),
respectively. Histone acetylation in lysine residues is a marker
associated with active gene transcription, as acetylated histone
tails open up chromatin resulting in recruitment of the
transcriptional machinery (4). Histone methylation or
demethylation of lysine and arginine residues is catalyzed by
histone methyltransferases (HMT) or histone demethylases
(HDM) (4). The outcome of histone methylation on transcription
is dependent on the level of methylation, the modified amino acid
and its position. For example, histone 3 lysine 9 or lysine 27
trimethylation (H3K9me3, H3K27me3, respectively) are
modifications associated with transcriptional repression while
histone 3 lysine 4 trimethylation (H3K4me3) and histone 3 lysine
36 trimethylation (H3K36me3) are markers associated with active
euchromatin and transcriptional elongation, respectively. Moreover,
histone modifications can be specifically found in certain genomic
regions. For instance, H3K4me3 is most commonly associated with
promoter regions, while H3K4me1 is a marker for enhancers.
H3K27ac serves as an activation marker of both promoters and
enhancers (5). Equally important are enzymes that recognize or
read these histone modifications. Proteins that contain
bromodomains or chromodomains recognize these methylated or
acetylated residues, respectively. These proteins are recruited to
histones and facilitate the formation of protein complexes involved
in DNA replication and repair, gene expression and genome
integrity (4). Of note, many of the enzymes responsible for
Frontiers in Immunology | www.frontiersin.org 2
histone post-translational modifications also modify non-histone
proteins, thereby influencing their activation, protein-binding
properties, degradation and stability (6).

DNAmethylation entails the addition of a methyl group (CH3)
on cytosine (5mC) in CpG dinucleotides. DNAmethyltransferases
(DNMT) 3A and 3B mediate de novo DNA methylation, while
DNMT1 maintains existing DNA methylation patterns. Passive
DNA demethylation occurs when DNMT1 does not methylate
cytosine residues during replication. Active demethylation of
DNA is catalyzed by Ten-Eleven-Translocation enzymes TET1,
TET2 and TET3, which convert DNA methylated cytosine into
hydroxymethylcytosine, formylcytosine and carboxycytosine after
which the modified cytosine is removed through base-excision
repair and changed into non-methylated cytosine. CpG
methylation is found in genomic repetitive elements that
contribute to genome stability. Moreover, DNA methylation
induces gene silencing of neighboring genes when densely
clustered CpGs or “CpG islands” located in promoter or
enhancer regions are hypermethylated. DNA methylation of
gene bodies and transposable element also represent a level of
regulation of gene expression and splicing, although additional
studies are currently needed to better elucidate their functional
contribution (7).

Specific epigenetic modulating agents (EMA) have been
identified and tested for their anti-tumor effect, or their ability to
improve sensitivity of tumor cells to radio-, chemo- and even
immunotherapy. The first generation of EMAs mainly targeted
one specific class of epigenetic enzymes, such as DNMT inhibitors
(e.g. Azacytidine and Decitabine) and HDAC inhibitors (e.g.
Vorinostat and Panobinostat). However, epigenetic processes and
their effect on gene regulation are the result of a coordinated
interaction between different epigenetic alterations. For this
reason, combined inhibition of, e.g., DNMTs and HDACs has
been studied in several different cancer models with profound
immune-related effects (8–11). As a more innovative approach, a
novel class of compounds with dual inhibitory activity is gaining
considerable attention. For example, the HMT/DNMT1 dual
inhibitor CM-272 targets the HMT G9a and DNMT1, and has
proven concomitant anti-neoplastic effects and immunomodulation
(12, 13). In the first chapter, we review some of the epigenetic events
critical to the behavior of several immune cell types in the context of
cancer (Supplementary Table S1). In the last two chapters, we
review recentfindings in the exploitationof EMAs (i) to boost tumor
immunogenicity and (ii) in immunotherapeutic strategies.
THE IMMUNE CELL EPIGENOME IN THE
CANCER MICROENVIRONMENT

In cancer, the equilibrium between lymphoid and myeloid cell
responses is often perturbed. The increase in immature or
dysfunctional myeloid cells is accompanied by a reciprocal
decline in the quantity and/or quality of the lymphoid
response. Characteristic myeloid cell populations are tumor
associated macrophages (TAM), tumor associated dendritic
cells (TADC) and immature myeloid derived suppressor cells
March 2021 | Volume 12 | Article 652160
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(MDSC). These govern the efficacy of CD8+ cytotoxic T
lymphocytes (CTL), mostly hindering their tumor cell killing
activity. Given their importance in the TME, we have reviewed
their epigenetic regulation and discussed the implications thereof
in the context of cancer with the aim of understanding which
epigenetic targets in immune cells could represent suitable
targets to promote anti-tumor immunity.

The Epigenome of TAM
TAM are abundantly present in many cancer types, representing a
diverse population of mixed ontogeny, derived frommonocytes or
embryonic precursors, with opposed polarization states (14).
Classically activated and alternatively activated TAM, also
referred to as M1 and M2 TAM respectively, represent two
extremes of a dynamic changing state of macrophage polarization
(15). While M1 TAM promote a pro-inflammatory environment
and protective T helper (TH) 1 and CTL responses, M2 TAM favor
TH2 polarization, tumor progression and dissemination. M2 TAM
can suppress anti-tumor immune responses, promote tumor
angiogenesis and enable cancer cells to disseminate at distant sites
where they can support cancer cell survival and growth into
metastatic lesions (16). In addition, M2 TAM have been shown to
counteract the anti-tumor effects of chemotherapy, radiation
therapy, targeted therapy, and immunotherapy, as extensively
reviewed elsewhere (17).

Understanding the epigenetic modifications responsible for
M1 versus M2 polarization in the TME is critical to instruct the
use of EMAs to offset the tumor promoting effects of M2 TAM.
With this aim in mind, in the following paragraph, we have
discussed epigenetic modifications linked to TAM polarization
(Figure 1).

Histone (de)methylation
HMT, such as protein arginine N-methyltransferase 1 (PRMT1)
and MYND domain containing 3 (SMYD3), have been described
to favor M2 polarization and, as such, represent targets to inhibit
accumulation of tumor-promoting TAM (18–24). PRMT1 was
shown to be responsible for histone 4 arginine 3 methylation
(H4R3me) in the promoter of peroxisome proliferator activated
receptor-g (Pparg), reducing Pparg expression in interleukin 4
(IL4) stimulated mouse macrophages, thereby promoting M2
polarization (18). Accordingly, the PRMT1 inhibitor, AMI-1,
reduced IL4-induced Pparg expression in mouse macrophages
(18), abrogated the ability of THP1macrophages to ingest apoptotic
bodies, and reduced M2 polarization in alcohol-induced
hepatocellular carcinoma (20). Moreover, PRMT1 was shown to
negatively regulateM1 polarization in interferon g (IFNg) stimulated
RAW264.7 cells by repressing class II major histocompatibility
complex transactivator (CIITA) (19), further suggesting that
PRMT1 inhibition favors an anti-tumoral M1/M2 ratio. The
expression of the H3K4 methyltransferase SMYD3 was induced in
human macrophages exposed to IL4, resulting in transcriptional
activation of ALOX15, a lipoxygenase M2 marker (21). Also, the
H3K9me2 HMT G9a (or EHMT2), has been implicated in
macrophages tolerization, leading to unresponsiveness to M1
polarizing stimuli like lipopolysaccharide (LPS) (25).
Mechanistically, G9a interacts with several transcription factors,
Frontiers in Immunology | www.frontiersin.org 3
among which ATF7 and NF-kB family members, resulting in G9a
recruitment to specific loci to deposit H3K9me2, leading to
repression of inflammatory gene expression (25–27).

Concerning HDM, evidence is in place that KDM6B (jumonji
D3 [JMJD3]) is a gate keeper of macrophage polarization. KDM6B
was shown to be responsible for expression of typical M2 markers,
like interferon regulatory factor 4 (IRF4), arginase-1 (Arg-1), and
CD206, in mouse macrophages stimulated with IL4 and/or IL13
(22, 24). Also, KDM6B was shown to positively regulate pro-
inflammatory genes in LPS-stimulated mouse macrophages
independent of its demethylation activity (23). Accordingly,
inhibition of KDM6B by GSK-J4 molecule, reduced both CD206
expression in IL4-stimulated human macrophages and repressed
M1 inflammatory cytokines (e.g. tumor-necrosis factor alpha
[TNFa]) in LPS- or IFNg-stimulated human macrophages (28,
29). To date, it remains to be determined whether targeting
KDM6B or H3K27 methylation level represent a valuable
therapeutic opportunity. Likewise, the H3K9 HDM KDM3A,
has also been shown to impact on the epigenetic status of
macrophages (30). Hypoxia-dependent inhibition of KDM3A
and the resulted increase the level of the H3K9me2/3 repressive
histone mark in the promoter regions of C-C motif chemokine
ligand 2 (Ccl2), C-C motif chemokine receptor 1 (Ccr1), and Ccr5
hindered their expression in mouse macrophages and RAW264.7
cells (30). Likewise, in HeLa and A673 xenografts, KDM3A
expression is induced by hypoxia and nutrient starvation.
Hence, siRNA mediated KDM3A inhibition resulting in anti-
tumor activity, best explained by reduced infiltration of CD11b+

macrophages and angiogenesis (31). As TAM in hypoxic regions
mainly exhibit an M2 polarization state (32), it is tempting to
speculate that hypoxia and KDM3A control macrophage function
at various levels.

Histone (de)acetylation
Histone lysine (de)acetylation also regulates macrophage
polarization, albeit with somewhat contradictory evidence. Virus-
induced type I IFN gene induction in macrophages requires a
transition from a HDAC containing repressor complex to a HAT
(CBP/p300) containing activation complex (33). However,
inhibiting HAT with Anacardic Acid induced phagocytosis,
migration and secretion of nitric oxide, IL6 and TNFa in primary
peritoneal macrophages (34). Thus, further studies are needed to
elucidate the role of HAT in controlling macrophage responses.
Moreover, histone deacetylationor augmented expression of class I,
II and IVHDACmay be associated with a favorable balance ofM1
over M2 macrophages in the TME as several studies showed that
HDAC2, 3, 4, 9 and11areneeded for inflammatory geneexpression
and prevention of M2 polarization (35–38). However, the pan-
HDAC inhibitor Vorinostat inhibited TAM infiltration in estrogen
receptornegativePyMTmammary tumors, therebydelaying tumor
growth (39, 40), and inhibited tobacco smoke-related increase of
F4/80+ Arg-1+ M2-like macrophages in a murine KRAS-driven
pancreatic cancermodel (39, 40). Thus histonemodifying enzymes
play a complex role in macrophage biology and suggest that rather
than pan-HDAC inhibitors, more specific targeting prove more
effective. As an example, specific targeting of HDAC1 instructed a
pro-inflammatory macrophage phenotype, while inhibition of
March 2021 | Volume 12 | Article 652160
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HDAC6 inhibited pro-inflammatory signaling and promoted an
anti-inflammatory phenotype (41).

DNA (de)methylation
With respect to DNA methylation, experiments using RAW264.7
and mouse macrophages suggested a role for DNMT3B as a
gatekeeper of macrophage differentiation (42). Indeed, knock-
down of DNMT3B resulted in M2 polarization and M2 markers
induction independently of IL4, while repressing LPS-induced
TNFa secretion and CCL2-dependent migration (42). Cheng
et al. instead identified a role for DNMT1 in macrophage
polarization. These authors showed that DNMT1 stimulates
release of pro-inflammatory cytokines through DNA
hypermethylation and reduction of expression of SOCS1, a
negative regulation of the JAK2/STAT3 pathway (43). However,
the combination of the DNMT1 inhibitor, Azacytidine, with an
Frontiers in Immunology | www.frontiersin.org 4
irreversible inhibitor of polyamine biosynthesis, a-di-
fluoromethylornithine, increased M1 macrophages in the TME of
an ovarian cancer model (44). Thus, to date also DNMT appear to
play pleiotropic functions in TAM biology.

Overall, available evidence indicates that EMA would help
skew the M1/M2 ratio in the TME. Pan-HDAC inhibitors have
promising effects, yet testing specific inhibitors, such as HDAC1
inhibitors, might be more interesting. Likewise, PRMT1 and
KMD3A targeting might shift the balance of macrophage
polarization towards M1. Thus, further investigation is needed
to better define the impact of EMA on TAM and their impact on
anti-tumor immunity.

The Epigenome of TADC
Different subsets of dendritic cells (DC) have been described in
mouse and human, and differ in their ontogeny, phenotype and
FIGURE 1 | TAM polarization and its epigenetic regulatory networks. The activity of epigenetic regulators has been correlated to the phenotype and function of
TAM. PRMT1, SMYD3, G9a (HMT) KDM3A (HDM) and HDAC1 promote TAM with an M2-like phenotype (CD206) and function (IL10 and arg-1), while CBP/p300
(HAT), HDAC2, 3, 4, 6, 9, 11 and DNMT1 promote TAM with an M1-like phenotype (MHC-II) and function (IL12, NOS). DNMT3B and KDM6B (HDM) seem to act as
gatekeepers and can in certain conditions promote M1- or M2-like behavior. PRMT1, SMYD3, G9a, KDM3A and HDAC1 represent potential targets to improve
increase the M1/M2 balance. HMT, histone methyltransferase; HDM, histone demethylases; HAT, histone deacetylase; HDAC, histone deacetylases.
March 2021 | Volume 12 | Article 652160
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function as reviewed elsewhere (45, 46). Known subsets include
plasmacytoid DC (pDC), conventional DC (cDC), subdivided in
type 1 (cDC1) and type 2 (cDC2), and monocyte derived DC
(moDC). DC can induce adaptive immune responses to foreign
antigens, including tumor antigens (47). However, cues in the
TME can abrogate functional differentiation and activation of
TADC and as such undermine stimulation of anti-tumor T cell
immune responses (48). cDC1 and cDC2 develop from
committed bone marrow progenitor cells as two functionally
distinct subsets; XCR1+ IRF8+ cDC1 and CD11b+ IRF4+ cDC2
(49). In both mice and humans, cDC1 express high levels of the
chemokine receptor XCR1 and the C-type lectin endocytic
receptor CLEC9A (50), and are reported to stimulate CTL,
natural killer (NK) cells and NKT cells, therefore have an anti-
tumor role (51). This is corroborated by the observation that
enrichment of cDC1 in human tumors is associated with a good
prognosis in several cancer types (51–55). Identifying cDC2 is
more challenging as canonical markers are not yet defined.
Therefore, cDC2 are identified, based on the expression of
CD11b, CD11c, MHC-II, CD172a, and CD47 (SIRPa) (mice) or
CD1c (BDCA-1) (humans) (56). This DC-subset is implicated in
activation of TH17 responses, a TH subset that has been correlated
with good and bad prognoses in cancer (57). Moreover, similar to
moDC, cDC2 exert CTL-suppressive activities (e.g. through L-
arginine metabolism) (58), further implicating cDC2 in tumor
promotion. While pDC are less abundant in tumors and mainly
considered to act as producers of type I IFN upon viral infection,
they should not be disregarded. In mice, pDC are characterized as
CD11clow MHC-II+ B220+ Siglec-H+ cells, while their human
counterparts are characterized as CD123+ CD33- (46, 59). In
contrast to cDC1, however, similar to cDC2, the presence of pDC
is not a positive prognostic factor in several human cancer types
(60–62). Nonetheless, in mouse models of breast cancer, activated
pDC can directly kill tumor cells through TNF-related apoptosis
inducing ligand (TRAIL) and granzyme B (GzmB) as well as they
jumpstart activation of CTL and NK cells (63). Lastly, tumor-
associated moDC are derived from Ly6C+ (mice) or CD14+

(humans) monocytes and are characterized as CD11c+ MHC-II+

F4/80− CD64+ in mice and CD14+, sometimes CD16+ in humans
(64, 65). Ex-vivo derivedMoDChave been shown to serve as potent
anti-tumor vaccines but have also been described as suppressors of
anti-tumor immunity (45, 66).

As in the case of TAM, understanding the epigenetic regulation
of DCs in the context of cancer might instruct the use of EMAs to
rewire the TADC’s anti-tumor properties (Figure 2).

Histone (de)methylation
Several studies underlined the role of epigenetic events in
controlling DC development and function (67, 68). For instance,
bacterial infection was causally linked to an increase in H3K4me1
and H3K27ac and DNA hypomethylation at enhancer regions of
inflammation-related genes (69). Also the induction of a type I IFN
response upon viral infection is regulated by HMTs, in particular
the MLL complex and G9a, although with opposite effects. While
MLL inducedH3K4me3 levels favoring type I IFN gene expression,
G9a induced H3K9me2 deposition and repressed IFNA and IFNB
expression (70, 71). Of interest, G9a inhibition restored expression
Frontiers in Immunology | www.frontiersin.org 5
of Ifna, Ifnb and IFN-stimulated genes (ISGs) in murine bone
marrow-derivedDC (70), supporting the possibility that inhibition
ofG9a could be attempted to promote TADCanti-tumoral activity.
During LPS activation of DCs, the histone demethylases KDM6B
(JMJD3) and KDM4D (JMJD2D) have been shown to erase the
repressive marks H3K27me3 and H3K9me3, thereby upregulating
co-stimulatory and pro-inflammatory genes and stimulating
inflammation. Moreover, inhibition of these enzymes relieved
autoimmune reactions in mice (72, 73). Therefore, intratumoral
activation of KDM6B or KDM4D would be interesting to promote
local DC activity.

Upon TGFb-mediated moDC differentiation, dynamic
changes in active H3K4me3 and repressive H3K27me3 marks,
catalyzed yet to be defined enzymes, take place. This led to
transcriptional upregulation of co‐stimulatory molecules and
cytokines/chemokines, and downregulation of differentiation
markers, respectively (74). In case of pancreatic and colon
cancer, FOXM1 has an immunosuppressive role through
impairment of DC maturation and T cell responses. These
immune suppressive effects are partially restored by targeting
DOTL1 using EPZ004777 molecule, as this results in decreased
histone 3 lysine 79 dimethylation (H3K79me2) in the Foxm1
locus and decreased Foxm1 expression (75), suggesting that
DOTL1 may be an interesting target to improve DC function.

Histone (de)acetylation
Only a few studies have investigated the role of histone lysine
(de)acetylation in DC. For instance, histone lysine acetylation
was reported to regulate the expression of MHC-II and Arg1
during DC differentiation from bone marrow cells (76, 77). Choi
et al. found that GM-CSF increased H3 and H4 lysine acetylation
in the CIITA promoter and increased STAT5 binding during DC
differentiation (76). In the case of pDC, inhibition of HDAC
decreased PU.1 expression and suppressed the recruitment of
PU.1 to FLT3 and IRF8, critical for pDC differentiation (78).

Together, available literature suggest that HDAC have context
dependent roles during DC differentiation and in general
promote DC function (79). In agreement, Panobinostat, a pan-
HDAC inhibitor (HDACi), hindered antigen uptake and
presentation, expression of co-stimulatory proteins and pro-
inflammatory cytokine as well as T cell stimulatory capacity of
DC (80). Thus, HDAC inhibitors might not be suited to improve
DC functions at tumor sites.

DNA (de)methylation
DNA methylation also plays a role in DC function. DNA
demethylation can occur in response to IL4, which is needed
for DC differentiation from monocytes (81). Loss of DNA
methylation is observed in upon maturation of DC followed by
de novo methylation and is attributed to modulation of
expression of DNMT1, 3A and 3B (82). Likewise, induction of
type I IFN after viral infection required TET2-dependent DNA
demethylation of the IRF7 gene in pDC (83). Therefore, DNA
hypomethylating agents are of interest for stimulation of pro-
inflammatory DC functions. Accordingly, Azacytidine was
reported to upregulate the expression of CD40 and CD86 and
to hinder expression of anti-inflammatory IL10 and IL27 in
March 2021 | Volume 12 | Article 652160
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monocytes-derived human DC (84). These events have been
linked to increased IL17 and reduced IL4 expression in CD4+ T
cells in Azacytidine-treated acute myeloid leukemia (AML) and
myeloid dysplastic syndrome (MDS) patients (84). In line with
this notion, a combination of Azacytidine, IFNg and the HDAC1
and HDAC2 inhibitor, romidepsin, induced IFN signaling in
IL4-induced human DC and increased their migratory
capacity (85).

To summarize, available evidence suggests that G9a, DOTL1
and DNMTmight be promising targets to improve DC function in
the TME, while the KMD6B, KMD4B and HDAC would not.
Future studies would be needed to corroborate existing evidence
and define most suitable combinations.

The Epigenome of MDSC
MDSC are a collection of diverse myeloid cells of granulocytic
(G) or monocytic (M) origin that share the functional trait of
suppressing immune effector cells (17, 86). The generation and
Frontiers in Immunology | www.frontiersin.org 6
egress of MDSC from bone marrow to blood and their
subsequent infiltration into the tumor is promoted by pro-
inflammatory mediators, growth factors and chemotactic
factors that are produced by cancer cells. Overall, MDSC are
characterized by expression of various enzymes that endow them
with the ability to suppress anti-tumor T cell responses. These
enzymes include Arg-1, indoleamine 2,3 deoxygenase (IDO), and
inducible nitric oxide synthase. Moreover, MDSC assist in
recruiting other immunosuppressive cells, such as TAM,
TADC and regulatory T cells (Treg), thereby enforcing the
immunosuppressive TME (87, 88). The epigenetic regulation of
MDSC has been less studied, however, there are several studies
showing that epigenetic mechanisms are involved in MDSC
differentiation, function and survival (Figure 3).

Histone (de)methylation
The inhibition of the H3K27me3 HMT EZH2 using GSK126
increased the presence of MDSC within the TME of LLC (Lewis
FIGURE 2 | Epigenetic factors that regulate TADC activity. Epigenetic enzymes that foster DC-activation include MLL complex (HMT); KDM6B and KDM4D (HDM);
HDAC1 and 2 as well as TET2. Collectively these enzymes regulate the expression of genes involved in antigen presentation and stimulation of CTL-responses, such
as CIITA, CD40, CD80, CD86, IL12 and IFNA/B. In contrast, enzymes such as the G9a (HMT), HDAC2, and the DNMT1, DNMT3A and DNMT3B rather inhibit DC-
activity by acting on genes such as IL6, IFNA/B, CCL2, SOCS3 and IL1R. G9a, DOTL1, HDAC2 and DNMT represent potential targets to improve DC mediated anti-
tumor immunity. iDC, immature dendritic cell; mDC, mature dendritic cell; HMT, histone methyltransferase; HDM, histone demethylases; HDAC, histone deacetylases.
March 2021 | Volume 12 | Article 652160
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lung carcinoma) and MC38 (colon carcinoma) models. This
resulted from a differentiation of MDSC from hematopoietic
progenitor cells upon inhibition of EZH2. Co-treatment with
agents that deplete MDSC such as gemcitabine and 5’-Fluoroacil,
restored the anti-tumor effects of GSK126 (89). EZH2 thus
functions as a negative regulator of MDSC development,
therefore does not represent a suitable target to tackle MDSC.
This is also supported by the reduction of inflammation in
inflammatory bowel disease upon EZH2 inhibition (90).

Histone (de)acetylation
The contribution of histone lysine (de)acetylation to MDSC
development has so far been poorly characterized. HDAC2 has
been shown to skew myeloid differentiation to G-MDSC rather
than DC or TAM in the EL4 (lymphoma) model (91). In
contrast, HDAC11 was reported to negatively regulate MDSC
development in vivo (92). The HAT CBP/p300 and its
bromodomain, by controlling H3K27Ac in promoters and
enhancers of pro-tumoral genes, was found to promote the
MDSC’s suppressive function. Its inhibition hindered their
suppressive activity in the CT26 (colon carcinoma) model (93).
However, the use of inhibitors has been found to elicit
controversial effects. Recently, the HDACi, Valproic Acid, was
shown to reduce the MDSC immunosuppressive function both
in vitro and in vivo (94). Moreover, the HDACi Vorinostat
depleted MDSC in 4T1 mammary tumors (95). Likewise, the
class I HDACi Entinostat, was reported to have anti-tumor
effec t s by neutra l i z ing MDSC through epigenet ic
reprogramming in mouse models of pancreatic, breast, lung
and renal cell cancer (96, 97). On the contrary, HDACi
Trichostatin-A favored GM-CSF-induced expansion of MDSC
in vitro and in vivo (98). Thus, further studies will have to better
define the function of specific HAT and HDAC inMDSC biology
to define their targeting in therapeutic treatments.
Frontiers in Immunology | www.frontiersin.org 7
DNA (de)methylation
The functions of MDSC are linked to specific alterations in DNA
methylation patterns catalyzed by DNMT3A in response to
tumor cell-related factors. DNMT3A downregulation erased
the MDSC specific DNA methylation patters and blocked their
immunosuppressive capacity (99). Likewise, the DNA
demethylating agent Decitabine reduced the number of bone
marrow-derived MDSC in the 5T33 and the MPC11 multiple
myeloma (11, 100), and a murine leukemia model where it also
promoted the efficacy of adoptive T cell transfer (101). Of
interest, in renal (Renca), colon (CT26) and prostate (TRAMP-
C2) carcinoma models, Decitabine promoted MDSC
differentiation into CD11c, MHC-II and CD86 competent
antigen presenting cells, capable of protecting naïve mice from
tumor challenge (102). Thus, DNMTs appear suitable targets to
overcome the immunosuppressive MDSC potential in the TME.

So far, DNA methylation appears to be the most promising
epigenetic alteration to target MDSC in the TME. Whether
additional EMA or even combinations of EMA targeting
different enzymes would provide a further benefit remains to
be tested.

The Epigenome of T Cells
CD4+ and CD8+ abT cells derive from thymic precursors. Upon
activation and differentiation into effector and memory T cells
subsets within secondary lymphoid organs, they jointly
contribute to tumor immune surveillance. The interplay of
signals generated by the TCR, co-stimulatory and cytokine
receptors lead to the activation of a plethora of transcription
factors and of epigenetic mechanism, which jointly instruct cell
differentiation and cell fate (103).

CD4+ T cells can be divided in regulatory T cells (Treg) and T
helper (TH) cells, among which TH1, TH2, TH17 and TFH with
various effects on tumor immunity. In particular, TH1 cells assist
in protective antitumor immune responses as they support the
differentiation of CD8+ T cells into CTL, able to recognize tumor
antigen-derived peptides in the context of MHC-I and instruct
tumor cell killing (104). In contrast to TH1 cells and CTL, TH2
and Treg represent CD4+ T cell subsets that facilitate tumor
progression by exerting immunosuppressive activities within the
TME. Histone modification and DNA methylation control both
the process of memory establishment and of subsets
differentiation of which we summarized several critical events
in the following paragraphs (Figure 4).

Epigenetics in CD4+ T Cell Differentiation
Memory Function
The comparison of the epigenome of human naive and memory
CD4+ T cells revealed that histone modifications, together with
DNA methylation, play a complex interplay in memory CD4+ T
cell formation, and supported a linear model of differentiation
(Figure 4) (105). For instance, chromatin immunoprecipitation
(ChIP)-sequencing analysis revealed dynamic changes in the
activation marks H3K4me2 and H3K4me3 and in the
expression of genes involved in naive and memory human
CD4+ T cell activation and in cytokine gene expression (106).
Likewise, early after activation of human naive and memory CD4+
FIGURE 3 | The epigenetic landscape of MDSC. EZH2 and HDAC11 serve
as negative regulators of MDSC differentiation from immature myeloid. In
MDSC, the bromodomain (BRD) of CBP/p300 acts as a critical regulator of
H3K27Ac across promoters and enhancers of pro-tumorigenic target genes
such as Arg-1 and NOS2. Also, increased DNMT3A levels have been shown
in MDSC and have been linked to repression of immunity-related genes such
RUNX1, S1PR4, FAS and AQP9. CBP/p300 and its bromodomain or
DNMT3A represent potential targets to inhibit MDSC. MDSC, myeloid derived
suppressor cell; HDAC, histone deacetylase.
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T cells, H3K27me3 demethylation was observed in genes of the
JAK-STAT pathway, such as JAK2 and IL12RB2 (107), by means
of KMD6B in both naive and memory human CD4+ T cells.
Moreover, the presence of permissive epigenetic marks such as
H3K4me3 and H3K27Ac in promoter and enhancer regions of
signature genes such as IFNG, IL4 and IL17A has been shown to
account for fast memory responses upon secondary antigen
encounter by human memory CD4+ T cell function (108).
Frontiers in Immunology | www.frontiersin.org 8
Polarization
Polarization of CD4+ T cells into different TH subsets is mediated
by joint interactions of DNA methylation and histone
modifications that functionally instruct different enhancers and
transcription factors to regulate expression of lineage specific
cytokines and receptors (Figure 4) (109–111). As an example,
Adoue et al. showed very recently that the HMT KMT1E favors
TH2 polarization through deposition of the repressive mark
FIGURE 4 | Epigenetic regulation of CD4+ T cell differentiation. CD4+ T cell memory formation: During memory formation, remodeling of H3K4 methylation (green)
marks takes place together with the removal of repressive H3K27me3 (red) marks in genes of the JAK-STAT pathway. Moreover, permissive H3K4me3 (green) and
H3K27Ac (purple) marks are present in genes related to CD4+ T cell function. CD4+ T cell polarization: TH1 polarization is controlled by EZH2 that silences TH2-
related genes and vice versa. KDM6B favors TH1 polarization by positive regulation of TH1-related genes while KMT1E negatively regulates IFNG and Tbx21 (T-bet)
gene expression. HDAC1 and 11 are general inhibitors of CD4+ T cell function through silencing of cytokine production, Eomes and Tbx21 (T-bet). Epigenetic
regulation of FOXP3 expression in Treg: FOXP3 expression is regulated by epigenetic processes in Treg including (i) exchange of repressive HDAC5 and SIRT 1
for a permissive CPB/p300 (HAT) complex, (ii) permissive H3K4me3 (green) and H3 lysine acetylation (purple) in a TGFb response element (CNS1), (iii) TET2
dependent DNA demethylation of a 5’UTR region (CNS2), and (iii) H3K4me1/2 poised state of CNS3 needed for Foxp3 expression. HDAC1, 11 and DNMT3A
represent potential targets to improve CD4+ T cell anti-tumor immunity.
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H3K9me3 in cis-regulatory of TH1 specific genes such as IFNG
and Tbx21 (encoding T-bet) (112). In murine cells, also the HMT
EZH2 controls the TH1 and TH2 differentiation by depositing the
repressive mark H3K27me3 at the promoter of the TH1-
promoring transcription factor Tbx21 in TH2 cells, and vice
versa, at the promoter of the TH2-promoting transcription factor
Gata3 in TH1 cells (113). Moreover, in the absence of polarizing
signals, EZH2 was also reported to suppress Eomes, thereby
repressing the spontaneous formation of IFNg producing TH1
cells (113). Given the role of EZH2 in early CD4+ T cell
differentiation, its targeting should be further investigated as a
strategy to modulate CD4+ T cell responses during tumor
immunity. The H3K27me3 HDM, KDM6B, has also been
implicated in TH1 differentiation through the induction of TH1
related transcription factors and cytokines (114). Nevertheless,
the loss of KDM6B resulted in TH2 and TH17 differentiation
(114), indicating that the targeting of KDM6B might not
improve anti-tumor CD4+ T cell responses.

In addition to histone methylation, histone (de)acetylation
also regulates TH cell functions. For instance, HDAC1 was shown
to repress TH1 and TH2 effector functions by downregulating
cytokine production (115). Similarly, HDAC11 was shown to
repress Eomes and Tbx21 expression hindering Ifng and Il2
expression in TH1 cells (116). This would suggest that
inhibition of HDAC1 and HDAC11 might be attempted to
promote CD4+ T cell function at the tumor site (Figure 4).

DNA methylation has also been implicated in TH cell
differentiation. A rapamycin-sensitive signal downstream of the
TCR and the CD28 costimulatory receptor was found to acutely
control DNA methylation within proximal promoter regions of
Ifng, Il4 and Foxp3, hence controlling CD4+ T cell differentiation
(117). In addition, DNMT3a and de novo DNA methylation were
shown to restrict T helper plasticity by silencing regulatory regions
of the Ifng gene (118). Accordingly, CpG residues within the Ifng
promoter were found to become hypermethylated during the in
vitro differentiation of mouse naıve T cells into TH2, but not TH1
cells (119). Thus, the role of DNMTs is very similar to the role of
EZH2, as described above, suggesting that a deeper understanding
of the role of de novoDNAmethylation of CD4+ T cell function in
tumors is warranted.

Treg Development and Epigenetics
Epigenetic changes in Treg merit attention, as Treg play an
immunosuppressive role in the TME. Treg can be generated during
thymicdevelopmentatwhich time theyare referred toasnaturalTreg
(nTreg) or canbegenerated in theperipherywhennaïveCD4+Tcells
are activated in the presence of TGFb and/or IL10 at which time they
are referred to as inducible Treg (iTreg). ChIP assays revealed an
increase in H3K9/14Ac and H3K4me3 and a reduction of
H3K27me3 in the promoter of the genes encoding the cell surface
molecules Il2ra (CD25),Ctla4 (CD152),Nt5e (CD73), Icos (CD278),
and the transcription factor Ikzf2 (Helios), all upregulated in Treg
(120). Several studies have identified cell specific super-enhancers,
accompanied by a strong activation linked histone modification,
open chromatin states, strong binding of transcription factors, and
increased DNA demethylation (121–123). Therefore, there is a
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potential therapeutic window for modulation of Treg activity in
cancer through epigenetic therapy. Pharmacological inhibition of
G9a methyltransferase activity in conventional T cells promotes
TH17 and Treg differentiation, suggesting that G9a-dependent
H3K9me2, a repressive histone modification during T cell
differentiation, is a homeostatic epigenetic checkpoint that regulates
TH17 andTreg responses (124). The transcription factor Foxp3 is key
for all Treg to acquire their immunosuppressive phenotype and
function. Its expression is regulated epigenetically (125). Foxp3
associates with HAT (p300 or TIP60) (126) as well as HDAC
(SIRT1 or HDAC5) (127) pointing HAT inhibitors (HATi) as
potential drugs for inhibiting Treg function (128). In Treg,
replacement of a repressor complex at the Foxp3 promoter by the
HATp300/CREB-bindingprotein-associated factor (PCAF) is key to
enable permissive histone modifications and as such making the
Foxp3 promoter accessible (129). The Foxp3 gene also has three
conserved, epigenetically regulated, noncoding regulatory sequences
(CNS1-3) thatmodulate its expression.Thefirst sequence (CNS1) is a
TGFb-sensitive enhancer element that is regulated via histone
modifications and that is critical for Treg generation (125, 130).
The second sequence (CNS2) is a demethylated CpG rich region,
which is maintained by TET2 and allows stable Foxp3 expression.
This noncoding sequence is further characterized by H3K4
methylation, and H3 and H4 lysine acetylation (131). The
importance of this region for Foxp3 expression is shown by the loss
of Foxp3 expression inTreg that dono longer contain this noncoding
sequence and that are exposed to IL4 and IL6 (132). The third
sequence (CNS3) has been shown to be important to initiate Foxp3
expression, however, does not seem to play a role in maintaining
Foxp3 expression. This sequence is rich in permissive H3K4me1/2
marks, which are highly present in nTreg, suggesting that this
sequence facilitates opening the Foxp3 locus in CD4+ T cells that
are developing in the thymus (Figure 4) (125).

DNA methylation is also implied in Treg development, as
evidenced by methylated-DNA immunoprecipitation sequencing
to assess the genome‐wide 5‐methylcytosine status. it has been
estimated that 0.19% of whole genome DNA methylation sites of
the conventional T cells are specifically demethylated in Treg
(133). These demethylated regions are stable and occur in Treg
function‐associated genes such as Foxp3, Ctla4, Il2ra, Tnfrsf18
(encoding GITR), Ikzf2 (encoding Helios), and Ikzf4 (encoding
Eos) (125, 134). Thus, it is clear that Treg and conventional T cell
subsets have their own genome DNA methylation status (123). It
has been reported that DNMT1 is necessary for maintenance of
the Treg development program and function, showing that its
deletion within the Treg lineage leads to lethal autoimmunity
(135). While some authors have found that DNMT1 inhibitors
could improve Treg proliferation, Treg suppressor (136–138) or
Foxp3 expression (139, 140) by DNMT1 inhibitors, others
reported an inhibition of Treg function (141).

Thus, overall data support a central role for epigenetic events
in controlling CD4+ T cell fate. As the specific epigenetic drivers
and pathways required for effector function and memory
generation are highly context-dependent and vary with each
subpopulation and location, which would be the most suitable
targets to favor anti-tumoral CD4+ T cell responses remains to be
March 2021 | Volume 12 | Article 652160

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Maes et al. Epigenetics and Immunomodulation in Cancer
defined. Among others, HDAC1 and HDAC11 appear potential
targets for pharmacological inhibition to improve TH1 CD4+ T
cell effector function. Nevertheless, many questions still remain
given the complexity of the TME.

Epigenetics in CD8 T+ Cell Differentiation
Histone Modification and DNA Methylation in Effector
and Memory Formation
As in the case of CD4+ T cells, also the differentiation of CD8+ T
cells is characterized by alteration in histone marks and DNA
modifications in effector andmemory subtype specific genes (142).
Whether memory CD8+ T cells differentiate in linear or circular
fashion is still under debate. The epigenetic changes during
differentiation from naive to stem cell memory, central memory
and effective memory are progressive and suggest a linear model of
differentiation (143, 144). As an alternative to the linear model, a
circular model of differentiation is proposed where memory T cells
are formed after dedifferentiation of effector T cells. This
dedifferentiation is the results of demethylation of de novo DNA
methylated genes during differentiation leading to re-expression of
naive-related genes in memory cells (145). In line, murine naive T
cells are characterized by the presence of bivalent state, with both
repressive H3K27me3 and activating H3K4me3 marks, in genes
linked to replication (“stemness”) and cellular differentiation.
When naive cells start to differentiate, these loci loose bivalency
as H3K27me3 is erased, allowing T cell expansion and
differentiation. The H3K4me3 mark in genes related to the
immune effector function, such as Gzmb and Ifng is absent in
naive T cells and is acquired in effector and memory CD8+ T cells,
thereby stimulating effector functions (144, 146). When
comparing murine memory and effector CD8+ T cells, Gray
et al. found that EZH2, through H3K27me3 deposition,
repressed memory and survival genes in terminally differentiated
effector cells. However, H3K27Ac mark associated with
transcriptional activation was present at memory-related and
effector-related loci in memory cells reflecting their
multipotency (“stemness”) and allowing a fast response upon
second antigen encounter (147). In addition, transition of early
effector T cells into terminal effector or memory CD8+ T cells is
dependent on the action of DNMT3A that silences the “stemness”
transcription factor Tcf1 expression through DNA methylation
(Figure 5) (148). Knockout of DNMT3A resulted in higher
numbers of memory T cells at the expense of terminal effector T
cells (148).

Histone Modifications and DNA Methylation
in Exhaustion
Epigenetic mechanisms are also involved in T cell exhaustion
(Figure 6). Exhausted T cells are hallmarked by the expression of
inhibitory receptors such as programmed death-1 (PD-1) and
lack effector function, which contributes to cancer cell immune
evasion. In the case of chronic viral infection, a complex gene
expression program associated with broad remodeling of
chromatin accessibility and enhancer landscape was described
in exhausted T cells compared to functional memory and effector
T cells (149). Indeed, ATAC-sequencing of acute versus
chronically virus exposed murine T cells demonstrated in the
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latter an increased accessibility of genes associated with negative
regulation of cytokine production, NF-kb signaling, and T cell
activation. Amongst those genes, Pdcd-1, Havcr2 and Batf
(encoding Pd-1, Tim3 and Batf, respectively) were identified as
most likely to be bound by the transcription factors T-bet, Rara
and Sox3 (149).

Also in cancer settings, epigenetic modifications progressively
define unresponsive T cell phenotypes. In a murine melanoma
tumor model, ATAC-sequencing similarly demonstrated in
exhausted T cells an enrichment of chromatin accessibility for
Nr4a and NFAT transcription factors. Of note, blocking the PD-
1/PD-L1 interaction did not restore the chromatin landscape
within exhausted T cells (150), as also found in a model of
chronic infection, due to the persistence of an epigenetic state of
exhaustion (151). Again by ATAC-Seq, it was found that tumor-
specific T cells in pre-malignant lesions initially acquire a plastic
dysfunctional state from which T cells can be rescued, and
transition to a fixed dysfunctional chromatin state in which the
cells appear resistant to reprogramming (152). Recently, the
HMG transcription factor TOX was identified as a key driver
of the epigenetic changes seen in exhausted T cells as a result of
chronic TCR stimulation and calcineurin-NFAT2 activity (153).
Of interest, de novo DNA methylation by DNMT3A also
contributes to T cell exhaustion by repressing effector T cell
genes during chronic T cell stimulation (154) (Figure 6).

How current therapeutic strategies impact on CD8 T cell-
restricted epigenetic changes remains to date only partially
understood, and yet EMA bear the potential to promote
protective anti-tumor responses. Again, choosing the most
appropriate target would require more extensive work. Based on
the above reviewed evidences, EZH2 and DNMT3A inhibition
appear a promising strategy suitable to shape effector and
exhausted phenotypes of CD8+ T cells within the TME.

Epigenetic Regulation of NK Cells
Function in Cancer
NK cells are large granular lymphocytes and play a crucial role in
the innate immune system. They develop mainly in lymphoid
organs such as the bone marrow, spleen and lymph nodes. NK
cells have cytotoxic and cytokine producing properties and aid in
the control of tumor progression and infections. The activity of
NK cells is dependent on the expression of activating and inhibitor
receptors and respective ligands on the target cells. NK cells will
become activated upon contact with target cells that have lost
expression of ligands for inhibitory receptors (such as MHC-I)
and gained stress-associated molecules that stimulate activating
receptors such as NKG2D, NCR1/2/3 and Ly49D/H. As a result,
NK execute their effector functions including production of
cytokines such as IFNg and direct killing of target cells (155,
156). A limited number of studies have shown that NK cell
differentiation and function are regulated at the epigenetic level
(157), of which some example are described below.

Yin et al. identified an important negative role for EZH2 in the
development of NK cells. Knockout of EZH2 or pharmacological
inhibition using UNC-1999 resulted in enhanced NK cell
development from progenitors. These NK cells also showed
enhanced functionality against tumor cells (158). Moreover,
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FIGURE 5 | Epigenetic regulation of CD8+ T cell differentiation. Naive CD8+T cells are characterized by a bivalent state of permissive (green) and repressive (red)
histone marks in genes related to differentiation and proliferation while effector genes are not decorated by permissive marks or repressive marks. Effector CD8+T
cells show permissive (green) marks in effector genes while the transcription factor Tcf1 and memory and effector genes contain repressive (red) marks. Memory
CD8+T cells show permissive (green, purple) marks in effector, memory and survival genes while Tcf1 is not DNA methylated, supporting their multipotent state.
EZH2 and DNMT3A represent potential targets to increase CD8+ T memory formation.
FIGURE 6 | Epigenetics and T cell exhaustion. T cell exhaustion is characterized by reduced T cell proliferation, effector functions and increased expression of
inhibitory receptors such as PD-1, CTLA-4 and TIM-3. The expression of these inhibitory receptors in CD8+ tumor-infiltrating cells is enabled altered chromatin
accessibility and binding of transcription factors such as NFAT, TOX, NR4A, T-bet, Sox1 and Rara in genes exerting a negative role for T function. In addition,
DNMT3A mediates DNA methylation and silencing of effector genes, hence serving as a potential target to reverse T cell exhaustion. IR, inhibitory receptor.
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using a combination of microarray and ChIP-sequencing analysis,
Li et al. found that NK cell activation of the NK-92MI cell line is
characterized by dynamic changes in the expression of HDM and
HMT as well as changes in H3K27me3 and H3K4me3 and specific
loci. Inhibition of H3K27me3 using UNC-1999 resulted in
increased degranulation capacity of NK cells (159).

The role of histone acetylation has also been studied in several
studies, mostly by looking at the effect of HDAC inhibitors. In
general, HDAC inhibitors have been found to upregulate NK
activation receptor NKG2D on NK cells as well its ligand MHC
class I–related genes (MIC) on tumor cells resulting in enhanced
NK-cell mediated recognition and killing in hematological and
solid tumors (160–162).

With respect to DNA methylation, it has been demonstrated
that expression of the inhibitory Killer immunoglobulin-like
receptors (KIR) is regulated by DNA methylation. The NK-
92MI cell line is characterized by DNA methylation dependent
repression of KIR receptors. Upon treatment with azacytidine,
KIR expression is upregulated, resulting in diminished cytolytic
activity of NK cells towards leukemic cells (163).
EPIGENETIC TARGETED THERAPY
INFLUENCES TUMOR IMMUNOGENICITY
AND IMMUNE CELL INFILTRATION

The development of cancer is hallmarked by immunoediting. Given
that many of the events that control the process of immunoediting
are regulated by epigenetic mechanisms, EMAs bear the potential to
interfere with its course. The concept of immunoediting describes
how the host’s immune system interacts with a developing tumor in
three consecutive phases. In the elimination and equilibrium phases,
the immune system successfully removes or controls the growth
of the tumor allowing the recovery of the normal tissue architecture.
In the escape phase, however, tumor cells selected during the
equilibrium phase are able to grow out in an immunocompetent
setting due to several immune evasion mechanisms which
essentially can influence each step of the cancer-immunity cycle
(164). First, low amounts of tumor antigens, poor antigen
presentation and failure in undergoing immunogenic cell death
(ICD) limits priming of effector immune responses and induces
immune ignorance. Second, poor infiltration of effector immune
cells, tolerant phenotypes of DC and macrophage, and the
presence of immune suppressive immune cells such as Treg and
MDSC limit the priming and execution phase of the anti-tumor
immune responses. Third, the function of immune effector cells
can be inhibited by the presence of checkpoint molecules and
absence of costimulatory molecules (165, 166). As a consequence,
tumors can be classified based on their baseline level of immunity:
(i) “immune cold” tumors that lack antigen presentation, have low
adjuvanticity and hence have poor priming of immune response
and lack functional anti-tumor T cells; (ii) “immune intermediate”
tumors with proper immune cell priming but where immune
responses are hindered by a multitude of mechanisms including
distorted chemokine signaling, poor CD8+ T cell infiltration,
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hypoxia, tumor cell intrinsic factors and presence of
immunosuppressive molecules and cell types (MDSC, M2
macrophages, Treg); and (iii) “immune hot” tumors that show
good levels of immune priming and CD8+ T cell infiltration but
show exhaustion (167, 168).

Recently, Burr et al. have identified that the polycomb
repressor complex 2 (PCR2), which includes EZH2, drives
immune evasion through epigenetic silencing of genes involved
in antigen presentation through MHC-I. Epigenetic silencing
was mediated through deposition of H3K27me3 in the promoter
region of these genes, leading to reduced expression, even in
response to cytokines such as IFNg (169). Of interest, blocking
the PRC2 func t i on th rough inh ib i t i on o f EZH2
methyltransferase activity restored antigen presentation at
basal level and enhanced antigen presentation after cytokine
stimulation in multiple tumor models. Consequently, the anti-
tumor activity of T cells was restored in tumors treated with the
EZH2 inhibitor (169). Similar findings were observed in diffuse
large B cell lymphoma (DLBCL) where EZH2 inhibition restored
MHC expression in DLBCL cell lines (170). EZH2 was also
shown to be upregulated in response to TNFa induced by CTLA-
4 blockade and IL2 agonist treatment in B16 and RIM3melanoma
models (171). This resulted in the downregulation of tumor
antigen presentation and acquired resistance to immunotherapy.
Of note, blocking EZH2 reversed these effects and restored T cell
activity (171). Importantly, EZH2 and its inhibition might have
different effects according to the tumor type and the immune
infiltrate. For example, in a mesothelioma model, EZH2 regulated
macrophage-induced oxeiptosis of mesothelioma cells, and its
blocking impaired macrophage function and tumor control
(172). These findings support a positive role for EZH2 in
macrophage function, also found in inflammatory models (173,
174). Thus, although EZH2 might be a good target to restore
tumor cell antigenicity and immunogenicity (Figure 7A),
pleiotropic effects should be studies, due to the various functions
EZH2 might play with TME immune cell subsets.

In addition to histone methylation, a number of studies
support the notion that the targeting histone (de)acetylation and
DNA methylation enhances tumor recognition by immune cells
(Figure 7B). In multiple tumor cell lines, the HDACi Trichostatin
A induced the expression of genes involved in antigen
presentation (175, 176), which facilitated tumor cell killing by
CTL (176). Similar findings were observed in a melanoma model,
where Trichostatin A induced MHC-I expression promoting IFNg
production by T cells specific for a tumor-associated antigen (177).
Also in the case of chronic lymphocytic leukemia (CLL), the
expression of antigens, costimulatory genes and T cell responses
was increased after Decitabine and HDACi LAQ824 treatment
(178). In breast and prostate cancer cells, the pan-HDACi
Vorinostat and the HDAC class I-specific inhibitor Entinostat
similarly favored the expression of components of the antigen-
presentation machinery and augmented T cell-mediated cell lysis
(179). The combination of Decitabine and HDACi Valproic Acid
resulted in augmented antigen expression in mesothelioma cells
resulting in increased T cell recognition and killing capacity (180).
Moreover, in a model for breast cancer, the HDAC class IIA
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inhibitor TMP195 increased the presence of highly phagocytic
macrophages in the TME leading to anti-tumor effects and
reduced metastasis (181). In lung cancer, combining HDACi
with DNA demethylating agents reduced macrophage
infiltration, increased T cell infiltration of the TME with non-
exhausted T cells and reducedMYC expression in tumor cells (10).
Similar findings have been observed in multiple myeloma, where
the combination of Decitabine and HDACi Quisinostat reduced
MDSC and induced temporal changes in memory T cells in the
bone marrow while reducing MYC expression in tumor cells (11).

In several tumor models, BET-bromodomain inhibitors such
as JQ1 also restored tumor immunogenicity by increasing MHC-
I and reducing PD-L1 expression in tumor cells leading to their
enhanced recognition by T cells (182–184) (Figure 7C). In a
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melanoma model, a new BET inhibitor, PLX51107, reduced
tumor growth by increasing T cell activity and lowering PD-L1
and IDO expression in the TME (185). In non-small cell lung
cancer, a combination of a HDAC6 inhibitor Riclinostat and JQ1
reduced tumor growth though diminishing Treg and increasing
T cell and DC activity (186).

The use of epigenetic therapy as ICD inducer has gained attention
the last few years (187). During ICD, tumor cells emit, in a
spatiotemporal manner, several danger-associated molecular
patterns (DAMPs) that can trigger an anti-tumor adaptive immune
response. Evidence that epigenetic-treated cells can serve as a vaccine
has been shown by Khang et al. Vaccination of mice with
Trichostatin-A treated cells resulted in a delay in tumor
development in melanoma and plasmacytoma (188, 189). Our
A

B
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FIGURE 7 | Examples of increased tumor immunogenicity and modulation of the immune cell constitution in the TME upon treatment with epigenetic compounds.
(A) EZH2 inhibition results in increased antigen presentation and T cell activity. (B) HDAC or DNMT inhibition increases antigen presentation and T cell activity while
reducing MDSC and M2 macrophages. (C) Bromodomain inhibitors (JQ1) increase antigen presentation and T cell activity while it reduces tumoral PDL1 expression
and IDO in the TME. JQ1 also induces a more complete picture of ICD with a type I IFN response, ecto-calreticulin, HMGB1 and ATP release. JQ1 moreover
reduces CD47 expression in tumor cells (D) G9a inhibitors and CM-272 induce a type I IFN response due to viral mimicry in tumor cells. CM-272 induces a more
complete picture of ICD with a type I IFN response, ecto-calreticulin, HMGB1 and ATP release. IDO, Indoleamine 2,3-dioxygenase.
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group has investigated whether epigenetic-targeted therapy could
trigger ICD in multiple myeloma using the 5T33 model (11). In this
model, combineduseofDecitabineandtheHDACiQuisinostat could
not trigger bona fide ICD. This was based on the observation that
vaccinationwith treated tumor cells only delayed tumordevelopment
but did not lead to complete protection after challenge with living
tumor cells. Ecto-calreticulin expression was induced to some extent
but the “don’t eat me” signal CD47 was also present, possibly
counteracting the effects of ecto-calreticulin. Nevertheless, a robust
type I IFN responsewas induced,whichpotentially contributed to the
observed DC activation (11). The induction of type I IFN has been
reported in the context of DNA demethylating agents as being the
result of the induction of endogenous retroviruses (“viral mimicry”)
and activation of endogenous dsRNA sensors MDA5, RIG1 and
TLR3 leading to a type I IFN response (190, 191). Also combinations
of G9a and DNMT inhibitors strongly induced viral mimicry in
ovarian cancer and hematological malignancies (8, 12). Recent work
by Jung et al. identified that silencing of genes involved in type I IFN
gene signaling and dsRNA sensor pathways could hamper a “viral
mimicry” response in tumors characterized by high mutational load
and copy number changes, leading to immune evasion and
immunotherapy resistance. Such tumors may be of particular
interest to test whether epigenetic drugs could restore the “viral
mimicry” response (192). With respect to the emission of DAMPs,
in vitro and in vivoHMGB1release in several tumorcell lineshasbeen
observed in response to the DNA demethylating agents Decitabine
and Azacytidine as well as the HDACi Vorinostat (193). Calreticulin
exposure has also been observed in childhood brain tumors upon
treatment with Vorinostat (194). A more complete picture of ICD
hallmarks was observed using CM-272, a dual G9a/DNMT1
inhibitor, developed by José-Eniréz et al. (12, 13). In bladder cancer,
CM-272 induced viral mimicry, a type I IFN response, ecto-
calreticulin and HMGB1 release. This was accompanied by an
increase in CD8+ T cells and NK cells, and a decrease in
macrophages (13). The BET-bromodomain inhibitor, JQ1, induced
ecto-calreticulin, HMGB1 and ATP release in oral squamous
carcinoma. In this model, vaccination with JQ1-treated cells
conferred protection upon a subsequent challenge with living cells
(195). Also in breast cancer, JQ1 has been reported to decrease the
expression of CD47, through disruption of the super enhancers that
regulate CD47 expression (196). It is clear that epigenetic-targeted
therapy has the potential to restore several mechanisms of immune
evasion. There is increased tumor cell immunogenicity and
multiple studies also support the induction of ICD, depending on
the tumor model (Figures 7A-D). In addition, epigenetic treatment
modulates the immune cell constitution of the TME, thus bearing the
potential to reprogram an immunosuppressive environment into a
favorable one.
EPIGENETIC-TARGETED THERAPY
SHOWS PROMISE IN COMBINATION
WITH IMMUNOTHERAPY

Multiple mechanisms of anti-tumor immunity can be identified
in response to epigenetic-targeted therapy and depending on
Frontiers in Immunology | www.frontiersin.org 14
the underlying mechanisms, combinations with other
immunotherapeutic strategies can be applied to obtain
synergistic effects.

Epigenetic Treatment and Vaccination
A few studies have investigated the combination of epigenetic
therapies with vaccination strategies. Here, the rationale of using
the epigenetic compounds is primarily to induce the expression
and presentation of antigens on tumor cells. A phase I study in
myelodysplastic syndrome (MDS) tested the combination of NY-
ESO-1 vaccination (CDX-1401) and Decitabine. CDX-1401 is a
DEC-205/NY-ESO-1 fusion protein and was given together with
the TLR3 agonist Poly-ICLC, as an adjuvant. The therapy led to
induction of NY-ESO-1 expression (by Decitabine) and NY-
ESO-1 specific CD4+ and CD8+ T cell responses, which was
associated with induction of CD141+ DC (197).

Similar findings were observed in ovarian cancer where
Decitabine induced NY-ESO-1 expression and anti-NY-ESO-1
specific antibodies in combination with NY-ESO-1 protein
vaccine and Doxorubicin (198). In childhood neuroblastoma and
sarcoma, Decitabine has been tested together with a DC vaccine
pulsed with MAGE-A1, MAGE-A3 and NY-ESO-1 peptides (199).
In all three studies, responses were heterogeneous and short-term.
Yong Lee et al. tested the combination of the pan-HDACi AR-42
together with the DNA vaccine encoding for calreticulin and human
papilloma virus protein E7 (CRT/E7) in a TC-1 lung cancer model.
Addition of AR-42 enhanced the effects of the vaccine and induced
CD8+ T cell responses leading to better anti-tumor responses
compared to vaccination alone (200). More recently, in the B16-
OVA melanoma model, a combination of the HDACi Romidpesin
and the BET-inhibitor IBET-151 together with adenoviral- or
protein-based vaccines were tested. Epigenetic treatment resulted
in increased numbers of antigen specific CD8+ T cells and a better
therapeutic outcome (201).

Epigenetic Treatment and
Checkpoint Blockers
Combinations of epigenetic therapies with checkpoint blockers
are the most studied and most promising treatment at the
moment. Recently, modulation of histone methylation has
been proven to enhance checkpoint inhibition. EZH2
inhibition together with anti-CTLA-4 has combinatory effects
in melanoma and bladder cancer models. These effects could be
linked to decreased number of Treg and increased numbers of
CD8+ T cells (202). In breast cancer, the use of a lysine
demethylase 1 (LSD1) inhibitor led to increased chemokine
expression, T cell infiltration and combinatory effects with
anti-PD-1 blockade (203). Of specific interest, the dual G9a/
DNMT1 inhibitor CM-272 showed synergy with anti-PD-L1
blocking therapy in metastatic bladder cancer, which is in line
with the strong ICD-inducing properties of CM-272 (13).

Also HDACi have been tested in combination with
checkpoint blockers. Woods et al. showed that the pan-HDACi
Panobinostat induced PD-L1 and PD-L2 in human and mouse
melanoma cells through increased lysine acetylation of their
promoter. In an in vivo experiment, combinations of PD-1
blocking and Panobinostat resulted in a significant delay of
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survival compared to single agent treatment (204). Similar
findings were observed in human and murine lymphoma cells
with the use of Class I HDACi (valproic acid), HDAC1/2
(Romidepsin) and HDAC3 inhibitors (RGFP966) (205). In a
syngeneic murine lymphoma model, RGFP966 induced PD-L1
in tumor cells and DC and synergized with anti-PD-L1 blocking
(205). In ovarian cancer, the SWI/SNF chromatin remodeling
complex ARID1A is mutated in >50% of the cases leading to
increased PD-L1 expression. Hence, blocking PD-L1 together
with the HDAC6 inhibitor ACY-1215 showed combinatory anti-
tumor effects which were dependent on CD8+ T cells (206). In
hepatocellular carcinoma, combined anti-CTLA-4 and PD-1
together with the HDACi Belinostat significantly reduced
tumor burden; which was associated with increased IFNg
production by T cells, and decreased amounts of Treg (207).
Several other reports also showed that HDACi such as Entinostat
and Mocetinostat synergized with checkpoint inhibition by
targeting immature myeloid cells in solid tumor models (96,
97, 208). In lung adenocarcinoma, Zheng et al. identified that
HDACi induced chemokine expression in tumor and
surrounding cells leading to T cell attraction and increased
sensitivity to anti-PD-1 therapy (209). Of interest, in multiple
carcinoma models, Hicks et al. have found that HDAC inhibitors
could upregulate NK cell ligands and death receptors leading to
enhanced killing of tumor cells by NK-cells. At the same time,
anti-PD-L1 was upregulated in tumor cells leading to antibody-
dependent cellular toxicity using avelumab (210).

DNAmethyltransferase inhibitors have also been tested in several
cancermodels. The combinationofAzacytidine andCTLA-4blocking
antibodies showed combinatory effects in the B16-F10 melanoma
model (190). This is thought to be the result of a type I IFN response
thatwas induced byAzacytidine as the presence of this type I IFNgene
signature is predictive for response to CTLA-4 blockade inmelanoma
patients (190). Inmurine lung cancer,Decitabine led to demethylation
of Irf7 and induced the expression of PD-L1, type I IF and chemokines
suchasCXCL9andCXCL10 leading to sensitizationof tumors to anti-
PD-1 blockade (211). Similar findings were found in breast cancer
models, where Guadecitabine inducedMHC-I expression and NF-kb
and IFN signaling, resulting in combinatory effects with anti-PD-L1
blockade(212). IntheTramp-C2model,whichappearedtoberesistant
to PD-L1 blockade, Decitabine pre-treatment could restore sensitivity
towards anti-PD-L1 as a result of reprogramming exhausted T cells
(154).HDACi andDNMTi combination also appear to synergizewith
checkpoint blockers, which has been demonstrated in ovarian,
colorectal and lung cancer (9, 213). Moreover, this combination also
significantly altered the immune cell constitution in the TME by
reducing macrophages, MDSC and increasing immune-effector cells
(9, 213). Taken together, epigenetic treatment can synergize with
immune checkpoint inhibition through direct regulation of immune
checkpoint expression, modulation of T cell infiltration and reduction
of immature myeloid cell infiltration.

Epigenetic Treatment and Adoptive Cell
Therapy Including CAR-Therapy
Adoptive T cell therapy (ACT) is a passive immunotherapeutic
approach in which antigen specific T cells are delivered to patients
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to elicit CTL responses. Targeting ofDNAmethylation is of interest
to augment the T cell efficacy during ACT. Indeed, Decitabine has
been shown to increase expression of P1A antigen in several solid
and hematological tumor models. Hence, adoptive transfer of P1A
specific T cells resulted in significant improvement of anti-tumor
CTL responses (214). In a phase II clinical trial in multiple
myeloma, autologous T cell infusion was combined with
Lenalidomide and Azacytidine. Following Lenalidomide and
Azacytidine treatment, patients underwent autologous stem cell
transplantation followed by autologous T cell infusion (215). The
treatment resulted in upregulation of cancer-testis antigens in
multiple myeloma cells with some evidence of ongoing antigen
specific CTL responses (215). In the murine 4T1 breast cancer
model, Decitabine enhanced the anti-tumor efficacy of ACT
together with Cyclophosphamide. This was associated with
increased MHC-I and antigen expression and decreased number
ofMDSC in the TME (216). In the B16 melanomamodel, the pan-
HDACiLAQ824andPanobinostat hasbeenshown toboost activity
of gp100 specific T cell responses (217, 218). Mechanistically,
LAQ824 increased the activity of the T cells and induced antigen
expression (218). Moreover, Panobinostat induced a pro-
inflammatory environment and induced CD25 and OX40
expression in T cells (217). Targeting DNMTs by Decitabine,
together with inhibition of EZH2, significantly increased antigen
expression in human lung cancer cells. This led to increased antigen
specific CTL responses (219). Of note, EMA might also overcome
acquired resistance consequent to ACT. In preclinical mouse
models, the treatment with EMAs, and in particular DNMTi, was
effective in reinstating the expression of antigens silenced as a
consequence of immunoediting. The combination of EZH2 and
DNMT1 inhibitors in ovarian cancer also promoted the
intratumoral expression of TH1 chemokines (CXCL9 and
CXCL10) expression, which correlated with improved efficacy of
adoptive T cell transfer and checkpoint inhibition (220).

EMA can also be exploited during the production of a T cell
product, including CAR-T cells. Kagoya et al. tested the effects of
the BET-bromodomain inhibitor JQ1 during the cultivation and
in vitro expansion of T cells for adoptive transfer. JQ1 treatment
led to T cells with increased stem cell and memory-like
properties by regulating BTAF expression. These T cells
showed enhanced capacity to control tumor growth in
leukemia and melanoma models (221). Likewise, the accidental
disruption of the enzyme TET2 during the generation of CD19
specific CAR-T cells resulted unexpectedly in improved
therapeutic efficacy in chronic lymphocytic leukemia. The
disruption of TET2 resulted in an altered T cell differentiation
with a predominance of central memory T cells, thereby
improving the efficacy and persistence of CAR-T cells. The
authors further showed that similar results might be reached
by TET2 inhibition during the production phase (222). These
findings suggest that the balance of DNA methylation events in
effector genes and memory (“stemness”) genes during the
transition of early to terminal effector, memory or exhausted T
cells, eventually determines the highest functionality of T cells
which is thought to be reached in the functional memory state
(223). EMAs have also been shown to synergize with CAR-T
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cells. For instance,Decitabine treatment of lymphoma cells reduced
DNA methylation, thereby improving CD19 expression and
favoring recognition by CD19 specific CAR-T cells both in
patients with B-cell lymphoma and in vitro cultures (224). In
Ewing sarcoma, inhibition of EZH2 has demonstrated to promote
anti-tumor activity of GD2 specific CAR-T cells and more efficient
tumor cell lysis (225). In summary, epigenetic therapy can improve
the outcome of ACT, by mediating the expression of antigens and
improving the activity and attraction of T cells. Of note, the efficacy
of engineered tumor-targeted T cells relies on the contribution of
endogenous T cells, which limit immune escape upon ACT (226–
228). Whether EMAs would further improve host T cell immunity
in the context of TCR or CAR-T cell therapy, by promoting better
antigen presentation, and better tumor infiltration by polyclonal T
cells remains to be understood. In addition, whether improved
responsiveness to ACT depends on reprogramming of additional
immune cell subsets represented within the TME remains an
important open question.

In addition to T cells, alsoNKs are promising candidate for CAR-
engineering. They represent 10–20% of human peripheral blood
leukocytes, and as such an attractive source for genetically modified
immune cell-based immunotherapy. These cells of the innate
immune system target cancer cells that down-regulate HLA class I
molecules andhave the advantage that they canbederived fromHLA
mismatched donors. The use of CAR-engineered NK cells has been
proven in preclinical mouse models and in phase I/II clinical trials
(157, 229). As discussed in previous paragraphs, epigenetic
mechanisms including histone- and DNA methylation-based
modifications regulate the activity of NK cells, and also the ability
of cancer cells to evadeNK cells. Thus, combination ofNK cell-based
immunotherapywith epigenetic therapies is likely to enhance efficacy
(157). Todate, clinically approvedEZH2, IDH1, and IDH2 inhibitors
are being tested in immunocompromised preclinical models of
cancer. In addition, EZH2 and HDAC inhibitors could also be
exploited during the generation of CAR-NK cells to overcome
difficulties in the expansion and genetic manipulation of NK cells
(156) and promote survival and functionality of engineered NK cells
(158, 161).
CONCLUSION AND FUTURE
PERSPECTIVES

Immunotherapy has emerged as the fourth pillar of anti-cancer
therapy with encouraging results in clinical trials on cancer
vaccination, CAR-T cell and immune checkpoint therapy
(230–234). However, the occurrence of immune resistance or
side effects emphasizes the need to identify therapy modalities
that can be combined with immunotherapy to fully capitalize on
the immune system’s ability to eradicate tumor cells.

Epigenetics,which is a reversibleprocess, regulate thephenotype
of cancer cells as well as of immune cells and have therefore been
proposedasa commondenominator formodulation.Thediscovery
of modifiable epigenetic pathways that can shape the immune
response has opened novel therapeutic perspectives, with the
potential of improving current strategies. Indeed, epigenetic
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therapy has the ability to modulate the TME in various ways, for
example, by (i) enhancing the immunogenicity of tumor cells, (ii)
inducing accumulation and infiltration of CD8+ CTL and linked
herewith (iii) preventing acquisition of an exhausted state.
Moreover, epigenetic therapy can affect the myeloid cell
compartment, jumpstarting antigen presentation to T cells by
DC, while curtailing immunosuppressive myeloid cell types such
as M2 polarized TAM and MDSC.

Nonetheless, several challenges remain, these can be summarized
as (i)designingselectiveEMAswithoptimalpharmacokinetics, target
inhibition, safety, bio-distribution, and efficacy (ii); fully
understanding their activity in the TME, and linked herewith
(iii) defining biomarkers that help to identify patients eligible for
the therapy and to monitor therapy response. Although several
epigenetic mechanisms have been identified in immune cells as
reviewed here, efforts to improve our understanding of the
epigenome of immune cells in the context of cancer is necessary.
The fact that targeting epigenetic processes might yield
counterbalancing effects on different immune cells makes it difficult
topredict upfront thefinal outcomeof the given treatment. Targeting
of EZH2 might represent a good example of this notion. Indeed,
EZH2 has generally been considered an interesting target to improve
anti-tumor T cell responses, as its inhibition promotes TH1
differentiation, CD8+ T cell memory formation and increases
tumor cell immunogenicity. However, inhibiting EZH2 might
concomitantly promote to increased MDSC differentiation, which
may counteract the positive effects on anti-tumor immunity. The
same holds true for G9a, as its inhibition improves tumor
immunogenicity, promotes M1 polarization and DC function, but
may also promote Treg development. Consequently, to fully
understand the putative impact of EMAs, it will be crucial to
precisely define their effects on tumor types and on the various
TME components, and use representative, immunocompetent
mouse models. We believe that orthotopic or genetically
engineered rodent models in which the tumor is developing in its
primaryorganor exvivoorganoidswithhuman tumorand immune
cells are most suitable for this purpose. To guide the selection of
EMAs, or a combination thereof, it is crucial to understand the
baseline immunity status of the tumorbyexamining its immunecell
constitution in addition to the functional state of immunecells. This
canbeachievedusingmultiparametricflowcytometryanalysis and/
or immunohistochemistry analyses of the TME coupled to single
cell sequencing suitable to unveil epigenetic and transcriptomic
signatures. Said that, “immune cold” tumors would benefit of
strategies able to improve antigenicity and immunogenicity and
efficient T cell priming while preventing T cell exhaustion and
general immunosuppression over the course of the cancer-
immunity cycle. “Immune intermediate” tumors would not
necessarily require new priming but rather benefit of therapies
that sustain effector function and inhibit immunosuppressive cell
types, while “immune hot” tumors might mostly take advantage of
strategies suitable to promote long-lasting and systemic memory T
cell formation, and prevent or reverse exhaustion (167). EMAs
might reveal beneficial at different time over the course of treatment
and according to the disease state and the immunocompetence of
the patient. Monitoring EMAs activity and efficacy remains
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challenging, although the above mentioned techniques applied to
patient sample or tumor biopsies might lead to the discovery of
predictive biomarkers. To this regard, the expression level of
epigenetically regulated genes was used to successfully monitor
pharmacodynamics effects of EMAs (235). Also, the assessment of
post-translational histone modifications in clinical samples allow
monitoring the response to EMAs (236). Defining the EMA-
induced shaping of the immune cell representation in the TME in
mouse models might instruct the use of EMAs in patients, and
might also clarify the effects related to anti-tumor immunity.

The combinationofEMAsand immunotherapy is emerging as a
crucial therapy paradigm across a variety of cancers (237). A
number of proof‐of‐concept preclinical studies combining EMAs
with checkpoint inhibitors showednear complete cancer regression
in tumor bearingmice, warranting further research into the subject.
Also, data originated in clinical trials have highlighted the potential
of EMAs for treatment of human cancers. Very recent reviews have
been published elsewhere (238–240), highlighting the possibility to
combine EMAs in combination with standard of care
chemotherapy or radiotherapy, and also front-line targeted
therapy and immunotherapy (238) . In the case of
immunotherapy, several combinations with HDACi and DNMTi
are currently being tested in patients (238). We believe that, as
strategies suitable tomonitor disease state and immunocompetence
in patients treated with EMAs are becoming more accessible and
more widely adopted, additional information will progressively
become available and guide the use of EMAs as single agents or
combined with immunotherapy including cancer vaccination,
immune checkpoint blockers, and TCR or CAR-T cell therapy.
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