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Systemic complement activation drives a plethora of pathological conditions, but its role in
snake envenoming remains obscure. Here, we explored complement’s contribution to the
physiopathogenesis of Naja annulifera envenomation. We found that N. annulifera venom
promoted the generation of C3a, C4a, C5a, and the soluble Terminal Complement
Complex (sTCC) mediated by the action of snake venommetalloproteinases. N. annulifera
venom also induced the release of lipid mediators and chemokines in a human whole-
blood model. This release was complement-mediated, since C3/C3b and C5a Receptor 1
(C5aR1) inhibition mitigated the effects. In an experimental BALB/c mouse model of
envenomation, N. annulifera venom promoted lipid mediator and chemokine production,
neutrophil influx, and swelling at the injection site in a C5a-C5aR1 axis-dependent
manner. N. annulifera venom induced systemic complementopathy and increased
interleukin and chemokine production, leukocytosis, and acute lung injury (ALI).
Inhibition of C5aR1 with the cyclic peptide antagonist PMX205 rescued mice from
these systemic reactions and abrogated ALI development. These data reveal hitherto
unrecognized roles for complement in envenomation physiopathogenesis, making
complement an interesting therapeutic target in envenomation by N. annulifera and
possibly by other snake venoms.

Keywords: Naja snake venom, envenomation, complement system, C5a-C5aR1, complement inhibitors
INTRODUCTION

Complement activation is a crucial event influencing the development of innate and adaptive
immune responses (1, 2). Once microbial associated molecular patterns (MAMPs) and damage-
associated molecular patterns (DAMPs) have been detected, complement can become activated
through three intrinsic pathways, the alternative (AP), lectin (LP), and classical (CP) pathways, or
through extrinsic pathways involving coagulation proteases, cathepsins, elastase, or snake venom
metalloproteases and serine proteases (2, 3). All of these pathways converge at central events that
culminate in the cleavage of C3, C4, and/or C5, leading to the generation of opsonins (C3b and C4b)
and anaphylatoxins (C3a, C4a, and C5a) and assembly of the terminal complement complex (TCC;
org April 2021 | Volume 12 | Article 6522421
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C5b-9n). Acting via various cell types and receptors, these
products stimulate a number of inflammatory events, inducing
mast cell degranulation (4), lipid mediator release (5–9),
inflammasome assembly (10–12), chemotaxis (2), generation of
ROS and NOS (13–15), and production of interleukins and
chemokines (1). Although complement is essential to host
defense and physiology, deficiencies or uncontrolled activation
of complement components can be detrimental; complement
components can promote excessive inflammation that
culminates in tissue damage, organ dysfunction, permanent
disabilities, and sometimes death. Such results have been
observed in a myriad of inflammatory disorders (16–19), as
well as in envenomation by snakes (20).

Snakebite envenoming constitutes a public health problem in
tropical and subtropical countries of Africa, Asia, and Latin
America. The clinical consequences of these accidents are
diverse, including respiratory arrest, hemostatic disorders,
bleeding, and tissue injury. Snakebites are responsible for more
than 80,000 deaths per year and cause amputation or permanent
disability in about 300,000 victims each year (20–23). Given the
relevance of snakebite, the World Health Organization (WHO)
has established a program to reduce snakebite envenoming-
associated mortality and disabilities by 50% before the year
2030. This program includes incentives for studies of “next-
generation” treatments (23), whose development will require
optimal characterization of the molecular mechanisms involved
in the physiopathogenesis of envenomation.

It is particularly notable that the snakebite envenoming
process presents some of the same clinical features observed in
certain complement-mediated inflammatory conditions, making
this system an interesting therapeutic target. Several studies have
shown that snake venom components can interact with
complement proteins (3). By the last century, cobra venom
factor (CVF), a C3b-like protein isolated from Naja venom
had been fully characterized in terms of its complement-
depleting activity. This venom has been shown to trigger AP
activation in an exacerbated and uncontrolled manner in a
number of experimental models (24–26). In addition, venoms
from snakes of different genera, such as Trimeresurus, Bothrops,
andMicrurus, have been shown to trigger complement activation
in normal human serum (NHS) in vitro , leading to
anaphylatoxin generation and soluble Terminal Complement
Complex (sTCC) assembly. These events are in part associated
with the action of snake venom metalloproteinases (SVMP) and
snake venom serine proteinases (SVSP) on central complement
components and regulators (27–33). In addition, other studies
have demonstrated depletion of C3 and Factor B (34) and an
increase in anaphylatoxins and sTCC plasma levels in
envenomated patients, indicating complement activation (35,
36). Despite these experimental and clinical reports, the real
impact of complement activation on the physiopathogenesis of
envenomation by snakes remains unclear.

Recently, we have reported that Naja annulifera snake venom
contains various potential complement activators, including
CVF, SVMPs, SVSPs, and proteins containing mannose and
N-acetylglucosamine residues. Furthermore, this cobra venom
Frontiers in Immunology | www.frontiersin.org 2
induces local reactions, characterized by swelling mediated by
mast cell degranulation, release of lipid mediators and neutrophil
infiltration, and systemic reactions characterized by an increase
in plasma levels of C-C Motif Chemokine Ligand 2 (CCL2) and
Interleukin 6 (IL-6), neutrophilia, monocytosis, and pulmonary
damage (37). Considering these findings, we believe that N.
annulifera venom exhibits interesting characteristics that make
it useful for models to evaluate the impact of complement
activation on envenomation physiopathogenesis.

Here, we have shown that N. annulifera venom triggers
complement activation in vitro and in vivo, followed by the
release of inflammatory mediators . By performing
pharmacological interventions in a human whole-blood model
of inflammation, we have also demonstrated that blockade of C3
or C5 cleavage and C5aR1 signaling inhibition reduce several
inflammatory parameters associated with envenomation
immunopathology. Furthermore, in various mouse models of
envenomation, we have shown that C5a-C5aR1 axis activation is
crucial for local and systemic inflammation and that changes
induced by the venom, including pulmonary injury, can be
abrogated by the use of PMX205, a C5aR1 antagonist. Thus,
C5aR1 signaling seems to be an interesting therapeutic target in
snakebite accidents involving N. annulifera or other snakes in
which envenomation pathogenesis is driven by C5a-C5aR1
axis activation.
MATERIAL AND METHODS

N. annulifera Venom
N. annulifera snake venom (South Africa specimens) was
purchased from LATOXAN Laboratory (Portes-les-Valence,
France). The lyophilized venom was reconstituted in sterile
saline at 5 mg/mL and stored at -80°C until use. The protein
and endotoxin contents were quantified by using a BCA assay
protein kit (Pierce) and PYROGENT™ Plus Gel Clot LAL Assay
(Lonza, USA), respectively, according to manufacturers’
recommendations. The endotoxin was present in the venom at
a level below the assay’s sensitivity (< 0.125 EU/mL).

Complement Therapeutics
PMX205 and P32 peptides were synthesized as previously
described (38, 39). Cp40 was synthesized as described by Qu
et al. (40). SB290157 was obtained from Cayman Chemical
(Michigan, USA).

Ethics Statement
BALB/c male mice (18–22 g) were obtained from the Center for
Animal Breeding of Butantan Institute. All procedures involving
animals were carried out in accordance with the ethical
principles for animal research adopted by the Brazilian Society
of Animal Science and the National Brazilian Legislation
n˚.11.794/08. The protocols used in the present study were
approved by the Institutional Animal Care and Use Committee
of the Butantan Institute (protocol approval n˚ 5323120918).
Experiments conducted with human samples were approved by
April 2021 | Volume 12 | Article 652242
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the Human Research Ethics Committee of the Municipal Health
Secretary of São Paulo. Blood samples were obtained from
healthy donors after informed consent (protocol approval n˚
974.312 and 4.309.960).

In Vitro Experiments
Erythrocytes and Sera
Blood from normal sheep and rabbits was collected in an equal
volume of Alsever solution (citrate, 114 mM; glucose, 27 mM;
NaCl, 72 mM; pH 6.1) and maintained at 4°C. Human blood
samples obtained from healthy donors were collected without
anticoagulant and allowed to clot at 4°C for 4 h. The blood was
then centrifuged at 400 x g, and the normal human serum (NHS)
was collected and stored at -80°C until use.

Complement Assays
NHS samples (200 µL) were treated with crude N. annulifera
venom (50 µg) or sterile saline and incubated for 30 min at 37°C.
The anaphylatoxins and sTCC in these samples were then
quantified using BD™ CBA Human Anaphylatoxin (BD
Biosc i ences ) and MicroVue SC5b-9 P lus Enzyme
Immunoassay (Quidel) Kits, respectively. AP, CP, and LP
activity assays were performed as described (41, 42).

Direct Cleavage of Human Complement Components
Samples of purified human C3, C4, and C5 (2.5 µg each)
(CompTech, Inc) were incubated with N. annulifera venom
(2.5 µg) for 30 min at 37°C in the presence or absence of 1,10-
phenanthroline (1,10 Phe) (10 mM) or phenylmethylsulfonyl
fluoride (PMSF) (10 mM) SVMP and SVSP inhibitors,
respectively. The reactions were stopped by adding
Ethylenediamine Tetraacetic Acid (EDTA) (15 mM), and the
mixtures were subjected to electrophoresis on 10% Sodium
Dodecyl Sulfate Polyacrylamide Gels (SDS-PAGE) (43) under
reducing conditions, and the gels were silver-stained (40). In
addition, the generation of the anaphylatoxins was quantified
using the BD™ Cytometric Bead Array (CBA) Human
Anaphylatoxin kit (BD Biosciences).

Ex-Vivo Human Whole-Blood Model
The ex-vivo human whole-blood model described by Mollness
and colleagues (44) was used, with some modifications. Blood
samples were collected by venipuncture into tubes containing 50
µg/mL of lepirudin (Refludan®, Colgene, USA), a thrombin-
inhibitor anticoagulant, which does not interfere with
complement activity. The whole-blood samples were treated
with increasing concentrations of N. annulifera venom,
ranging from 3.125 to 100 µg/mL, or with sterile saline and
then incubated for 30 or 60 min at 37°C. Under these conditions,
N. annulifera venom induces the production of inflammatory
mediators but does not promote coagulation; however, at higher
concentrations (50 and 100 µg/mL), N. annulifera venom is
highly hemolytic. Considering that free hemoglobin may be
highly inflammatory (45) and that there is no information
about hemolysis on envenomation by N. annulifera, we chose
25 µg/mL for subsequent experiments, since this dose did not
induce significant hemolysis (data not shown).
Frontiers in Immunology | www.frontiersin.org 3
To assess complement’s role in the inflammatory events
promoted by N. annulifera venom, human whole blood was
pretreated with either the compstatin analog Cp40 (C3/C3b
inhibitor, 20 µM) (46), SB290157 (C3aR antagonist, 20 µM) (47),
PMX205 (C5aR1 antagonist, 20 µM) (48) or P32 (C5aR2 agonist,
100 µM) (39) inhibitors/activator or with appropriate vehicle as
control, i.e., saline (Cp40 and P32), DMSO (SB290157), or 5%
glucose (PMX205), for 5 min at room temperature. In addition, N.
annulifera venom samples were incubated with 1,10 Phe (SVMP
inhibitor, 15 mM) or vehicle (ethanol) for 15 min at room
temperature. N. annulifera venom was then added to the blood
samples, and the mixtures were incubated at 37°C for 30, 60, or
120 min under continuous agitation. Finally, the tubes were
centrifuged at 405 × g, for 10 min at 4°C, the plasma was
collected, and the samples were stored at -80°C for further
quantification of inflammatory mediators.

In Vivo Experiments
Analysis of Systemic Complement Activity
BALB/c mice (n=6/group) were injected by the intraperitoneal
(i.p.) route with a sublethal (56.5 µg) or lethal (94.2 µg) dose ofN.
annulifera venom to induce moderate or severe envenomation
illness, respectively (37). As controls, mice were inoculated with
sterile saline. After 30 min, all mice were euthanized with an
overdose of two anesthetics (200 mg/kg ketamine, 20 mg/kg
xylazine). The whole blood was collected by cardiac puncture
and allow to clot at room temperature for 1 hr. The blood
samples were then centrifuged at 1500 × g for 15 min at 4°C, and
the sera obtained were stored at -80°C until analysis.
Measurements of AP, CP, and LP serum activity were
evaluated at level of C9 by using the Complement Pathway
Mouse Assay ELISA kit (HycultBiotech) according to the
manufacturer’s instructions. The results were expressed as AP,
CP, or LP activity [%].

Assessment of the C5a-C5aR1 Axis Contribution to
In Vivo Reactions
Mice were treated by the subcutaneous (s.c.) route with PMX205
(C5aR1 antagonist) or vehicle (5% glucose solution) at 1 or 2 mg/
kg b.wt. at 24 h or 1 h before the induction of local and
systemic reactions.

Local Reactions
BALB/c mice (n=6/group) were each injected with 10 mg of N.
annulifera venom (37), dissolved in a volume of 50 mL sterile
saline, into the s.c. tissue of the plantar region of the left hind
paw. The contralateral hind paw (control) was inoculated with
50 mL of sterile saline. The thickness of the hind paws was
assessed with a caliper rule (Mitutoyo, Suzano-SP, Brazil; in
increments of 0.01 mm) at various time points before injection
(T0) and after 24 h, following inoculation with either venom or
saline (Te). Increases in paw volume were expressed as a
percentage (%), calculated according to the following formula:
(Te-T0)/T0*100 (37). Mice were euthanized by anesthetic
overdose (200 mg/kg ketamine, 20 mg/kg xylazine) at 20 or
60 min after venom inoculation, before collection of the s.c.
tissue from hind paws for inflammatory mediator quantification.
April 2021 | Volume 12 | Article 652242
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Tissue samples were homogenized using a PT-10 Polytron
homogenizer (Kinematica, Luzern, SWZ) in lysis buffer (NaCl,
200 mM; EDTA, 5 mM; Tris, 10 mM; glycerol, 10%; leupeptin, 1
µg/mL; aprotinin, 28 µg/mL; PMSF, 1 mM). The homogenized
tissues were then centrifuged at 1500 × g for 15 min at 4°C. The
supernatants were obtained, centrifuged again, filtered, and
stored at -80°C until analyzed.

Systemic Reactions
The C5a-C5aR1 contribution to envenomation systemic reactions
were scrutinized by sublethal and lethal experimental sets which
represents moderate and severe envenomation conditions,
respectively (37). In the moderate set mice were inoculated by
the i.p. route with a sublethal N. annulifera venom dose (37) or
with sterile saline and euthanized 1 h after venom injection with
anesthetics overdose (200 mg/kg ketamine, 20 mg/kg xylazine) to
blood samples obtention. Blood and lung samples from mice
submitted injected with the venom lethal dose (37) were obtained
5 hours after venom inoculation which represents death moment
or intense impairment of the animals this group. The animals that
not died at 5 hours after venom injection were euthanized with
anesthetics overdose (200 mg/kg ketamine, 20 mg/kg xylazine),
since this period was determined as endpoint to this group. Blood
samples were then obtained by cardiac puncture using EDTA (2.5
mg/mL) as an anticoagulant. Aliquots of these samples were used
for systemic total and differential leukocyte counts, and other
blood samples were centrifuged at 2800 × g at 4°C for 10 min.
Plasma samples were stored at -80°C and used to measure
inflammatory mediators.

After euthanasia, the lungs were extracted from the mice
injected with the lethal N. annulifera venom dose, then fixed in
10% formaldehyde for 24 h. The pulmonary samples were then
subjected to routine histologic fixation and stained with
hematoxylin and eosin (HE). The tissue samples were
examined under a light microscope for the presence of cellular/
tissue changes, and a histopathological score was determined.

Quantification of Inflammatory Mediators
Human chemokines were detected by using a BD™ CBAHuman
Chemokine kit (BD Biosciences). The BD™ CBA Mouse
Inflammation kit (BD Biosciences) was used to detect systemic
chemokines and interleukins in the mouse plasma. Keratinocyte
Chemokine (KC)/C-X-C motif chemokine ligand 1(CXCL1) was
detected by using the LEGENDplex™ Mouse Anti-Virus
response panel (Biolegend). Mouse myeloperoxidase (MPO)
was quantified by using a MPO Mouse ELISA kit
(HycultBiotech). leukotriene B4 (LTB4), prostaglandin E2
(PGE2), and thromboxane B2 (TXB2) were quantified by the
LTB4 Enzyme-Linked Immunosorbent Assay (ELISA), PGE2
Monoclonal, and TXB2 ELISA kits, all from Cayman
Chemical. All assays were performed according to the
manufacturer’s recommendations.

Statistical Analysis
Statistical analysis was performed using Student’s t-test for
comparisons of the mean of two groups. One-way and two-
way ANOVA, followed by Bonferroni’s multiple comparison
Frontiers in Immunology | www.frontiersin.org 4
test, were applied to the results of the time and dose-response
experiments. The statistical analyses were conducted using
Graphpad Prism 5 software (La Jolla, California, USA).
Differences were considered significant when p ≤ 0.05.
RESULTS

N. annulifera venom acts on the human
complement
In a previous study (37), we demonstrated the presence of several
potential components in N. annulifera venom able to interact
with the human complement system. To determine whether N.
annulifera venom could interfere with the complement activity,
NHS samples were incubated with the venom and then
submitted to hemolytic (AP and CP) and C4b (LP) ELISA
assays (41, 42). We found that cobra venom significantly
reduced the activity of the three complement pathways
(Figures 1A–C). In order to evaluate whether the reduction in
complement activity was a result of activation or inhibition, since
some animal venoms and secretions can contain complement
inhibitors (3), we assessed anaphylatoxin generation and sTCC
assembly. The results (Figures 1D–G) confirmed that venom
promoted complement activation in NHS, as determine by the
generation of C3a, C5a, and sTCC, and to a lesser extent C4a.

SVMP and SVSP Hydrolyze Human
Complement Proteins
SVMP and SVSP present many substrates and actions on prey
and human victims (49), making them potential complement
activators. By incubating purified human complement proteins
with N. annulifera venom and using specific inhibitors of
metalloproteases and serine proteases, we observed that both
classes of enzymes present in the venom were able to cleave C4
and C5, while C3 is cleaved only by SVMP (Figures 2A–C). In
addition, C3, C4 and C5 cleavage by venom proteases was
functional, since culminated in the C3a, C4a and C5a
anaphylatoxins generation (Figures 2D–F).

N. annulifera Venom Induces Inflammation
In Vitro
The N. annulifera venom inflammatory potential was tested in a
human whole-blood ex vivo model in the presence of lepirudin, a
thrombin inhibitor anticoagulant that does not interfere with
complement activity (44, 45). Human blood samples were
incubated with increasing N. annulifera venom concentrations
(3.125 - 100 µg/mL) for 30 or 60 min at 37°C, and the
production of inflammatory mediators was quantified. We found
that N. annulifera venom triggered anaphylatoxin generation and
sTCC assembly (Supplementary Figure 1); these processes were
accompanied by the release of lipid mediators, including leukotriene
B4 (LTB4), prostaglandin E2 (PGE2), and thromboxane A2 (TXA2)
(Supplementary Figure 2). Furthermore, N. annulifera venom
induced the production of the chemokines C-C motif chemokine
ligand 2 (CCL2), CCL5 and C-X-C motif chemokine ligand 8
(CXCL8) (Supplementary Figure 3).
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Inflammatory Events Induced by N.
annulifera Venom In Vitro Are
Complement-Mediated
To identify the contribution of complement to the
inflammatory reactions promoted by N. annulifera venom, we
characterized the effects of pharmacologic interventions on a
human ex vivo whole-blood model. The compstatin analog
peptide Cp40, a C3/C3b inhibitor (46), strongly reduced C3a
(Figure 3A) and LTB4 (Figure 3D) production and to a lesser
extent that of PGE2 (Figure 3E), CCL2 (Figure 3G), and
CXCL8 (Figure 3I). In contrast, Cp40 failed to interfere with
the generation of C5a or sTCC assembly (Figures 3B, C),
Frontiers in Immunology | www.frontiersin.org 5
suggesting that N. annulifera venom proteases actions upon
C5 is responsible for it (Figures 2C, F). The incubation of N.
annulifera venom with 1,10 Phe, a SVMP inhibitor, and further
incubation with human whole blood resulted in the abrogation
of C3a/C5a generation and sTCC formation (Figures 3A–C),
suggesting an important role for SVMP in complement
activation induced by N. annulifera venom in this ex vivo
model. Since N. annulifera venom proteases can lead to
complement activation, and Cp40 failed to control the
generation of C5a or sTCC, we decided to evaluate the role of
anaphylatoxin receptors in the inflammatory process induced
by cobra venom.
A

D

B C

E F G

FIGURE 1 | N. annulifera venom (NaV) acts on the human complement system. NHS samples were incubated with NaV or sterile saline for 30 minutes at 37°C.
Then, these samples were submitted to functional assays to determine NaV effects on AP (A), LP (B) and CP (C) activity. In addition, C3a (D), C4a (E) and C5a (F)
anaphylatoxins generation, and sTCC (G) assembly were measured by ELISA. Data represent means ± SEM of five independent experiments from different NHS
donors. ***p ≤ 0.001 (two-tailed t-test or two-way ANOVA, followed by Bonferroni post-test).
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Inhibition of C3a receptor (C3aR) by the antagonist
SB290157 (47) resulted in a reduction in CXCL8 and CCL2
production (Figures 3G, H) and an increased release of lipid
mediators (Figures 3D–F) and CCL5 (Figures 3I). In contrast,
C5a receptor 1 (C5aR1) inhibition caused by the antagonist
PMX205 (48) resulted in decreased levels of LTB4, PGE2, TXA2,
CXCL8, and CCL2 (Figures 3D–H).

C5a receptor 2 (C5aR2), a second receptor that binds C5a, has
been described to act as an immune dampener to C5aR1 and
TLR-4, regulating the production of inflammatory mediators
(50). To test if C5aR2-mediated signaling could modulate the
release of inflammatory markers in our model, a functionally
selective agonist peptide (P32) (39) was used. P32 reduced CCL2
production to the same extent as did the other inhibitors
(Figure 3G). On the other hand, C5aR2 stimulation by P32
potentiated LTB4, PGE2 (Figures 3D, E) and CCL5 release
(Figure 3I).

Given that N. annulifera venom triggers complement
activation by the extrinsic route and that the modulation of the
C5a-C5aR1 axis interferes with the immunopathology associated
with envenomation in vitro, we chose PMX205 for evaluating
complement’s contribution to local and systemic reactions in
murine models of envenomation.
Frontiers in Immunology | www.frontiersin.org 6
N. annulifera Venom Promotes Systemic
Complementopathy
Previously, we showed that N. annulifera venom can induce
systemic inflammatory reactions in mice (37). Nevertheless,
action on the complement system in this scenario had not
been evaluated. To examine this parameter, we injected groups
of mice with sublethal or lethal (37) doses of venom by the
intraperitoneal (i.p.) route; control animals were injected with
sterile saline. Blood samples were obtained after 30 min, and
complement activity was determined by functional assays at the
level of C9 activation using mouse serum samples. Moderated
and severe experimental envenoming induced CP and LP
complementopathy at the same extent (Figures 4B, C). In both
experimental groups, AP activity reduction was detected,
however, in mice submitted to the lethal envenomation
protocol the AP consumption was higher (Figure 4A).
C5a-C5aR1 Axis Modulation Reduces
Local Reactions Induced by N. annulifera
Venom
Groups of mice were treated with vehicle or PMX205 (1 mg/kg
body weight [b.wt.] in 5% glucose solution) at 24 h and 1 h
CA B

FD E

FIGURE 2 | SVMP and SVSP cleave human complement proteins. Human C3, C4 and C5 purified proteins (2.5 µg) were incubated with sterile saline or N.
annulifera venom (NaV - 2.5 µg) with or without metallo- (10 mM) and serine-proteinases (10 mM) inhibitors for 30 minutes at 37°C. After this period, reactions were
stopped and C3 (A), C4 (B) and C5 (C) cleavage evaluated by SDS-PAGE and silver stanning. Images presenting in panels a-c were grouped and/or spliced (the
original gels are presented as supplementary material – Figure S5). C3a (D), C4a (E) and C5a (F) anaphylatoxins generation in these reactions were determined by
CBA. Panels (A–F) represents five different experiments. Data are means ± SEM of three independent experiments ***p ≤ 0.001 (two-tailed t-test). ### indicates a
significant difference between complement purified proteins treated with N. annulifera venom + Vehicle and N. annulifera venom + Protease inhibitors. ##p ≤ 0.01,
###p ≤ 0.001. ns = non-significant.
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before N. annulifera venom injection. The subcutaneous
venom inoculation (10 µg) induced a rapid-onset edema in
the hind paws of the mice, reaching a maximum peak at
20 min after injection (125% increase in paw volume, Figure
5A). The swelling persisted for several hours and disappeared
within 24 h. Inhibition of C5aR1 signaling produced a
significant decrease in the hind paw volume with time,
mainly at edema peak (54% inhibition) (Figure 5B).
Mechanistically, the edema reduction was characterized by a
strong inhibition of LTB4, PGE2, and TXA2 release (Figures
5C–E) at the edema peak.
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N. annulifera venom injection also promoted KC (murine
CXCL8 homolog) chemokine release, which was accompanied
by a large neutrophil infiltration, as demonstrated by MPO
quantification, that occurred in a C5a-C5aR1 axis-dependent
manner, since receptor blockage reduced these inflammatory
events (Figures 5F, G).

C5aR1 Blockage Abrogates Systemic
Reactions Evoked by N. annulifera Venom
To demonstrate the contribution of complement to the systemic
reactions induced by N. annulifera venom, we employed two sets
of experiments. The first set was performed by injecting a
sublethal dose of venom (56.5 µg; i.p.), which induces a clinical
condition in mice characterized by apathy, bending of the
column, a rough hair coat, dyspnea, and difficulty ambulating.
This dose also promotes changes in some systemic parameters,
including a decrease in circulating lymphocytes and an increase
in neutrophils. It also promotes increases in IL-6 and CCL2
plasma levels. All the reactions induced by this dose reached a
peak 1 h after venom inoculation, and the values returned to
normal by 24 h (37). This dose was not able to induce death or
organ damage during any evaluation period (37). Treatment with
PMX205 (1 mg/kg b.wt.) was able to restore the normal
percentage of circulating lymphocytes and decrease the
number of neutrophils (Figure 6A). Furthermore, C5aR1
inhibition fully reduced IL-6 production and restored CCL2 to
physiological levels (Figures 6B, C).

The second experimental set was performed by injecting mice
with a dose of venom equivalent to the 1LD50 (94.2 µg, i.p.) (37).
This treatment produced a more severe clinical condition than
did the sublethal dose. Mice given the higher dose showed
apathy, bending of the spinal column, a rough hair coat,
dyspnea, and difficulty ambulat ing, and they died
approximately 5 h after venom inoculation. Death was
preceded by systemic inflammation, characterized by
leukocytosis with lymphopenia, neutrophilia, and monocytosis
(Figures 7A–D). Moreover, the LD50 venom dose induced
higher levels of IL-6, CCL2, and TNF-a production than did
the sublethal venom dose (Supplementary Figures 4A–C). In
the lethal context,N. annulifera venom induced acute lung injury
(ALI), with diffuse alveolar damage (DAD) featured by alveolar
collapse, septal inflammation, and a thickening of the alveolar
septum (Figures 8A–D). Use of PMX205 (2 mg/kg b.wt.) in
these mice restored the blood cell parameters to physiological
levels (Figures 7A–D). Strikingly, ALI was completely abrogated
by PMX205 treatment, along with an increase in systemic levels
of an anti-inflammatory cytokine, IL-10 (Supplementary
Figure 4D). Nevertheless, in these lethal conditions, IL-6,
Tumor Necrosis Factor a (TNF-a), and CCL2 production
were still aggravated (Supplementary Figures 4A–C).
DISCUSSION

Current understanding indicates that snake venoms trigger
complement activation in humans (27–36), but the overall
A

B

C

FIGURE 4 | N. annulifera venom (NaV) induces systemic complementopathy
in the murine model. Serum samples were obtained from mice envenomated,
i.p., with a sublethal or lethal NaV dose (n=6/venom dose) and AP (A), LP (B)
and CP (C) activity evaluated by functional assays. Data are means ± SEM of
six independent experiments. ***p ≤ 0.001 (two-tailed one-way ANOVA,
followed by Bonferroni post-test). ### indicates significant difference between
the sublethal and lethal venom doses.
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molecular mechanisms induced by the envenomation have
remained underexplored. Here, by coupling in vitro and in
vivo approaches, we have determined that N. annulifera venom
induces reduction in complement pathways activity,
anaphylatoxins generation and sTCC assembly. These reactions
were accompanied by lipid mediators release and production of
chemokines and interleukins. C5a-C5aR1 axis signaling is the
driver of these effects, since its modulation prevents local and
Frontiers in Immunology | www.frontiersin.org 9
systemic reactions induced by the venom and protects mice
against an extensive ALI.

Complementopathy is a hallmark of a plethora of
inflammatory, autoimmune, and degenerative conditions
and is generally accompanied by an increase in the systemic
levels of inflammatory mediators (51–56). A human whole-
blood model of inflammation has been developed to study
complement’s role in various inflammatory events and
A B

C D E

F G

FIGURE 5 | N. annulifera venom (NaV) promotes C5a-C5aR1 axis-dependent edema. Mice (n=6/group) were pretreated with PMX205 (1 mg/kg), a C5aR1 inhibitor,
or vehicle 24 and 1 hour before NaV injection. Following inhibitor administration, local reactions were induced by NaV inoculation into subcutaneous tissue from mice
left hind paws and the swelling evaluated along the time with a caliper rule (A, B). In addition, tissue samples were obtained along the time, homogenized, and then
submitted to LTB4 (C), PGE2 (D), TXB2 (E), MPO (F) and KC (G) levels assessment by ELISA and CBA. Data are means ± SEM of six independent experiments.
***p ≤ 0.001 (two-tailed one-way ANOVA or two-way ANOVA, followed by Bonferroni post-test). ### indicates a significant difference between animals treated with N.
annulifera venom + Vehicle and N. annulifera venom + PMX205. The ## symbol (240 minutes period) means the comparison between animals treated with the vehicle
+ N. annulifera venom and PMX205 + N. annulifera in which statistical differences are p ≤ 0.01.
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A B C

FIGURE 6 | C5a-C5aR1 signaling drives moderate systemic reactions induced by N. annulifera venom (NaV). Mice (n=6/group) were pretreated with PMX205
(1 mg/kg), a C5aR1 inhibitor, or vehicle 24 and 1 hour before NaV injection. Following inhibitor or vehicle administration, moderate systemic reactions were induced
by the injection of NaV sublethal dose, via intraperitoneal route. One hour after envenomation, blood samples were obtained by cardiac puncture to determine
hematological changes by blood smear (A), and CCL2 (B) and IL-6 (C) systemic generation by ELISA and CBA. Data are means ± SEM of six independent
experiments. ***p ≤ 0.001 (two-tailed t-test or two-way ANOVA, followed by Bonferroni post-test). ### indicates a significant difference between animals treated with
NaV + Vehicle and NaV + PMX205. ns = non-significant.
A B

C D

FIGURE 7 | C5a-C5aR1 activation cause hematological changes in severe experimental envenomation. Mice (n=6/group) were pretreated with PMX205 (2 mg/kg), a
C5aR1 inhibitor, or vehicle 24 and 1 hour before N. annulifera venom (NaV) injection. Following inhibitor administration, severe systemic reactions were induced by
the injection of NaV lethal dose, via intraperitoneal route. Five hours after envenomation, blood samples were obtained by cardiac puncture to determine leukocytosis
(A), by cell counting in a hemocytometer, and lymphopenia (B), neutrophilia (C), and monocytosis (D), via blood smear analysis. Data are means ± SEM of six
independent experiments. ***p ≤ 0.001 (two-tailed t-test or two-way ANOVA, followed by Bonferroni post-test). ### indicates a significant difference between animals
treated with NaV + Vehicle and NaV + PMX205.
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diseases, including sepsis (44) and hemolytic diseases (45).
This experimental model permits the investigation of the role
of complement in the complex inflammatory network,
including all potential cellular and fluid-phase mediators
present and able to interact simultaneously. We found that
N. annulifera venom induced complement activation in the
whole-blood model, with consequent release of pro-
inflammatory mediators that included LTB4, PGE2, TXA2,
CCL2, and CXCL8. These findings are in line with the
increased plasma levels of inflammatory markers observed in
an in vivo model of envenomation, indicating that human
envenomation by N. annulifera leads to uncontrolled
inflammatory reactions and consequent development of ALI/
ARDS (acute respiratory distress syndrome), a known cause of
respiratory arrest and death, since patients with this
inflammatory condition present augmented plasma and
pulmonary levels of these pro-inflammatory mediators
(57–60).

The imbalanced release of inflammatory mediators
contributes significantly to envenomation pathology, since it
promotes endothelial dysfunction, edema formation (61–65)
pain, and tissue hypoxia, which can culminate in compartment
syndrome (66–69). We have previously demonstrated that the
use of eicosanoid inhibitors (37) reduces the edema induced by
Frontiers in Immunology | www.frontiersin.org 11
N. annulifera venom, but the underlying mechanisms have not
been fully elucidated. Similar to observations in the ex-vivo
human whole-blood model, injecting N. annulifera venom in
the mouse subcutaneous tissue, we have demonstrated that C5a-
C5aR1 axis activation was involved in the release of LTB4, PGE2,
and TXA2 into the hind paws; these mediators are likely to be
responsible for the development of the extensive swelling
promoted by the venom. LTB4, PGE2, and TXA2 are lipid
mediators that are mainly involved in vascular changes during
the early stages of the inflammatory reaction (70). Nonetheless, if
not controlled, the action of these mediators can be injurious,
making them important players in various pathologies (70) such
as in pulmonary edema and death promoted by Tityus serrulatus
scorpion envenomation (71, 72).

Apart from swelling, N. annulifera venom promotes the
infiltration of neutrophils into the venom inoculation site (37).
C5a, LTB4, and CXCL-1/IL-8 are powerful chemoattractants for
neutrophils (73, 74) and they have been pointed to as
orchestrators in various pathological conditions. In our
experiments, pharmacological inhibition of C5aR1 resulted in
the abrogation of neutrophil infiltration and a decreased
production of LTB4 and KC. Previously, we have shown that
C5aR1 targeting by antibodies prevents the infiltration of
neutrophils into the peritoneal cavity of mice injected with
A

B C D

FIGURE 8 | C5aR1 signaling cause ALI development in severe experimental envenomation by N. annulifera. Mice (n=6/group) were pretreated with PMX205 (2 mg/
kg), a C5aR1 inhibitor, or vehicle 24 and 1 hour before of N. annulifera venom (NaV) injection. Following inhibitor or vehicle administration, severe systemic reactions
were induced by the injection of NaV lethal dose, via intraperitoneal route. Five hours after envenomation, the lungs were obtained, fixed, and submitted to histologic
procedures (A) Results were expressed as area of alveolar collapse (%) (B) and histopathological scores (C, D), i.e., 1- mild changes; 2- moderate changes; 3-
severe/intense changes. Data are means ± SEM of six independent experiments. ***p ≤ 0.001 (two-tailed t-test or two-way ANOVA, followed by Bonferroni posttest).
### indicates a significant difference between animals treated with NaV + Vehicle and NaV + PMX205.
April 2021 | Volume 12 | Article 652242

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Silva de França et al. C5a-C5aR1 Activation Drives Naja Envenomation
Bothrops asper snake venom or its purified metalloprotease (75).
However, whether the C5a-C5aR1-neutrophil triad in the snake
envenomation context is destructive or protective remained to
be explored.

An imbalance in the systemic levels of inflammatory
mediators, including C3a, C5a, and sTCC, can potentially
evolve to cause multiple organ dysfunction and death (17).
Injection of BALB/c mice with a sublethal venom dose, which
promotes a moderate envenomation state (37) has demonstrated
that N. annulifera venom interfere in the complement activity,
culminating in the generation of C5a, which binds to C5aR1 and
promotes an increase in the number of circulating neutrophils as
well as IL-6 and CCL2 systemic levels. Although systemic
inflammation was induced by this dose, no tissue damage was
detected in the evaluated organs (brain, lungs, heart, kidneys,
liver, and spleen) (37); however, this assessment does not exclude
changes at the physiological level, since C5a binding to C5aR1
leads to blood pressure alteration (76), electrophysiological
changes (77), pain (78), and hemostatic disorders (17, 79, 80).
Thus, studies targeting these physiological parameters need to
be performed.
Frontiers in Immunology | www.frontiersin.org 12
Among the consequences of the systemic and intrapulmonary
complement activation is the development of ALI/ARDS (76,
81–85), a severe form of hypoxemic respiratory failure resulting
from inflammatory insult to the lungs (53–55, 86, 87). One LD50

injection in mice produced a severe envenomation state, with a
significant reduction of the complement activity, leukocytosis,
neutrophilia, monocytosis, and strong systemic production of IL-
6, CCL2, and TNF-a. Furthermore, this venom dose promoted
extensive ALI and death. These changes induced in mice by
injection of a lethal N. annulifera venom dose, coupled with the
in vitro results we obtained from the human whole-blood model,
suggest that the physiopathogenesis of envenomation by N.
annulifera is similar to that occurring in sepsis and ALI/ARDS
(17, 53–55, 86, 87). In addition, strong complementopathy and
increased production of interleukins and chemokines induced by
the N. annulifera’s venom lethal dose may be related with
patients’ poor prognosis, since these inflammatory events are
risk factors to ALI/ARDS severity, multiorgan failure and death
in sepsis and polytrauma (53, 88, 89).

The disruption of the C5aR1 signaling by the action of the
PMX205 led to an increase of the anti-inflammatory IL-10
FIGURE 9 | Schematic representation of the contribution of the C5a-C5aR1 axis to local and systemic reactions induced by N. annulifera venom (NaV). NaV acts on
complement proteins culminating in anaphylatoxins generation and sTCC assembly. C5aR1 engagement by C5a stimulates LTB4, PGE2 and TXB2 generation, which
cause endothelial dysfunctions promoting vascular leakage resulting in extensive edema. In addition, the release of LTB4 and KC, triggered by C5aR1 signaling, may
promote the attraction and activation of neutrophils into tissue, increasing MPO levels and potentiating local immunopathology (green lines). The systemic C5aR1
activation, stimulated by NaV sublethal dose injection, promotes moderate increase on CCL2 and IL-6 levels, as well in the neutrophil’s percentage, which could lead
envenomated animals to a several physiological disbalance (blue lines). By coupling human whole blood ex vivo (yellow lines) approaches and a severe experimental
mouse model of envenomation, it was detected that NaV promotes a hyperacute inflammatory reaction featured by intense systemic inflammatory mediators’ storm,
induced by C5a-C5aR1 axis activation. This can evolve to a plethora of pathological conditions including ALI development (red lines) that can progress to ARDS (red
dotted lines) and respiratory arrest, a common death cause in humans envenomated by N. annulifera. In addition, these inflammatory mediators can promote organ
dysfunction featuring a sepsis like syndrome, which could be a death cause of the envenomated individuals (purple dotted lines).
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cytokine systemic levels, rescued mice from the increase on
circulating leukocytes and abrogated ALI development.
Unfortunately, the blockage of C5aR1 activation and the
increase in IL-10 levels were not followed by a decrease of
IL-6, CCL2, or TNF-a in the plasma levels, and they could not
control animals’ death, induced by N. annulifera venom lethal
dose , sugges t ing that perhaps other complement/
inflammatory-mediated signaling pathways are acting in this
context. By injecting a lethal venom dose, the physiological
imbalance and tissue damage were stronger promoting high
DAMPs release and amplifying complement activation. C3 is
the most abundant circulating complement protein (90), and
we must consider its involvement on cytokines release
potentiation in lethal context, as well in the death, since N.
annulifera venom presents on its composition various C3
activators, including CVF (37). In addition, through in vivo
C5aR1 antagonism, C3aR activation can potentially stimulate
the increase on systemic levels of inflammatory mediators (4,
11, 91–93) and promote pathological events, which can evolve
to cause multiple organs dysfunction and death (53, 93–95). In
addition, cobra venom also induces the formation of high
amounts of sTCC, a complex with inflammatory and
deleterious properties, which is a risk factor to multiple
pathologies (17, 53, 96–100). Thus, by using other
pharmacological tools to inhibit additional steps of the
complement cascade, in vivo, our results may be expanded.

In recent decades, the contribution of complement to a
plethora of inflammatory and degenerative diseases has been
demonstrated and, in this context, various strategies to control
complement activation have emerged. Complement inhibition,
achieved by using eculizumab, a humanized monoclonal
antibody that prevents C5 activation and improve diseases
outcomes (19), has been used to treat autoinflammatory (e.g.,
atypical hemolytic uremic syndrome and paroxysmal nocturnal
hemoglobinuria) and autoimmune conditions (e.g., myasthenia
gravis). Thus, considering that eculizumab is an FDA-approved
medicine that is already used in the clinic and that N. annulifera
venom induces a pathology mainly mediated by C5a,
eculizumab may prove useful as a complementary treatment
for this envenomation. In addition, PMX205 and Avacopan
(CCX168), which are C5aR1 antagonists are also under clinical
development for amyotrophic lateral sclerosis (38) and atypical
uremic hemolytic syndrome (aUHS), anti-neutrophil
cytoplasmic antibody associated (ANCA) vasculitis, and
immunoglobulin A (IgA) nephropathy (19), respectively, thus
also representing other potential therapeutic medicines for
envenomation treatment.

In conclusion, we have shown here, for the first time, that
activation of the C5a-C5aR1 axis is the main driver of the local
and systemic reactions in envenomation by N. annulifera, a
medically important snake on Sub-Saharan Africa. Figure 9
summarizes the main findings of the current study, in which
in vitro and in vivo models targeting C5a-C5aR1 signaling
demonstrated that envenomation by N. annulifera is a harmful
hyperacute inflammatory condition that predisposes individuals
to circulatory dysfunctions and ALI/ARDS development. Thus,
Frontiers in Immunology | www.frontiersin.org 13
we postulate that modulation of the C5a-C5aR1 axis could
improve clinical outcomes in envenomation by N. annulifera
as well by other venomous animals in which the C5a-C5aR1 axis
is activated during physiopathogenesis.
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Supplementary Figure 1 | N. annulifera venom (NaV) induces complement
activation in human whole blood. NaV (3.125 to 100 µg/mL) samples were
incubated with human blood samples for 30 or 60 min at 37°C, and then
anaphylatoxin generation (A, B) and sTCC assembly (C) were quantified by CBA
and ELISA. Data are means ± SEM of three independent experiments. *** (different
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venom concentrations vs. saline)/### (30 vs. 60 minutes) p ≤ 0.001 (two-tailed two-
way ANOVA, followed by Bonferroni post-test).

Supplementary Figure 2 | N. annulifera venom (NaV) triggers lipid mediators
release in human whole blood. Human blood samples were incubated with NaV
(3.125 to 100 µg/mL) during 30 or 60 min at 37°C. Leukotriene B4 (LTB4) (A),
prostaglandin E2 (PGE2) (B) and thromboxane A2 (TXA2) (C) production were
analyzed by ELISA. Data are means ± SEM of three independent experiments.
*** (different venom concentrations vs. saline)/### (30 vs. 60 minutes) p ≤ 0.001 (two-
tailed two-way ANOVA, followed by Bonferroni post-test).

Supplementary Figure 3 | N. annulifera venom (NaV) upregulates chemokines
generation in human whole blood. Human blood samples were exposed to NaV
(3.125 to 100 µg/mL) during 30 or 60 min at 37°C. Then, CCL2, CCL5 and CXCL8
chemokines release were accessed by CBA. Data are means ± SEM of three
independent experiments with different whole blood donors. *** (different venom
Frontiers in Immunology | www.frontiersin.org 14
concentrations vs. saline)/### (30 vs. 60 minutes) p ≤ 0.001 (two-tailed two-way
ANOVA, followed by Bonferroni post-test).

Supplementary Figure 4 | Inhibition of C5a-C5aR1 signaling worsens
production of inflammatory mediators in mice injected with a lethal dose of N.
annulifera venom (NaV). Mice (n=6/group) were pretreated with PMX205 (2 mg/kg),
a C5aR1 inhibitor, or vehicle 24 and 1 hour before NaV injection. Following the
inhibitor administration, severe systemic reactions were induced by the injection of
NaV lethal dose, via intraperitoneal route. Fiver hours after envenomation, blood
samples were obtained to determine systemic increase on CCL2, IL-6, IL-10, TNF-
a levels by ELISA and CBA. Data are means ± SEM of six independent experiments.
*** (NaV + treatments vs. Saline)/### (NaV + Vehicle vs. NaV + PMX205). p ≤ 0.001
(two-tailed t-test or two-way ANOVA, followed by Bonferroni post-test).

Supplementary Figure 5 | SDS=PAGE original gels from which Figure 2 was
organized.
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