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The ongoing COVID-19 pandemic caused by the novel coronavirus, SARS-CoV-2 has

affected all aspects of human society with a special focus on healthcare. Although

older patients with preexisting chronic illnesses are more prone to develop severe

complications, younger, healthy individuals might also exhibit serious manifestations.

Previous studies directed to detect genetic susceptibility factors for earlier epidemics

have provided evidence of certain protective variations. Following SARS-CoV-2

exposure, viral entry into cells followed by recognition and response by the innate

immunity are key determinants of COVID-19 development. In the present review our

aim was to conduct a thorough review of the literature on the role of single nucleotide

polymorphisms (SNPs) as key agents affecting the viral entry of SARS-CoV-2 and

innate immunity. Several SNPs within the scope of our approach were found to

alter susceptibility to various bacterial and viral infections. Additionally, a multitude of

studies confirmed genetic associations between the analyzed genes and autoimmune

diseases, underlining the versatile immune consequences of these variants. Based on

confirmed associations it is highly plausible that the SNPs affecting viral entry and

innate immunity might confer altered susceptibility to SARS-CoV-2 infection and its

complex clinical consequences. Anticipating several COVID-19 genomic susceptibility

loci based on the ongoing genome wide association studies, our review also proposes

that a well-established polygenic risk score would be able to clinically leverage the

acquired knowledge.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-
2), the virus responsible for the ongoing pandemic COVID-
19 has yet infected more than 108 million people worldwide
with a reported mortality rate between 0.5 and 10% in
different countries (1). SARS-CoV-2 is a novel coronavirus
originally detected in China. The specific mechanism by which
it infects humans and effects human health is not fully
understood. The clinical characteristics of COVID-19 usually
incorporates fever, fatigue, dry cough, and dyspnea, while severe
infections may result in bilateral pneumonia, and life-threatening
acute respiratory distress syndrome (ARDS). Although severe
complications usually manifest in elder patients with concurrent
chronic diseases (e.g., high blood pressure, diabetes) young,
healthy individuals might also suffer from critical consequences
of the disease, requiring intensive care. The wide range of
disease susceptibility especially in younger patients suggests that
difference in genetic background of individuals might contribute
to these alterations. In fact, the analysis of previous, unrelated
infectious diseases provides clear evidence that specific protective
genetic variations are enriched in populations where certain
infections are endemic. For instance, sickle cell trait and carrying
specific HLA antigens in African populations confer diminished
susceptibility against malaria infection (2, 3). Another example,
132, a 32-base pair deletion of the CCR5 gene prevents cellular
viral entry of human immunodeficiency virus (HIV) resulting
in effective resistance against HIV infection in individuals
homozygous regarding this variation (4).

In the present review we aim to summarize previously
published genotype-phenotype studies of genes which might
play a role in the susceptibility to COVID-19. The associations
between various single nucleotide polymorphisms (SNPs) and
certain traits were studied using targeted and genome-wide
approaches. In the case of targeted approach, hypothesis-driven
selection of specific genes/SNPs were analyzed in cases and
controls while during genome-wide association studies (GWASs)
detection of novel genomic loci with susceptibility to various
traits/diseases are possible. Our examination focuses on genetic
variants of 2 key processes in the initiation of the disease:
viral entry and recognition and response by the innate immune
system. Also, as several international collaborations are ongoing
to provide large-scale genomic susceptibility data, we propose
that a well-established polygenic risk score would be able to
optimally leverage the acquired knowledge.

VIRAL ENTRY

Large emphasis has been directed to decipher how SARS-CoV-2
is incorporated in human cells. Key data in this regard originate
from studies focusing on SARS-CoV, responsible for the SARS
epidemic of 2002–2003, which shares 79.6% sequence identity
with SARS-CoV-2 (5). In fact, the spike protein of SARS-CoV
binds to angiotensin-converting enzyme 2 (ACE2) that serves
as a receptor for the virus (6), and recent data confirmed that
SARS-CoV-2 also binds ACE2 in vitro (7–9). Further analyses
revealed that the spike protein of SARS-CoV-2 is cleaved by

transmembrane protease serine 2 (TMPRSS2) (7), facilitating
viral entry. Also of note, both ACE2 and TMPRSS2 are primarily
expressed in bronchial transient secretory cells (10), elucidating
the predilection of the lower airways. Additionally, proprotein
convertase FURIN was shown to pre-activate the viral entry of
SARS-CoV-2 (11), while additional factors as PIKfyve, TPCN2
and cathepsin L (CTSL) are also critical in this process (12).

Table 1 summarizes genetic variants of the aforementioned
genes with suggested genotype-phenotype findings. The main
physiological function of ACE2 is catalyzing the hydrolysis of
angiotensin I and angiotensin II into angiotensin (1–9) and
angiotensin (1–7), respectively, contributing to blood pressure
regulation (34). Therefore, numerous SNP association studies
were directed to ascertain the role of ACE2 genetic variants on
certain cardiovascular and metabolic traits. Throughout several
populations, ACE2 polymorphisms have been associated with
susceptibility to cardiovascular and metabolic diseases including
hypertension and type 2 diabetes mellitus underlining the
potential functional impact of these SNPs on ACE2 expression
and/or function (13–21). A TMPRSS2 SNP has been linked to
TMPRSS2-ERG genetic fusion which is a frequent molecular
event in prostate cancer (22, 23). More importantly, a study
examining patients of the 2009 swine flu pandemic caused by
the H1N1 influenza virus found that TMPRSS2 SNP rs2070788
is associated with severity of the disease (24). Additionally,
genotype-specific TMPRSS2 expression was confirmed in human
lung tissues regarding rs2070788 and rs383510, the latter being
tagged to the former polymorphism. Mechanistically, rs383510
was found to enhance the transcription of TMPRSS2 mRNA, and
these 2 SNPs were also found to associate with susceptibility to
the H7N9 influenza virus (24).

Certain high throughput screening studies identified rs4702,
a common genetic variant of proprotein convertase FURIN as
susceptibility factor for schizophrenia and hypertension (25, 26),
while other studies correlated another SNP rs17514846 with
other various traits including coronary artery disease, metabolic
syndrome and longevity (27–29).

While we found no SNP association studies for PIKfyve,
certain variants of the TPCN2 gene coding for cation-selective
ion channel were found to be associated with type 2 diabetes
mellitus (T2DM) and hair color (30, 31). In the case of CTSL,
two studies performed on different populations confirmed that
a promoter polymorphism correlates with hypertension in Asian
and American populations (32, 33).

INNATE IMMUNITY

After SARS-CoV-2 successfully infected cells, a complex immune
response initiates, in which the rapid and coordinated response
of the innate immunity is pre-requisite (35). Following infection,
the innate immune system recognizes viral antigens mainly by
RIG-I-Like Receptors (RLRs) and Toll-Like Receptors (TLRs)
(35). In the first step in RLR-dependent immune response,
cytoplasmic RNA sensors RIG-I andMDA5 recognize viral RNA,
after which interaction with mitochondrial antiviral signaling
protein (MAVS) initiate signaling changes activating interferon
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TABLE 1 | Genotype-phenotype associations of genes involved in viral entry of SARS-CoV-2.

Chromosome Gene ID Transcript ID Gene SNP MAF Position Exon(E)/intron(I) Observed association

Trait type Trait Population References

X ENSG00000130234 ENST00000427411.1 ACE2 rs2074192 0.36 15564667 I17–18 O Left ventricular

hypertrophy (LVH) in

females

Chinese

Han

(13)

O T2DM Uygur (14)

O Diabetic retinopathy

within female T2DM

patients

Chinese (15)

rs4646176 0.07 15569381 I15–16 O Essential

hypertension (EH) in

females

Northeastern

Chinese

Han

(16)

rs4646155 0.06 15579386 I9–10 O Essential

hypertension (EH) in

females

Northeastern

Chinese

Han

(16)

rs2106809 0.32 15599938 I2–3 O Left ventricular

hypertrophy (LVH) in

females

Chinese

Han

(13)

O Lone atrial fibrillation Chinese (17)

rs1514283 0.11 15564624 I17–18 O Essential

hypertension (EH) in

females

Northeastern

Chinese

Han

(16)

rs2285666 0.35 15592225 I4–5 O Essential

hypertension (EH) in

females

Northeastern

Chinese

Han

(16)

O Cardiovascular

death in females

European (18)

rs879922 0.32 15572684 I12–13 O Essential

hypertension (EH) in

females

Northeastern

Chinese

Han

(16)

O T2DM Uygur (14)

rs1978124 0.21 15599940 I2–3 O T2DM Uygur (14)

rs2048683 0.20 15590376 I5–6 O T2DM Uygur (14)

rs233575 0.14 15564843 I17–18 O T2DM Uygur (14)

rs4240157 0.32 15568841 I15–16 O T2DM Uygur (14)

rs4646156 0.20 15578920 I9–10 O T2DM Uygur (14)

rs4646188 0.04 15583220 I8–9 O T2DM Uygur (14)

rs6632677 0.02 15596749 I2–3 O Structural atrial

fibrillation in males

Chinese

Han

(19)

I/A Dilated

cardiomyopathy

(DCM)

North Indian (20)

rs714205 0.31 15565781 I17–18 O Diabetic retinopathy

within female T2DM

patients

Chinese (15)

(Continued)
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TABLE 1 | Continued

Chromosome Gene ID Transcript ID Gene SNP MAF Position Exon(E)/intron(I) Observed association

Trait type Trait Population References

rs4646174 0.32 15570148 I15–16 O Blood pressure

responses after

potassium

supplementation in

males

Chinese

Han

(21)

21 ENSG00000184012 ENST00000332149.10 TMPRSS2 rs12329760 0.26 41480570 E6 N TMPRSS2-ERG

fusion in patients

with prostate cancer

Indian (22)

N TMPRSS2-ERG

fusion by

translocation,

multiple copies of

the gene fusion

American (23)

rs2070788 0.40 41470061 I11–12 I Severe H1N1

infection, H7N9

infection

Chinese (24)

rs383510 0.40 41486440 I5–6 I Severe H1N1

infection, H7N9

infection

Chinese (24)

15 ENSG00000140564 ENST00000268171.8 FURIN rs4702 0.35 90883330 E16 O Systolic and diastolic

blood pressure

Finnish (25)

O Schizophrenia American (26)

rs17514846 0.47 90873320 I1–2 O Coronary artery

disease

N.A.

(metaanalyis)

(27)

O Metabolic syndrome Japanese (28)

O Longevity, parents’

attained age

European (29)

11 ENSG00000162341 ENST00000294309.8 TPCN2 rs1551305 0.34 69087765 I24–25 O T2DM Chinese (30)

rs35264875 0.10 69078931 E16 O Hair color (blond vs.

brown)

European (31)

rs3829241 0.18 69087895 E25 O Hair color (blond vs.

brown)

European (31)

9 ENSG00000135047 ENST00000343150.10 CTSL rs3118869 0.43 87725948 5’ upstream O Essential

hypertension (EH)

Uygur,

Kazak and

Han

Chinese

(32)

O Hypertension,

systolic blood

pressure, diastolic

blood pressure

American (33)

Regarding locus specifications genome build GRCh38.p13 was used and for minor allele frequency (MAF) of the second most frequent allele in 1,000 Genomes Phase three combined population is demonstrated, where available. SNP,

single nucleotide polymorphism; MAF, minor allele frequency; T2DM, type 2 diabetes mellitus. A, autoimmune; I, infectious; N, neoplastic; O, other.
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regulatory factor IRF3 and IRF7, resulting in type I IFN (IFN-α
and IFN-β) production and antiviral response (35–38).

Supplementary Table 1 summarizes the SNP association
studies concerning the agents implicated in viral recognition
and response by the innate immune system. Several RIG-I SNPs
were found to be associated with neutralizing antibody levels
after measles and rubella vaccinations while other studies found
RIG-I SNPs to be associated with nasopharyngeal carcinoma
and EV71-induced hand, foot, and mouth disease (39–43).
MDA5 genetic variants were thoroughly investigated in relation
to autoimmunity with several associations being found with
psoriasis, systemic lupus erythematosus (SLE), type 1 diabetes
mellitus (T1DM), hypothyroidism and multiple sclerosis (MS)
(44–53). Polymorphisms in MAVS were analyzed regarding
inflammatory response finding that rs7269320 associated with
osteoarthritis (54). Moreover, in an African American cohort,
where rs11905552 of the MAVS gene was much more frequent
compared to European Americans, this SNP associated with low
type I IFN production in patients with SLE (55). Studies focusing
on genetic variants of IRF3 and IRF7 found associations with SLE
and systemic sclerosis (56–59), while IFN-α genetic variants were
found to be associated with mixed connective tissue disease and
prognosis in glioma patients (60, 61).

During TLR-mediated immune response, TLR3, TLR7, TLR8,
and TLR9 sense intracellular, while TLR2 and TLR4 detect
extracellular, cell surface-associated viral antigens (35, 62). TLRs
transduce the signal by binding MyD88 and TRIF, which in turn
stimulate IRF3, IRF7, and NF-κB enhancing type I IFN response
(35, 63–65).

A multitude of case-control studies analyzed the role
of TLR-associated SNPs in health and disease. TLR3 SNPs
were associated with infectious, autoimmune, and neoplastic
diseases. Certain studies demonstrated association of TLR3
polymorphisms with hepatitis B and C virus (HBV and HCV),
herpes simplex virus (HSV), HIV infections (66–72), while SNPs
rs3775291, rs3775292, rs5743312, and rs7657186 were associated
with vaccine-induced immunity to serogroup C meningococcal
vaccine as defined by virus-specific IgG persistence (73).
rs3775291 was also associated with various autoimmune
disorders including SLE, rheumatoid arthritis (RA), and
sarcoidosis (74–76). Regarding neoplastic diseases, TLR3 genetic
variants were linked to breast, colorectal and nasopharyngeal
cancers, while also serving as prognostic factors in colorectal
cancer (CRC) and melanoma malignum (MM) (42, 77–81).
Several lines of evidence supported the association between SLE
and TLR7 SNPs in various populations (82–85), while additional
studies found correlation between TLR7 polymorphisms and
susceptibility to HCV and chikungunya virus infection, asthma,
and age-related macular degeneration (86–89). The association
between rs3764880 of TLR8 and tuberculosis susceptibility in
males has been confirmed in European, Russian, and Chinese
populations (90–92) and other SNPs of TLR8 were associated
with asthma, SLE, and chikungunya virus infection (84, 87,
88). With regard to the fourth TLR sensing intracellular
viral antigens, TLR9 has 4 SNPs which were found to be
associated with several infectious, autoimmune, and neoplastic
diseases. Confirmed associations with infectious diseases include

malaria, cytomegalovirus (CMV), and tuberculosis (90, 93–97),
while individuals with certain TLR9 polymorphisms are more
susceptible to post-infectious irritable bowel syndrome, SLE and
lupus nephritis, Graves’ disease-related ophthalmopathy, and RA
(98–104). With respect to neoplastic diseases, acute myeloid
leukemia (AML), and cervical cancer were also associated with
TLR9 genetic variants (105–107), while rs187084 is proposed to
be a prognostic factor in patients with prostate cancer (108).

TLR2 and TLR4 SNPs are probably the most widely
investigated genetic variants in the scope of our review. Similarly
to studies conducted in other TLR genes, TLR2 polymorphisms
were also found to be associated with tuberculosis and
CMV infection (90, 109–111), and additional pathogenic
role concerning bacterial vaginosis in HIV-infected patients,
recurrent vulvovaginal candidiasis, aggressive periodontitis,
neonatal sepsis, Lyme disease, pneumonia, and reactive arthritis
were also proposed (112–119). SNP rs3804100 has been linked
to measles-specific antibody levels following immunization,
while rs5743708 associated with nasal Staphylococcus aureus
carriage (120, 121). Autoimmune disorders linked to TLR2 SNPs
incorporate psoriasis and T1DM (122, 123), while hepatocellular
carcinoma (HCC), marginal zone lymphoma, oral, and laryngeal
squamous cell carcinoma and prognosis of women with breast
cancer have also been linked to certain genetic variants of
TLR2 (124–127).

TLR4 polymorphisms have been associated with various
infectious diseases. Manifest tuberculosis is associated with
rs11536889, rs12377632, rs1927911, and rs7873784 (109, 110,
128), while additional associated infection-related diseases
include sepsis and sepsis-related organ failure for rs11536889
and Chlamydia trachomatis infection in women with pelvic
inflammatory disease for rs1927911 (129–131). The most
intensively investigated TLR4 SNP, rs4986790 is associated
with a wide range of infections including Gram-negative
and Mycobacterium bacteria in high-risk populations, severe
respiratory syncytial virus disease, clinical malaria, recurrent
cystitis, chronic cavitary pulmonary aspergillosis, HCV infection,
and prognosis of HBV-infected individuals (132–141). It also
has a probable effect on IL-4 secretion after measles vaccination
(142). Another SNP of TLR4, rs5030717 is associated with
childhood otitis media (143).

With respect to autoimmune-related diseases, TLR4 SNPs
associate with ankylosing spondylitis, RA, giant cell arteritis,
and preeclampsia (144–147). In addition, rs10759932 and
rs4986790 are linked to acute rejection following kidney
and lung transplantation, respectively (148, 149). Several
TLR4 polymorphisms (rs10759932, rs10983755, rs11536889,
rs1927911, rs2149356, and rs4986790) are associated with gastric
cancer susceptibility, where the risk-elevating Helicobacter pylori
infection might have an important role (150–154). Other tumors
linked to TLR4 genetic variants include HCC, prostate cancer,
CRC, and non-Hodgkin lymphoma (NHL) (79, 155–160).

Genetic variants of adapter molecule MYD88 are associated
with tuberculosis susceptibility, Buerger disease and treatment
response in patients with RA (90, 161–163). SNPs of the other key
adapter agent, TRIF are associated with pneumonia susceptibility
and thyroid cancer (164, 165).
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FIGURE 1 | Polygenic risk scores might detect high-risk individuals regarding COVID-19 susceptibility and severity. The actual susceptibility and severity of COVID-19

varies widely within the population (left panel, redder individuals are more, greener individuals are less prone for severe COVID-19 disease). Genome-wide association

studies might distinguish a group of SNPs from which a clinically relevant polygenic risk score can be built (right panel). Color-coded squares represent the presence

of the risk allele (red) or the alternative allele (green) in each individual. The intensity of red corresponds to the odds ratio of the risk allele compared to the alternative

allele. Resultant values of the odds ratios of each SNPs are color-coded as the polygenic risk score (orange background). Personalized risk scores correlate well with

actual COVID-19 risk, however additional environmental, anthropometric factors and comorbidities also modify the phenotype.

In addition to type I IFN response viral recognition in the
innate immune system leads to NF-kB activation. NF-kB is
a multiprotein complex consisting of NFKB1, NFKB2, RELA,
RELB, and REL (166). Type I IFN response and NF-kB activation
result in IL-6 and IL-8 production (35). The activation of these
mediators contributes to inflammation and complex antiviral
immune response (35).

As a key player in inflammatory response, NFKB1
genetic variants has also been associated with atherosclerotic
manifestations including coronary artery disease, acute coronary
syndrome, dilated cardiomyopathy, and ischaemic stroke (167–
173). Promoter polymorphism rs28362491 is linked to HCV
infection and autoimmune diseases including Behcet’s disease
and SLE (174–176), while rs3774937 is associated with acute
rejection after renal transplantation (177). Neoplastic diseases
associated with NFKB1 SNPs include CRC, Hodgkin lymphoma,
NHL, cervical squamous cell carcinoma, liver, thyroid, breast,
and lung cancer (178–186). rs11574851 of NFKB2 was found to
be linked to RA susceptibility among anti-citrullinated protein
antibodies-positive patients (187), while in healthy women
rs1049728 of RELA associated with the concentration of soluble
ICAM-1, which is an endothelium-derived inflammatory marker
(188). Genetic variants of REL have been shown to be linked to
various autoimmune diseases including RA, psoriasis, and celiac
disease (189–193).

Polymorphisms of IL6 have been shown to pre-dispose to
pulmonary tuberculosis, acute lung injury in patients with
systemic inflammatory response syndrome and post-infectious
irritable bowel syndrome (98, 194, 195). An association with

RA has also been proposed (196). rs1800795 has been shown to
have a role in the prognosis of patients following renal and lung
transplantation (197–199). IL6 SNPs were also confirmed to have
a role in the susceptibility of various cardiovascular disorders
including hypertension and stroke (200–202).

IL-8 is coded by CXCL8 gene, SNPs of which have been shown
to be linked to infectious, autoimmune, and neoplastic diseases.
Acne vulgaris, chronic periodontitis, and invasive aspergillosis
among immunocompromised patients have been shown to
be associated with various variants (203–205). Autoimmune
diseases including idiopathic pulmonary fibrosis, childhood IgA
nephropathy, erosive oral lichen planus, childhood asthma, and
Graves’ disease have also been linked to genetic variants ofCXCL8
(206–210). Concerning neoplastic diseases, non-small cell lung
cancer, and gastric cancer have been proposed to be associated
with CXCL8 SNPs (154, 211, 212).

In conclusion, large majority of the discussed SNPs present
pleiotropic effects, among which the frequent presence of various
autoimmune and infection-related traits highlights their putative
involvement in the susceptibility and severity of COVID-19.

TOWARD PRECISION RISK ASSESSMENT:
PREDICTING COVID-19 SUSCEPTIBILITY
AND SEVERITY BASED ON A POLYGENIC
RISK SCORE

As genetic susceptibility regarding COVID-19 is an ongoing
topic of several large international collaborations we anticipate
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to acquire a large amount of evidence regarding susceptibility
loci in the near future. Indeed, recent studies identified germline
variants of TLR3- and IRF7-dependent type I IFN immunity
to associate with more severe COVID-19 infection (213). In
particular, disease-causing germline variants have been detected
in TLR3, UNC93B1, TICAM1, TBK1, IRF3, IRF7, IFNAR1,
and IFNAR2 in patients with life-threatening COVID-19 (213).
Another recent study analyzing 1,610 COVID-19 patients and
2,205 control subjects from the first wave in heavily affected
Italy and Spain found 2 chromosomal loci on chromosome three
and nine with significant association with COVID-19 patients
(214). On chromosome three the affected area includes several
actors which might alter COVID-19 susceptibility including
chemokine receptors, while on chromosome nine the association
signal coincided with the AB0 blood group locus (214). AB0
blood group has independently been linked to COVID-19
susceptibility (214–216). Further studies are needed to confirm
these associations in independent populations.

Applying this knowledge to detect individuals with elevated
risk for severe disease might help to prioritize them for
vaccination and stricter protection measures. As COVID-19
susceptibility and severity seem to have a polygenic background,
we propose that a curated polygenic risk score (PGRS) might
facilitate the detection of individuals with high risk for infection
(Figure 1). Based on genome-wide analyses, polygenic risk scores
are able to detect high-risk individuals in various diseases, fine-
tuning the more widely used risk stratification dependent on
baseline anthropometric and physiological characteristics (217,
218). A most recent GWAS on a cohort of COVID-19 patients
from the U.K. found eight lead variants from independent
genome-wide significant regions including rs2236757 in IFNAR2
coding for interferon α and β receptor subunit 2 (219).
Though the individual odds ratio for each of the relatively
frequent variants varies between 1.3 and 2.1, the combined odds
ratio in the case of harboring all these susceptibility variants
rises to 29.5, underlining the applicability of a polygenic risk
score (219).

In addition to COVID-19 susceptibility, inclusion
of genetic predictors of disease severity and treatment
response might also be included. In particular, based on
the effectiveness of glucocorticoid administration confirmed
by the randomized, controlled RECOVERY clinical trial
(220), it would be interesting to see if pharmacogenetic
modifiers of glucocorticoid action, sensitivity and metabolism
contribute to the severity of COVID-19 infection and treatment
response (221).

It is important to note that the majority of the observed
associations in Table 1 and Supplementary Table 1 were
only validated in specific populations. By analyzing the
population-specific allelic frequencies of the reviewed
viral entry and innate immunity-related SNPs reviewed
(Supplementary Table 2) we can conclude that the large
variations in SNP frequencies might heavily influence
their association with various traits in select populations.
Additionally, pronounced differences in risk allele frequencies
of the 8 proposed lead COVID-19-related SNPs (219) are
present in different populations (Supplementary Table 3).

Moreover, these differences most probably alter epistatic
interactions between genes, adding an additional layer of
complexity (222).

Therefore, the observed population dependency of genotype-
phenotype associations would probably result in population-
specific PGRSs rather than a universal PGRS optimal for
all populations. Dedicated efforts to perform population-
specific GWASs regarding COVID-19 susceptibility and severity
to build population-specific PGRSs are needed to address
these differences.

DISCUSSION

The disruption caused by the COVID-19 pandemic has yet
unknown consequences on the whole human society and on each
affected patient’s health as well. Understanding the susceptibility
toward this disease is important to detect high-risk individuals
and also to decipher molecular mechanisms needed for the
development of the clinical phenotype. Viral entry and innate
immunity are key mechanisms in the initiation of SARS-
CoV-2 infection. We performed a thorough literature review
concerning genotype-phenotype association studies regarding
agents of these mechanisms. Our results indicated that SNPs
in the genes of these processes are frequently associated
with susceptibility to various bacterial and viral infections.
Additionally, several autoimmune diseases are also linked to
these genes, underlining the versatile immune consequences of
these genetic variants. Based on the confirmed associations it
is highly plausible that the abovementioned SNPs might confer
altered susceptibility to SARS-CoV-2 infection and its complex
clinical consequences.

In addition to viral entry and innate immunity,
other mechanisms including adaptive immunity
are also of paramount importance regarding the
susceptibility to COVID-19 (35). To better characterize
putative genomic susceptibility loci, well-designed,
international genome-wide association studies (GWAS)
are needed.

As multiple GWASs on host genetic susceptibility are
ongoing, several genomic susceptibility loci are proposed
to be detected. Translating these individual susceptibility
variants into clinically relevant polygenic risk scores would
fully leverage this acquired knowledge to easily detect
high-risk individuals prioritized for vaccination and stricter
protective measures.

All things considered, genetic variants of genes of viral
entry and innate immunity might alter susceptibility, and
prognosis of COVID-19. Further GWASs are needed to better
characterize susceptibility loci and to develop clinically relevant
risk stratification strategies.
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