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Background: Hepatocellular carcinoma (HCC) is one of the most common malignant

tumors in the world. The efficacy of immunotherapy usually depends on the interaction

of immunomodulation in the tumor microenvironment (TME). This study aimed to explore

the potential stromal-immune score-based prognostic genes related to immunotherapy

in HCC through bioinformatics analysis.

Methods: ESTIMATE algorithm was applied to calculate the immune/stromal/Estimate

scores and tumor purity of HCC using the Cancer Genome Atlas (TCGA) transcriptome

data. Functional enrichment analysis of differentially expressed genes (DEGs) was

analyzed by the Database for Annotation, Visualization, and Integrated Discovery

database (DAVID). Univariate and multivariate Cox regression analysis and least absolute

shrinkage and selection operator (LASSO) regression analysis were performed for

prognostic gene screening. The expression and prognostic value of these genes were

further verified by KM-plotter database and the Human Protein Atlas (HPA) database. The

correlation of the selected genes and the immune cell infiltration were analyzed by single

sample gene set enrichment analysis (ssGSEA) algorithm and Tumor Immune Estimation

Resource (TIMER).

Results: Data analysis revealed that higher immune/stromal/Estimate scores

were significantly associated with better survival benefits in HCC within 7 years,

while the tumor purity showed a reverse trend. DEGs based on both immune

and stromal scores primarily affected the cytokine–cytokine receptor interaction

signaling pathway. Among the DEGs, three genes (CASKIN1, EMR3, and GBP5)

were found most significantly associated with survival. Moreover, the expression

levels of CASKIN1, EMR3, and GBP5 genes were significantly correlated with

immune/stromal/Estimate scores or tumor purity and multiple immune cell

infiltration. Among them, GBP5 genes were highly related to immune infiltration.
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Conclusion: This study identified three key genes which were related to the TME and

had prognostic significance in HCC, which may be promising markers for predicting

immunotherapy outcomes.

Keywords: tumor microenvironment, Hepatocellular carcinoma, TCGA, ESTIMATE algorithm, Prognosis

INTRODUCTION

Hepatocellular carcinoma (HCC), one of the digestive tract
cancers, is also the most common primary liver cancer (1).
Hepatocarcinogenesis is a multistep and complex biological
process in which many signaling cascades are altered,
resulting in heterogeneous molecular profiles and ultimately
in tumorigenesis, progression, and metastasis (2). Surgical
treatment and chemotherapy are the main therapies for HCC
(3), but incidence rates of HCC are continuing to grow, and the
probability is rising faster than any other cancer in both men
and women (4). A systematic analysis for the Global Burden of
Disease Study (GBD) has shown that the incidence and mortality
of HCC rank among the top 10 cancers, and death in adults
with cirrhosis is the leading cause for the mortality of HCC (5).
With the improvement of medical standards, the treatment of
HCC has indeed made progress. But currently, HCC treatment is
still a global research hotspot, and more and more attention has
been paid to cancer immunotherapy, one of the most promising
methods for cancer treatment (6). Besides, studies have shown
that immune tolerance and escape in the immunosuppressive
microenvironment of HCC can be promoted by multiple
mechanisms (7, 8). Therefore, it is essential to understand the
microenvironment of HCC.

The tumormicroenvironment (TME), which is comprised of a
mixture of immune cells, stromal cells, cancer cells, the intricate
cytokine and chemokines environment, and other components
(6, 9), is a dynamic system. Immune cells and stromal cells within
the TME are the two main types of non-tumor components
which are considered to play important role in the diagnosis
and prognosis of tumors (10). Evidence from studies indicates
that stromal cells within the TME are genetically stable and are
attractive therapeutic targets with reduced risk of resistance and
tumor recurrence (11). In addition, due to the dysregulation of
the metabolic activity of tumor cells, tumor-infiltrating immune
cells usually experience metabolic stress, resulting in an impaired
anti-tumor immune response (12). A multi-target approach
that simultaneously suppresses TME components may provide
a more effective method of treating cancer (13). Therefore,
understanding the TME is critical for inhibiting tumorigenesis,
invasion, andmetastasis, and in effectivelymanaging the immune
response (14–16).

Bioinformatics resolve the problems of biology through the
methods of applied mathematics, informatics, statistics, and
computer science (17, 18). At the same time, with the growth
of the amount of biological tumor data, bioinformatics is
essential for the storage, analysis, and visualization of cancer
immunotherapy data (19, 20). Its rapid development has
provided a user-friendly and convenient platform for researchers,

guiding the implementation of basic experiments (21, 22). In
2013, Yoshihara et al. created a method to infer the ratio of
stromal cells and immune cells in malignant tumors through
gene expression signatures that can be derived from The Cancer
Genome Atlas (TCGA)–ESTIMATE algorithm. In addition, the
algorithm can also predict tumor purity, which helps understand
the influence of the microenvironment on neoplastic cells (23).
Researchers have extensively verified and confirmed the accuracy
of the prediction. In recent years, the ESTIMATE algorithm has
been applied to glioblastoma (10), gastric cancer (16), clear cell
renal cell carcinoma (9), colon cancer (24), and so on. However,
the application of HCC remains to be elucidated.

In this study, we obtained transcriptome data of
HCC from the TCGA database, and analyzed the
immune/stromal/Estimate scores and tumor purity within
the microenvironment using the ESTIMATE algorithm.
The relationship between immune/stromal/Estimate
scores and tumor purity with survival and clinical
parameters were explored. Hub genes associated with
immune and stromal scores and with prognostic values
were chosen.

MATERIALS AND METHODS

Data Processing
RNA sequencing (RNA-Seq) and clinicopathological data
of patients with HCC were downloaded from Genomic
Data Commons

(GDC) database (https://portal.gdc.cancer.gov/) (25, 26).
About 374 tumor samples were used for the analysis. ESTIMATE
algorithm was used to calculate the stromal/immune/Estimate
scores and tumor purity using “estimate” package through
the R project (http://r-forge.r-project.org; repos=rforge,
dependencies=TRUE) (23). The Human Protein Atlas (HPA)
(https://www.proteinatlas.org/about/download) was used to
verify the immunohistochemistry staining of genes. Kaplan–
Meier plotter (http://kmplot.com/analysis/) was applied to assess
the prognostic value of the biomarkers.

Differential Expression Analysis
The median was set as the cut-off value of the immune and
stromal scores. Patient samples were divided into two groups,
respectively, namely the high-score group and the low-score
group. Differential expression analysis was analyzed on the
matrix of the sample using the R package, LIMMA. The filtering
conditions for the differential genes were as follows: Fold Change
> |±1|, with adjusted p < 0.05.
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Enrichment Analysis
The differentially expressed genes (DEGs) from differential
expression analysis that meet the conditions were used for
enrichment analysis, including Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Gene Ontology (GO) enrichment analysis
via Database for Annotation, Visualization, and Integrated
Discovery database (DAVID) function annotation tool (https://
david.ncifcrf.gov) (27). GO contains biological processes (BPs),
cell components (CCs), and molecular functions (MFs), and the
signaling pathways were identified by considering both p-value
and count number.

Prognostic Gene Selection by Cox
Regression Analysis and Least Absolute
Shrinkage and Selection Operator (LASSO)
In order to select the survival-related genes, univariate Cox
regression analysis was performed on DEGs. At the same time,
in order to prevent overfitting and increase the credibility
of selecting core genes, we used the least absolute shrinkage
and selection operator (LASSO) Cox regression model for
signature construction (28, 29). LASSO regression modeling
was conducted using the R package, glmnet (30). Finally,
multivariable Cox regression analyses were used for feature
selection, and calculating hazard ratios (HRs) with 95%
confidence intervals (CIs) (31). Genes with p < 0.05 was chosen
for further analysis.

Tumor Immune Infiltration Through
RNA-Sequencing Expression Profiling Data
Single sample gene set enrichment analysis (ssGSEA) algorithm
(https://doi.org/10.1016/j.celrep.2016.12.019, https://doi.org/10.
21203/rs.3.rs-33230/v1) is scored based on 29 published
immune-related genes (the immune gene set includes immune
cell types, functions, and pathways) to quantify the immune
infiltration level of 29 immune signatures in each HCC sample
using the R package, GSVA (32), and the scores were standardized
for each individual immune cell type. Besides, Tumor Immune
Estimation Resource (TIMER, https://cistrome.shinyapps.io/
timer/) was used to analyze the correlation between six kinds of
tumor-infiltrating immune cells and selected hub genes.

Statistical Analysis
Student’s t-test is analyzed for comparison between two groups
and one-way ANOVA is used to compare multiple groups.
Survival analysis was performed using Kaplan–Meier curve by
using the R packages, such as survival and survminer, and the p-
value was calculated using the log-rank test. Chi-square test was
applied to test the association of the expression of the three hub
genes with clinicopathological parameters. The value of p < 0.05
was considered statistically significant.

RESULTS

Stromal/Immune/Estimate Scores and
Tumor Purity Were Significantly Associated
With Prognosis and Tumor Mutation
Burden
Transcriptome data and clinical information of HCC were
downloaded from the TCGA database and integrated.
Totally, 369 cancer samples were used for survival analysis
(Supplementary Table 1). At the same time, in order
to better understand the impact of tumor infiltrating
immune and stromal cells on prognosis, we calculated the
immune/stromal/Estimate scores and tumor purity based
on the ESTIMATE algorithm, which helps to quantify the
immune and stromal components in HCC. Sample information
of overall survival (OS), disease-specific survival (DSS),
disease-free interval (DFI), and progression-free interval
(PFI) were collected (Supplementary Table 2). The results
in Figure 1A showed that the four survival periods were
significantly correlated with stromal/immune/Estimate scores
and tumor purity. Elevated stromal, immune, and Estimate
scores were significantly correlated with better prognosis,
while higher tumor purity was significantly associated with
poor patient survival rate. In addition, we also combined
the clinicopathological parameters of HCC to analyze the
correlation with immune score, stromal score, Estimate score,
and tumor purity (Supplementary Table 3). As can be seen
from Supplementary Figure 1, patients with metastasis tended
to have higher immune and Estimate scores and lower tumor
purity. For tumor and pathological stage, patients with increased
stage tended to have high stromal, immune and Estimate score
and lower tumor purity.

Tumor mutation burden (TMB) is the total number of
somatic gene coding errors, base substitutions, gene insertion, or
deletion errors detected per million bases (33). It is a quantitative
biomarker that reflects the total number of mutations carried by
tumor cells (34). In order to explore the relationship between
TMB and immune/stromal/Estimate scores, tumor purity, and
the mutation data of HCC from the TCGA database was
downloaded for calculating the TMB. Then we divided the tumor
samples into high and low groups according to the median of
immune/stromal/Estimate scores and tumor purity, respectively.
As can be seen from Figure 1B, TMB was significantly higher in
the immune/stromal/Estimate scores in the low group, whereas it
was higher in tumor purity in the high group.

DEGs Based on Immune and Stromal
Scores and Their Associated Pathways
Were Identified
To find out novel genes in HCC microenvironment associated
with both immune and stromal scores, we performed RNA
sequencing (RNA-Seq) differential expression analysis of 374
HCC cases from TCGA cohort. First, we grouped the samples
based on the median of the immune score and the stromal
score, and then we conducted a difference analysis between the
high and low group samples. The DEGs were displayed in the
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FIGURE 1 | Analysis of survival and Tumor mutation burden (TMB) associated with immune/stromal/Estimate scores and tumor purity. (A) Kaplan–Meier survival

analysis based on immune/stromal/Estimate/scores and tumor purity. Overall survival (OS), disease-specific survival (DSS), disease-free interval (DFI), progression-free

interval (PFI). (B) The relationship of immune/stromal/Estimate/scores and tumor purity with tumor mutation burden (TMB). The samples were divided into high and

low groups according to the median of score. * p < 0.05, ** p < 0.01, and *** p < 0.001 between the two groups.
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heatmap and volcano plot in Figures 2A,B. The results showed
that there were 1,065 significantly upregulated genes and 105
significantly downregulated genes between high and low immune
scores. Based on the difference analysis between the high and
low stromal scores, 1,597 significantly upregulated genes and 112
significantly downregulated genes were obtained. By overlapping
the DEGs of immune and stromal scores, we obtained a total of
896 genes (850 upregulated genes and 46 downregulated genes)
for functional enrichment analysis including GO and KEGG
(pathways; Figure 2C). The top 10 functional annotations of GO
analysis are shown in Figure 2D. DEGs were mostly enriched
in receptor activity, plasma membrane, and immune response.
In addition, the enriched pathways of DEGs are displayed in
Figure 2D. Considering the number of genes enriched in each
pathway and the FDR value, the most important pathway was
cytokine–cytokine receptor interaction (FDR = 4.24E-19). The
interaction of DEGs enriched in the cytokine–cytokine receptor
interaction signaling pathway is shown in Figure 3.

Identification and Validation of Optimal
Prognostic Biomarkers in HCC
Through a well-known mathematical model, the prognostic
DEGs related to the stromal–immune score that can be used
as independent prognostic factors in patients with HCC was
identified. We performed a univariate Cox regression analysis on
the 896DEGs related to both stromal and immune scores. Eighty-
nine genes with a p < 0.5 were included for further analysis
(Supplementary Table 4). To avoid overfitting the variables,
18 genes were screened using LASSO regression analysis
(Figure 4A). Finally, three genes including guanylate binding
protein 5 (GBP5), adhesion G protein-coupled receptor E3
(EMR3) and CASK interacting protein 1 (CASKIN1) were found
significantly associated with HCC prognosis by multivariate Cox
regression analysis (Figure 4B).

We then further verified the prognostic value of the three
genes in Kaplan– Meier plotter. Survival analysis of OS, PFS,
relapse-free survival (RFS), and DSS according to the expression
level of the three genes were performed (Figure 4C). Our results
showed that all three genes were significantly associated with
the four survival parameters. High expression of the three genes
predicted prolonged PFS, RFS, and DSS. High expression of
EMR3 was also associated with better OS, while high expression
of GBP5 was associated with better OS within 80 months and
high expression of CASKIN1 was associated with worse OS
before 80 months. To further validate the results, we downloaded
and sorted out the GSE76427 gene expression and clinical data
of a cohort of 115 HCC cases and 52 adjacent non-tumor tissue
from the gene expression omnibus (GEO) database. In addition,
we also collected the LIRI–JP dataset in the International Cancer
Genome Consortium (ICGC) database, including 243 HCC
samples and 202 adjacent samples. Similar to TCGA results, the
expression of CASKIN1 gene in HCC is significantly higher than
that of normal tissues, and the high expression of GBP5 gene
is associated with good OS in the GEO and ICGC data analysis
(Supplementary Figure 2).

The Expression Level of GBP5, EMR3, and
CASKIN1 and Their Association With
Clinicopathological Parameters in HCC
To further confirm the importance of GBP5, EMR3, and
CASKIN1 in HCC, Human Protein Atlas (HPA) database
was used to compare their protein expression in normal
and HCC tissues. As demonstrated in Figure 5A, GBP5 and
CASKIN1 were highly expressed in HCC tissue, while EMR3
was downregulated in HCC. At the same time, we also used
TCGA database to compare their expression level. CASKIN1
and GBP5 mRNA expression level was significantly increased
in HCC tissue compared to adjacent normal tissues, while
significantly decreased EMR3 mRNA expression was found
in HCC samples compared to normal samples (Figure 5B).
Moreover, we also analyzed the association of the three genes with
clinicopathological parameters of HCC according to the median
of their expressions (Figure 5C). Low expression of EMR3 was
often found in low tumor and pathological grade and there was
increased proportion of its high expression in late stage. Similar
result was observed for pathological stage and tumor grade for
CASKIN1 expression.

The Association of GBP5, EMR3, and
CASKIN1 Expression With Immune Cell
Infiltration
After identifying the prognostic value and expression level of
CASKIN1, EMR3, and GBP5, we performed correlation analysis
between CASKIN1, EMR3, and GBP5 expression levels and
immune/stromal/Estimate scores, and tumor purity in HCC,
respectively. As shown in Figure 6A, CASKIN1 expression was
negatively correlated with the immune/stromal/Estimate scores
and positively correlated with tumor purity. In contrast, the
expression of both EMR3 and GBP5 were positively correlated
with immune/stromal/Estimate scores, while negatively
correlated with tumor purity. Moreover, the association of GBP5
expression with immune/stromal/Estimate scores and tumor
purity was stronger than the other two genes.

To study the relationship between the expression of the
three genes and immune infiltration level for HCC, scatter
plots are shown with partial Spearman’s correlation and
statistical significance in Figure 6B. The expression of GBP5 was
significantly associated with purity (R = −0.461). In addition,
elevated EMR3 and GBP5 were significantly correlated with B
cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell
infiltration (p < 0.05) and a general increase in the immune
infiltration level (R > 0.3). It is worth noting that there is
a significant positive correlation between the infiltration levels
of six kinds of immune cells and the GBP5 gene expression
level. Then, based on the gene expression data, we enriched the
proportion of 29 immune cells in each patient with HCC through
the ssGSEA algorithm, and finally obtained the infiltration level
of various immune cells. The correlation of the infiltration level
of the immune cells with the expression levels of three genes
was calculated. As shown in Figure 6C, the CASKIN1 gene was
mainly negatively correlated with immune cell infiltration and
the GBP5 gene showed a positive correlation with 29 immune
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FIGURE 2 | Differentially expressed genes (DEGs) based on immune and stromal scores of tumor microenvironment (TME) and their functional annotations in HCC.

(A) Heatmaps and volcano plot of the DEGs of stromal scores (p < 0.05, fold change > |±1|). (B) Heatmaps and volcano plot of the DEGs of immune scores (p < 0.5,

(Continued)
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FIGURE 2 | fold change > |±1|). (C) 46 common downregulated genes and 850 common upregulated genes of both stromal and immune scores were shown by a

Venn diagram, and a total of 896 significantly different genes were obtained. (D) The selected DEGs were used for Gene Ontology (GO)-enrichment analysis, biological

process (BP), cellular component (CC), and molecular function (MF). Top 10 GO terms were displayed, respectively. (E) The selected DEGs were used for Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analysis via Kyoto Encyclopedia of Genes and Genomes (DAVID). Considering both the p-value and count

number, the optimal pathway was determined.

FIGURE 3 | Pathway diagram showing the interaction of DEGs in the cytokine–cytokine receptor interaction pathway. Alteration frequencies of each gene were

represented by the color intensity.

cells and was highly correlated with 12 immune cells (R >

0.3), including T-cell co-inhibition, CD8+_T cells, check-point,
inflammation-promoting, TIL, Th1 cells, APC co-inhibition,

cytolytic activity, HLA, pDCs, Treg, and Th2 cells. EMR3
gene showed both positive and negative correlation with 29
immune cells.
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FIGURE 4 | Screening and verification of prognostic genes in HCC. (A) Least absolute shrinkage and selection operator (LASSO) regression analysis was used to

screen for genetic variables. The dotted line indicates the number of genes after screening. (B) Multivariate Cox regression analysis was used to further screen genes

that can be used as independent prognostic factors. The value, p < 0.5 was considered statistically significant. (C) Survival verification of the three selected genes by

Kaplan–Meier plotter database in HCC. Prognostic indicators include overall survival (OS), progression-free survival (PFS), relapse-free survival (RFS), disease-specific

survival (DSS).
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FIGURE 5 | The expression level of three genes in HCC. (A) The immunohistochemistry (IHC) results from the Human Protein Atlas (HPA) was used to detect the

protein level of three genes in normal and tumor tissues. (B) Comparison of the expression levels of CASKIN1, EMR3, and GBP5 genes in HCC tissues and adjacent

normal tissues form the Cancer Genome Atlas (TCGA) database. The values of *p < 0.5, **p < 0.01, and ***p < 0.001 between the two groups. (C) Chi-square test of

the clinical parameters according to the median of the expressions of the three genes.
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FIGURE 6 | Immune infiltration related to CASKIN1, EMR3, and GBP5. (A) Correlation analysis between CASKIN1, EMR3, and GBP5 mRNA expression levels and

immune/stromal/Estimate scores and tumor purity in hepatocellular carcinoma (HCC). (B) The relationship between the CASKIN1, EMR3, and GBP5 gene expression

(Continued)
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FIGURE 6 | and the infiltration level of six types of immune cells in HCC via Tumor Immune Estimation Resource (TIMER) database. Partial Spearman’s correlation and

statistical analysis were performed. (C) Single sample gene set enrichment analysis (ssGSEA) algorithm was used to obtain the immune-infiltration levels of 29 immune

cells. The correlation between the expression levels of CASKIN1, EMR3, and GBP5 expression levels and the infiltration levels of 29 immune cells was displayed using

Lollipop Chart.

DISCUSSION

A large number of studies have shown that the TME
plays a significant role in the occurrence, development,
and metastasis of tumors (11, 13, 35). With the rapid
development of bioinformatics based on tumor immunotherapy
and microarray sequencing, researchers are increasingly using
statistical algorithms to explore new targets for immunotherapy
of HCC (19, 36, 37), including ESTIMATE algorithm, and some
progress has been made (38–41).

In this study, the ESTIMATE algorithm was used to obtain the
immune/stromal/Estimate scores and tumor purity of TME in
(HCC). To explore the impact of the immune/stromal/Estimate
scores and tumor purity on survival, we collected four types
of survival data: OS, DSS, DPI, and PFI. The results showed
that the differential immune/stromal/Estimate scores and tumor
purity scores significantly affect survival rates. Remarkably, the
high score groups of stromal/immune/Estimate scores were
significantly associated with longer OS in patients with HCC
among the four survival types within 7 years (Figure 1A). These
findings are consistent with previous studies showing that the
immune/stromal scores were significantly related to OS (40, 42).
Findings in multiple cancer types revealed that TMB may play
an important role in tumor immunotherapy (43–45), including
bladder cancer, colorectal cancer, and non-small cell lung
cancer. Therefore, we expect that the immune/stromal/Estimate
scores and tumor purity in the microenvironment of HCC
are related to TMB. We divided the samples into high and
low groups according to the median of the TMB value to
compare the correlation between the immune/stromal/Estimate
scores, tumor purity, and TMB. The results showed that the
higher the immune/stromal scores, the lower is the TMB
value. However, the result for tumor purity was the opposite
(Figure 1B). This means that the more immune/stromal cells
in HCC, the harder it is to identify cancer cells (46). Previous
studies have revealed that high TMB predicted worse patient
outcomes than those with low TMB in patients with HCC.
This is consistent with our survival results (47). In addition,
we combined the immune/stromal/Estimate scores and tumor
purity with the clinical parameters of HCC, such as metastasis,
OS, and grade. However, there was no significant difference
(Supplementary Figure 1).

Next, we grouped the samples according to the median
of immune score and stromal score to find DEGs. Based
on the stromal score, we got 1,579 significantly upregulated
and 112 downregulated genes, and based on immune score,
1,046 significantly upregulated genes and 105 significantly
downregulated genes were found (Figures 2A,B). We collected
46 DEGs that were jointly downregulated and 850 DEGs that
were jointly upregulated in both immune and stromal scores

for functional enrichment analysis (Figure 2C), including GO
functional annotation analysis (Figure 2D) and KEGG pathway
enrichment analysis (Figure 2E). The results indicated that
these genes were mainly enriched in receptor activity, plasma
membrane, and immune response. It can be seen from the
biological process (BP), that the DEGs were closely related
to immune response. Consistent with previous studies (48–
50), this evidence proved that TME plays a vital role in
the immunotherapy of HCC. At the same time, these genes
were significantly enriched in the cytokine–cytokine receptor
interaction pathway. A simplified pathway diagram in Figure 3

showed DEGs enriched in the pathway.
To evaluate the prognostic significance of these DEGs inHCC,

univariate Cox regression analysis, LASSO regression analysis
(Figure 4A), multivariate Cox regression analysis (Figure 4B),
and Kaplan–Meier survival analysis (Figure 4C) were performed.
The results demonstrated that CASKIN1, EMR3, and GBP5
were the most significant prognostic markers. Previous study
has demonstrated that EMR3 is one of the adhesion G protein-
coupled receptors (aGPCRs), which can be used as a modulator
of immune cell function (51). It has prognostic significance in
Dukes’B colon cancer (52) and glioblastoma (53). Besides, the
GBP5 gene has been studied in a variety of cancers, including
gastric adenocarcinoma (54), skin cutaneous melanoma (55,
56), pancreatic adenocarcinoma (57), and HCC, and GBP5
was one of the key genes in the malignant transformation
induced by microcystin-LR (MC-LR) in the cell of HCC (58). In
addition, GBP5 promotes immunity in mammals. It also plays an
important role in regulating human macrophage pyroptosis and
uniquely regulates the induction of apoptosis (59). However, the
involvement of CASKIN1 gene in cancer has rarely been studied.

Besides, we tested whether these three genes are abnormally
expressed in HCC. The results indicated that the expression
of CASKIN1, EMR3, and GBP5 showed significant difference
between the tumor and normal samples in both TCGA
database and HPA (Figures 5A,B). Then, the relationship of the
expression of the three genes and their clinical parameters were
analyzed via the Chi-square test (Figure 5C). Among them, the
expression of EMR3 showed significant difference in the clinical
parameters of tumor and pathological stage. There was also
significant difference for CASKIN1 in the pathological stage and
grade. These results indicated that CASKIN1 and EMR3 were
possibly involved in the progression of HCC. At the same time,
we also verified the significance of the three prognostic genes in
the GEO and ICGC database (Supplementary Figure 2).

Finally, to further analyze the significance of the three genes
in tumor immune infiltration, we analyzed the correlation
between the three genes and the immune/stromal/Estimate
scores and tumor purity, respectively (Figure 6A). At the same
time, the TIMER database was applied to assess the correlation

Frontiers in Immunology | www.frontiersin.org 11 April 2021 | Volume 12 | Article 653836

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Xiang et al. Prognostic Genes in Hepatocellular Carcinoma

between the expression of the three genes and the infiltration
scores of six immune cell types. In both the analyses, the
GBP5 gene showed a strong correlation with the degree of
immune infiltration (Figure 6B). Next, the ssGSEA algorithm
was used to evaluate RNA-Seq expression profile data to detect
the infiltration of immune cells in tumor tissues of HCC.
The correlation analysis between the expression of CASKIN1,
EMR3, and GBP5 genes and the immune infiltration scores of
29 immune cell types was performed (Figure 6C). The results
showed that GBP5 gene expression exhibited strong positive
correlation with 12 kinds of immune cells (R > 0.3, p <

0.5), which verified the results in Figures 6A,B, suggesting that
GBP5 may be an important target for targeted immunotherapy
of HCC.

In summary, our study identified three TME-related
prognostic markers in HCC. CASKIN1 was overexpressed in
tumor and its high expression was associated with poor OS,
while high expression of EMR3 and GBP5 were associated with
better survival. However, the prognostic value of the three genes
warrants further validation by more clinical data. Importantly,
the GBP5 gene was highly expressed in HCC and strongly
correlated with immune cell infiltration. It holds a great potential
as a candidate for targeted immunotherapy of HCC.
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Supplementary Figure 1 | Analysis of clinicopathological indicators associated

with immune/stromal/Estimate scores and tumor purity. Clinical parameters

include metastasis (M0, M1), overall survival (OS) (alive, dead), grade (G1, G2, G3,

and G4), tumor (T1, T2, T3, and T4) and pathological stage (Stage I; Stage II,

Stage III, Stage IV). Student’s t-test was used for comparison between the two

groups of data, and a one-way ANOVA was applied to compare multiple groups.

Supplementary Figure 2 | Validation of prognostic genes in the gene expression

omnibus (GEO) and the International Cancer Genome Consortium (ICGC)

database. (A) The expression levels and verification of CASKIN1, EMR3, and

GBP5 genes in HCC tissues and adjacent normal tissues from GSE76427 dataset

in the GEO database. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 between the two

groups. (B) Survival verification of the three prognostic genes by gene expression

omnibus (GEO) database in hepatocellular carcinoma (HCC) (p < 0.05 in Log-rank

test). (C) The expression levels and verification of CASKIN1, EMR3, and GBP5

genes in HCC samples and adjacent samples from LIRI-JP dataset in the ICGC

database. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 between the two groups. (D)

Survival validation of the three prognostic genes using data from ICGC database

in HCC (p < 0.05 in Log-rank test).

Supplementary Table 1 | The immune/stromal/Estimate scores and tumor purity

of HCC were calculated by using ESTIMATE algorithm.

Supplementary Table 2 | The sample information of overall survival (OS),

disease-specific survival (DSS), disease-free interval (DFI), and progression-free

interval (PFI).

Supplementary Table 3 | The immune/stromal/Estimate scores and tumor purity

with the clinical parameters of hepatocellular carcinoma (HCC), including tumor,

metastasis, OS, grade, stage, and cancer status.

Supplementary Table 4 | The results of univariate COX regression analysis.
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