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Severe congenital neutropenia (SCN) is a rare hematological condition with heterogenous
genetic background. Neutrophil elastase (NE) encoded by ELANE gene is mutated in over
half of the SCN cases. The role of NE defects in myelocytes maturation arrest in bone
marrow is widely investigated; however, the mechanism underlying this phenomenon has
still remained unclear. In this review, we sum up the studies exploring mechanisms of
neutrophil deficiency, biological role of NE in neutrophil and the effects of ELANEmutation
and neutropenia pathogenesis. We also explain the hypotheses presented so far and
summarize options of neutropenia therapy.

Keywords: severe congenital neutropenia, cyclic neutropenia, neutrophil elastase, ELANE mutations, unfolded
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INTRODUCTION

Functional neutrophils are the most abundant subpopulation of human leukocytes, representing the
first line of the innate immune system defense against a broad spectrum of microorganisms (1).
They exhibit an advanced antimicrobial mechanisms, from which we distinguish phagocytosis with,
i.e. oxidative burst, release of nuclear material in the neutrophil extracellular traps (NETs) or
degranulation of neutrophil granules (2).

Neutrophils are produced in hematopoietic cords inside venous sinuses in the bone marrow.
Development of neutrophils, referred to granulopoiesis, begins with hematopoietic stem cells,
(HSC) which may differentiate into common myeloid progenitor cells (3). These cells transform to
granulocyte-monocyte progenitors, which in turn differentiate to neutrophils by intermediate stages
of promyelocytes, myelocytes, metamyelocytes, band cells and segmented, polymorphonuclear cells
(4). The main factor regulating both proliferation of neutrophil precursors and mature neutrophils
release form the bone marrow is granulocyte colony-stimulating factor (G-CSF) (5). Disturbed
production of neutrophils during hematopoiesis results in neutropenia in the peripheral blood,
which leads to immunodeficiency. Among many causes of neutropenia, numerous genetic defects
are described causative for congenital neutropenia (6). Mutations of neutrophil elastase gene
(ELANE) are ones of the most commonly observed in patients suffering from congenital
neutropenia (7). Nowadays, pathogenesis of these defects is still arguable and controversial, thus,
it attracts a great scientific focus.
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PHYSIOLOGICAL FUNCTIONS

Neutrophil elastase is one of the four serine proteases stored in
the azurophil granules of neutrophils. It shows a relatively broad
elastase specificity, preferring aliphatic amino acids, Ala, Val, and
Ile, in the P1 position of substrates (8).

Serine proteases have been found to be a degradative non-
specific enzymes as they are all able to cleave extracellular matrix
proteins such as fibronectin, elastin, proteoglycans, collagens, the
platelet IIb/IIIa receptor, cadherins and a wide range of plasma
proteins (9–14). NE is also capable of degrading soluble proteins
such as coagulation factors, complements immunoglobulins and
many protease inhibitors (15). In addition to its role in
degradation of extracellular matrix, neutrophil elastase
functions as a negative regulator of the inflammation process.
It degrades proinflammatory mediators such as IL-1b, TNF-a
(16). Neutrophil elastase participates in the intracellular
pathogen destruction with a potent antimicrobial activity
against Gram-negative bacteria (17), spirochetes (18) and fungi
(19). Bellaaouaj et al. generating strains of mice deficient in NE
by targeted mutagenesis have shown that NE-/- mice are more
susceptible to sepsis and death due to infection with Klebsiella
pneumoniae and Escherichia coli, both Gram-negative bacteria,
as compared to wild type siblings (17). It has been proven that
neutrophil elastase works directly through degradation of the
outer membrane protein A (OmpA) located on the surface of E.
coli. Additionally, in vitro incubation of NE with E. coli leads to a
loss of bacterial membrane integrity or local weakening of the cell
wall by degradation of Om protein A followed by osmotic lysis of
bacteria (20). Alternatively, loss of wall integrity by OmpA
cleavage may lead to NE entrance and intracellular protein
degradation resulting in proteolysis and bacterial death. Hirche
et al. have also shown that NE mediates innate host protection
against Pseudomonas aeruginosa by degradation of the major
outer membrane protein F (OmpF), a protein with important
functions, including maintenance of membrane integrity, porin
activity and sensing the host immune system activation (21).

Another direct function of human neutrophil elastase is the
ability to cleave virulence factors such as flagellin, Gram-negative
bacteria virulence factor with a strong proinflammatory activity
on epithelial cells and other cell types (13). There is strong
evidence that purified flagellin from P. aeruginosa is effectively
degraded by neutrophil elastase and cathepsin G in the inhibitor
dependent manner. What is more, López-Boado et al. have also
shown in experimental conditions that none of the tested
metalloproteinases (MMP-1, MMP-7 and MMP-8, which have
a similar ability as NE) cleaved flagellin proving the role of
NE (22).

Weinrauch et al. have shown that NE degrades Shigella
virulence factors such as IpaA, IpaB and IpaC, as well as
proteins secreted by Salmonella and Yersinia (SipA, SipB, SipC,
HAPS and YopB, YopD, YopE, respectively) (23). Other in vitro
studies have shown that NE plays a role in the neutrophil
adhesion. The integrin Mac-1 binds to ligands such as
fibrinogen and intercellular adhesion molecule 1 (ICAM-1)
and mediates adhesion of neutrophils to the endothelial
surface (24). Authors postulate that neutrophil elastase
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performs a proteolytic function by ICAM-1 cleavage in a
manner dependent on the a1-antitrypsin (a1-AT) and N-
methoxysuccinyl-Ala-Ala-Pro-Val-chloromethyl ketone
(MSAAPVCK) – NE inhibitors (25).

Neutrophil proteases may also act indirectly through cleavage
of serum proteins of the complement and coagulation systems to
generate anti-microbial peptides. NE cleaves the central
complement protein C3 to generate a peptide that imitates the
natural C3a anaphylatoxin. Similarly to C3a, NE-derived C3
shows antimicrobial activity against P. aeruginosa and E.
faecalis (26).

Apart from the intracellular degradation activity, neutrophil
elastase demonstrates a broad spectrum of extracellular functions
of which the best-known is connective tissue digestion in
inflammation to clear the path for migrating neutrophils to
reach sites of infection. It is capable of digesting many types of
matrix proteins, including fibronectin, (denatured) collagen,
proteoglycans, laminin and many others (27). Moreover,
neutrophil elastase acts on cell‐surface ligands and receptors
like CD14 (28) or TLR4 receptor and adhesion molecules like
integrins. NE may activate TLR-4 receptors, which leads to the
activation of Nuclear Factor kB (NFKB) and consequently, to the
production of IL-8 (29, 30).
ELANE GENE AND NE PROTEIN
STRUCTURE

ELANE gene (also known as ELA2, HLE, HNE, NE, SCN1,
according to OMIM 130130) encodes human neutrophil
elastase (31). ELANE consists of five exons and six introns, and
resides on chromosome 19 (19p13.3), the locus for several serine
proteases (32, 33) ELANE is highly expressed at mRNA level in
the bone marrow in promyelocytes and then it is downregulated
with maturation of neutrophil.

NE is synthesized as an inactive form of pro-pre-enzyme
(zymogen) of 267 amino acids, containing N-terminal, single
pro-dipeptide and a C-terminal pro-peptide. For neutrophil
elastase to be active it has to undergo four consecutive post-
translational protein modifications. First, 29 amino acid signal
peptide is removed by a signal peptidase cleavage. Then, NE
proform is glycosylated on asparagine residues at position 109
and 159. Further, N-terminal dipeptide – SerGlu is removed by
cysteine protease – cathepsin C. Subsequently, the cleavage of
dipeptide results in structural rearrangement of N-terminal
region, which becomes inserted into the protein core. Finally,
the C-terminal pro-peptide is removed, which altogether leads to
formation of catalytically active enzyme comprising 218 amino
acid residues and a mass of 29 to 34 kDa (EC 3.4.21.37) (32)
(Figure 1B). The enzyme responsible for cleaving off the C-
terminal pro-peptide has not been identified so far.

Mature neutrophil elastase, like all chymotrypsin-like serine
proteases, forms a fold of two b-barrels, each made of six anti-
parallel b-sheets connected through a linker segment, and a
carboxyl-terminal a-helical domain (Figure 1C) (39). The
active-site residues are located in a crevice between the two b-
barrels. This single polypeptide chain has two glycosylation sites,
April 2021 | Volume 12 | Article 653932
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it is stabilized by four disulfide bridges and has no lysine or
tyrosine residues which, together with the surface distribution of
the positively charged arginine restudies, make it extremely
cationic. This asymmetric formation gives the protein a very
high isoelectric point of about 10.5 (40).

ELANE MUTATIONS IN PATHOGENESIS
OF CONGENITAL NEUTROPENIA

ELANE-induced neutropenia is not related to a NE deficit itself,
but rather to a dysfunction of theisprotease. Heterozygous
mutations identified in ELANE gene result in a SCN, which
might be a life threatening condition, or a cyclic neutropenia
(CyN) with moderate to mild clinical features. Pathogenesis of
SCN and CyN is a subject of many studies and scientists are still
not able to unequivocally explain how dysfunctions in NE lead to
maturation arrest of granulocytic differentiation. The first
reports have presented a theory that mutations in ELANE lead
to dysregulated vesicular sorting and trafficking. Another, an
equally popular theory, indicates the role of the unfolded protein
response (UPR) system, which is responsible for stress response
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in the endoplasmic reticulum (ER) by improperly folded
proteins. As there is a wide spectrum of ELANE mutations,
over the years of research, other hypotheses for the pathogenesis
of congenital neutropenia have been proposed.

ELANE Mutations
ELANE mutation was first mentioned in the Horwitz report on
neutrophil elastase as a cause for cyclic neutropenia, and the next
year, the same team identified ELANEmutations in patients with
SCN. The findings suggested that both forms are molecularly
closer to each other than it was previously assumed (33, 41). The
general pattern of mutations in the SCN versus CyN seems to be
different, nevertheless, up to a dozen mutations overlap in both
groups (42, 43). Based on genetic databases, a total of more than
230 ELANE mutations have been described so far (44), all the
mutations mentioned in this article are according to RefSeq
NM_001972.4 and their distribution is shown in Figure 1A (34).
The vast majority of pathogenic defects are single amino acid
substitutions, but there are also some frameshifts, nonsense,
inframe indels as well as splice junction loss (42). The entire
ELANE deletions are not described in the context of neutropenia,
B

A

C

FIGURE 1 | (A) Mutational spectrum of the neutrophil elastase (ClinVar database; RefSeq NM_001972.4) (34). The lolliplot reports mutations projected on the
schematic Trypsin domain of the human NE protein. The lolliplot was produced using the MutationMapper software, freely available through the Cbioportal (https://
www.cbioportal.org/mutation_mapper) (35, 36). In the scheme, mutations are reported as circles (green for missense mutations; black for duplication; brown for
inframe deletions and insertions; violet for all the other types. (B) 267-residue preproprotein scheme and post-translational modification at both ends. (C) 3D
structure of human neutrophil elastase 3Q76 (uncomplexed). Image created using Mol* from RCSB PDB (37, 38).
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and the few cases such as chromosome 19p terminal deletion
including this gene phenotypically do not show neutrophil count
deficiency (45). Interestingly, humans (45) and mice (46) with
ELANE biallelic loss of function defect produce functional
neutrophils with normal complete blood counts. Moreover,
knock-out of the mutant allele in hematopoietic stem cells
derived from SCN patients restores neutrophils maturation
(47). This excludes the NE haploinsufficiency as a
pathomechanism of SCN, and it is likely that the cause of
neutropenia is not the lack of neutrophil elastase itself, but
protease malfunction.

To understand the role of NE in neutrophil dysfunction,
distribution of mutations across EL-ANE structure seems to be
more crucial than the type of defects. Although no clear link
between genotype and phenotype has been described so far, the
latest research substantiates nonsense-mediated decay (NMD) as
the explanation of diversity in ELANE variants pathogenicity.
Mutations introducing premature termination codons (PTCs)
upstream of the 50th nucleotide position in early exons of ELANE
(1–4 exons) trigger NMD – the mechanism that eliminates
defective mRNA transcripts and prevents truncated protein
translations. In contrast, the mutation downstream of the 50th

nucleotide position within a late exon (4th and 5th) of ELANE
avoids NMD, thus, produces defective NE that impairs
neutrophil maturation and manifests as severe neutropenia
(48). It is consistent with previous observations in neutropenic
patients, exons 4 and 5 are enriched in nonsense and frameshift
mutations, which result in disruption of the disulphide bond
domain in C-terminus of elastase that is essential for its correct
intracellular localization (39, 43, 49). An example is p.Gly214Arg
mutation that leads to NE mislocalization predominantly to the
nuclear and plasma membranes, which accelerates apoptosis of
differentiating cells and manifests itself as a severe neutropenia
phenotype (50).

An alternative mechanism is described based on observation
of the mutations in AUG initiation codon p.Met1Ile and
p.Met1Val (c.3G>A and c.1A>G) and the noncoding Kozak
sequence (c.-3A>T). Disruption of the start signal forces
translation from internal methionine codons, thus, produces
N-terminus truncated protein that cannot be targeted toward
ER and is probably accumulated in the nucleus (51).
Hypothetically, mutations in the signal peptide such as A25V
may also be responsible for nuclear localization (43).

A negative synergistic effect on NE protein structure has been
described based on the case of a double mutation of ELANE. The
authors suggest that not only the range of the molecular damage
but also synergistic effect may contribute to distinct
pathomechanisms (52). Depending on various amino acids
that could be substituted in Ala57 site, different neutropenia
phenotypes can be manifested. Bioinformatics predictions have
shown that a hydrophilic amino acid causes a clash with the side
chain of adjacent amino acids, changes tertiary structure of
neutrophil elastase and leads to its malfunction (53).

Opinions are divided as to the risk of malignant
transformation; however, the most recent evidence indicates
that the development of acute myeloid leukemia is increased in
Frontiers in Immunology | www.frontiersin.org 4
patients harboring ELANE mutant (42, 43, 54). Mutations such
as p.Gly214Arg and p.Cys151Tyr are related to a poor response
to G−CSF and a more severe phenotype, whereas variants
p.Ser126Leu and p.Pro139Leu are associated with a good
prognosis (42, 55, 56)

Neutrophil Elastase Mistrafficking
Neutrophil elastase belongs to the family of serine proteases
located mainly in the azurophilic granules such as zymogens.
Normally, the inactive serine protease undergoes post-
translational modifications at the N-terminus and C-terminus.
Although intact C-terminal does not affect enzymatic activity
(57), its processing is crucial for recognition of NE by µ3a
subunit of adaptor protein-3 (58, 59). AP-3 complex facilitates
intracellular trafficking of NE from trans-Golgi network to the
granule lumen (Figure 2A).

Absence of AP-3 significantly reduces the amount of
neutrophil elastase in the granules, leading to SCN in humans
(60) and CyN in dogs (58). Mutations in ELANE cause a
disruption of the interaction between NE and AP-3 resulting
in mistrafficking and excessive routing of the enzyme to
the plasma membrane (61), and the nuclear membrane (50)
(Figure 2B). Additionally Köllner et al. described accumulation
of NE in cytoplasm of primary granules in cells derived from
congenital neutropenia patients (62). However, not the lack of
NE in granule itself leads to neutropenia but the incorrect
location of mutant protease provokes elastase aberrant
behavior resulting in abnormal neutrophil maturation.

This leads to a hypothesis that the mutant NE does not
completely lose its proteolytic properties and, through
mislocalization, it spontaneously degrades molecules that are
essential for promyelocyte development. Mutated, though still
active, NE present in the cytoplasm and cell membrane may
defectively interact with potential substrates such as granulocyte
colony stimulating factor receptor (G-CSF-R) (63) and Notch-
family proteins (64), which regulate granulopoiesis. Intriguingly,
according to the Garg et al. article, neutrophil elastase is inactive,
but significantly sequesters expressions of hematopoietic
transcription factors like Gfi1, Cebpd, Cebpe, and Spi1, cell
surface receptors Csf3r and Gr1 and Mpo granule protein,
which all are markers of granulocyte differentiation (65).

GFI1 Overexpression Leads to
NE Mislocalization
Interestingly, growth factor independence 1 (GFI1) has been
found to have an indirect impact on NE mistrafficking. GFI1
encodes a nuclear transcription factor repressor GFI1, and it is
widely expressed in the immune cells, playing a role in the
development of hematopoietic cells (66). It has been found that
Gfi1-deficient mice develop severe neutropenia and fail to
produce mature granulocytes (67, 68). In normal conditions,
GFI1 binds to the ELANE promoter, thus, repressing it.
Depending on the mutation in GFI1, ELANE expression may
either be increased or remain unchanged (69). Overexpression of
neutrophil elastase leads to accumulation of the enzyme in
multiple subcellular locations (70). Functional consequences of
April 2021 | Volume 12 | Article 653932
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FIGURE 2 | (A) Neutrophil elastase is trafficked from Golgi to the granules. (B) Mistrafficking. Mutation in ELANE results in intact C-terminal of NE disrupting an
interaction between AP3 which mislocates it to the cytoplasm, plasma and nuclear membrane. (C) Overexpressed ELANE due to mutation in GFI1 results in the
transporter system overwhelmed by NE. (D) Unfolded protein response. Misfolded NE accumulation in ER leads to the ER stress and molecular chaperones
upregulation and a subsequent induction of the UPR. (E) PML-mediated feed-forward loop. PML binds to ELANE promoter inducing misfolded NE expression thus
increases ROS production and PML-NBs formation. (F) Either Lef-1 downregulates ELANE downstream or the Wnt pathway is downregulated through a negative
feedback loop from mutated ELANE. Created with BioRender.com.
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NE mislocalization are associated with impaired granulocytic
differentiation (Figure 2C). NE is predominantly localized
within granules but was also detected in the nucleus (71, 72).
NE and GFI1 both were tested to bind to the nuclear protein
PFAAP5, which silenced in HSC impaired myeloid
differentiation. Thus, it is very likely that mutations of NE may
influence the NE-PFAAP5-GFI1 interactions and result in
abnormal modulations of transcription (73).

Misfolded NE Triggers the Unfolded
Protein Response
Canonical UPR
Neutrophil elastase, like most eukaryotic proteins, is transported to
the endoplasmic reticulum, where it folds and matures. Protein
folding is a process strictly controlled by genes encoding ER-
resident chaperones. Excessive unfolded proteins accumulation in
ER leads to ER stress and a subsequent induction of the regulatory
pathway called the unfolded protein response. UPR can respond in
three ways. Firstly, it diminishes cell protein synthesis. Secondly, it
enhances transcriptional activation of chaperones, which helps in
the proper folding of proteins. If the first two systems fail, ER-stress
continues and homeostasis cannot be evoked and as a final
response, a cell death pathway is induced (74). There is much
evidence which proves that overwhelmed UPR system aims towards
apoptosis and gives rise to diseases such as: hepatic fibrosis (75),
neurodegenerative diseases (76) and cancer (77). Induction of
apoptosis through the UPR demands an extremely high
accumulation of misfolded proteins at the site of ER. In SCN, at
the promyelocytic stage, when majority of granulocytes are arrested,
mutated NE is highly expressed, thus, contributing to the cell death
through apoptosis (78). Mutations in ELANEmay cause neutrophil
elastase misfolding that consequently aggregates in the
promyelocyte cytoplasm and induces apoptosis through the UPR
system (62). Indeed, diverse ELANE mutations are associated with
upregulation of BiP/GRP78 – molecular chaperone, synthetized
during UPR activation (79). Additionally, studies indicate that
mutations causing cyclic neutropenia activate UPR in myeloid-
derived cell lines to a lesser extent than ELANE mutations specific
only for SCN (79, 80). In cyclic neutropenia, hematopoietic stem cell
differentiation is not fully arrested, thus, some of the HSC are able to
escape the UPR-induced ER stress, respond to G-CSF and generate
neutrophils. However, most of the HSC carrying mutated NE will
suffer from the UPR stress, thereby leading to cell death (81).
Despite accelerated apoptosis, in vitro and in vivo studies (where
one of the most severe NE mutation p.Gly214Arg was expressed)
demonstrate that in SCN, neutrophil differentiation itself is not
disrupted (50, 82). Due to the unsuccessful protein folding, the UPR
system kills neutrophils before G-CSF induction, during the highest
mutated NE expression, at the stage of promyelocyte (Figure 2D).

ROS-Induced Misfolded Protein Degradation
Abundant evidence indicates that UPR is one of the crucial
mechanisms in SCN and CyN pathogenesis related to ELANE
mutations. However, there are studies that support alternative
scenarios. In a cellular model of HL-60, human promyeloblast cell
line transfected with mutant NE, none of the studied UPR markers,
Frontiers in Immunology | www.frontiersin.org 6
neither BiP/GRP78 nor ATF6 were expressed (83). Likewise, in a
similar in vitro model of granulopoiesis was impaired in ELANE-
mutated cell line, albeit the UPR was not induced (51). In a study by
Olofsen et al., there was no upregulation of aforementioned UPR-
related genes in hematopoietic progenitor cells (HPC) derived from
SCN patients with ELANE andHAX1mutations, but elevated levels
of reactive oxygen species (ROS) were detected. However, only in
HPC with ELANE mutations causing NE misfolding, levels of
promyelocytic nuclear bodies (PML-NBs) were increased (84).
PML-NBs are produced under excessive oxidative stress and
target misfolded proteins for ubiquitination and further
proteasomal degradation (85, 86). Moreover, misfolded NE
activates ROS production that induces formation of PML-NBs.
PML binds at the ELANE promoter and therefore, enhances the
mutated ELANE transcription and misfolded NE expression that is
described as a feed-forward mechanism. In addition, PML impairs
the cell’s response to G-CSF. This leads to an alternative
mechanism, where NE degradation is determined by the type of
ELANE mutation and its influence on NE structure and folding,
therefore, would proceed either through PML-NBs or by inducing
the canonical UPR response triggered by ER-stress (Figure 2E) (84).
However, as this is a newly described mechanism in terms of both
pathogenesis and neoplastic transformation, more research on
misfolded-related mutations and PML-NB needs to be performed.

WNT Signaling in SCN Pathogenesis
In 2006, Skokowa et al., analyzed mRNA expression of various
transcription factors in CD33+ cells derived from SCN patients
or healthy individuals. The most significant difference between
the two groups with respect to expression among transcription
factors was detected in lymphoid enhancer-binding factor 1
(LEF-1). In promyelocytes of the patients with SCN, LEF-1
mRNA expression was 20-fold downregulated as compared to
the healthy controls. LEF-1 was found to be a decisive
transcription factor which mediates granulocyte differentiation
into mature neutrophils (87). It belongs to the family of proteins
included in the Wnt3a pathway. In the induced pluripotent stem
cells (iPSCs) isolated from SCN patient with ELANE gene
mutation, most of the genes related to the Wnt3a pathway
including LEF-1 and C/EBP-a were down-regulated. Moreover,
addition of the Wnt3a protein to the cultured NE-mutated iPSCs
resulted in a dose-dependent increase of mature neutrophils,
which was comparable with the results obtained after addition of
G-CSF (88). Disruptions in the Wnt3a pathway appear to
represent another mechanism of SN development (Figure 2F).
CLINICAL FEATURES AND THERAPY OF
SCN WITH ELANE MUTATIONS

Congenital neutropenia is usually diagnosed in very young children
and is linked with recurrent infectious incidences including
recurrent pneumonia, mucositis, gingivitis, skin abscesses or otitis
media. These bacterial infiltrates might result in life-threatening
conditions including sepsis. Mainly bacterial infections are present
in congenital neutropenia. All of these occurring within the first
April 2021 | Volume 12 | Article 653932
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months of life (89). In general, the clinical presentation of
congenital neutropenia is mainly classified as cyclic neutropenia
(CyN) and severe congenital neutropenia (SCN), depending on
intermittent or continuous lack of neutrophil-granulocytes in the
peripheral blood, which corresponds with the occurrence of
infections typical for neutropenia.

There are no specific clinical descriptions, which are associated
with mutations of the ELANE gene (43). The neutrophil elastase
gene is the only one identified so far as causative for cyclic
neutropenia. Carriers of ELANE mutation suffered from pure
neutropenia as a cause of immunodeficiency. No other clinical
features apart from immunodeficiency are presented. The
distinction between cyclic and severe forms is firstly based on
clinical features and serial absolute neutrophil counts (ANC)
measurement (90). CyN has an estimated prevalence of one per
million in the population and is characterized by neutrophil counts
fluctuating with generally 21-day periodicity between nearly normal
and 0.2 × 109/l. Similar intervals of recurrence of clinical
presentation as fever, skin and oropharyngeal infections are
observed (41, 90, 91). However, exact time intervals may vary
even between patients with the same ELANE mutation ((42).
Interestingly, the same ELANE mutation present within the
family might be associated with a clinical phenotype of CyN and
severe congenital neutropenia suggesting that also other factors
affect the clinical manifestation of the disease (92). SCN is estimated
to be 3-4 per million births and is defined as a chronic reduction in
the absolute number of neutrophils circulating in the blood below
0.5 × 109/l. SCN is manifested by more severe infectious episodes as
CyN. The majority of symptoms are managed with antibiotics,
specific glucocorticoids, anti-inflammatory drugs; however, the
patient outcome depends on the G-CSF response (89). The G-
CSF response in CyN patients is revealed as a shortening of the
period of the cycle length from 21 days to approximately 14 days
and, thus, improves treatment outcome (81, 83). In the case of
ELANE-mutated SCN, bone marrow aspiration always shows a
hematopoietic arrest at the promyelocytic stage of immature
neutrophil precursors (93).

Contemporary Therapy of ELANE SCN
With G-CSF or Hematopoietic Stem
Cells Transplantation
G-CSF
Treatment of choice for SCN is the administration of granulocyte-
colony stimulating factor, which increases the neutrophil number
and improves survival and quality of life (94). Filgrastim, as a
human, recombinant G-CSF, stimulates the bone marrow to
produce and release granulocytes into the bloodstream, thus ≥10-
fold increases the neutrophil and significantly reduces the severity of
infections (5). Most of the patients with ELANE-related congenital
neutropenia require exogenous G-CSF treatment. Only a few cases
who have no history of severe infection might be subjected to
antibiotic prophylaxis and wait-and-watch therapeutic strategy.

HSCT
In approximately 20% of SCN cases, the ANCs cannot be
achieved in patients considered as non-responders, when G-
CSF dosage is more than 50 µg/kg/24h, whilst the neutrophil
Frontiers in Immunology | www.frontiersin.org 7
count still remains at the level of <0.5x109 cells per l (95). In such
cases, an allogeneic hematopoietic stem cell transplantation
(HSCT) should be considered (96). Nevertheless, the optimal
time point for transplantation in patients not responding to G-
CSF is still debatable (97). A recent report from the French
cohort has revealed that not only G-CSF unresponding patients
but also patients with a high dose G-CSF requirement (>15 mg/
kg/day) have benefited from HSCT by reducing the risk of the
MDS and/or acute myeloid leukemia (AML) transformation
(98). Another critical indication for HSCT is a presence of a
mutation in CSF3R or RUNX1 genes within the bone marrow of
patients with SCN, which significantly increases the risk of
development of MDS/AML (99).

MDS/AML Transformation
The patients with CyN have no increased risk of myelodysplasia or
leukemic transformation and patients with SCN have. Patients
suffering from SCN have approximately 10% increased risk of
development of myelodysplastic syndrome (MDS) and/or acute
myelogenous leukemia (89, 100, 101). Some data suggest that
particular mutations in ELANE and a high dose of G-CSF are
responsible for MDS/leukemia risk (42). About 70% ofMDS/AML
patients acquire nonsense mutations affecting the cytoplasmic
domain of CSF3R (the G-CSF receptor). This might evade the
proapoptotic activity within myeloid precursor cells, which
become prone to accumulate further genetic defects leading to
leukemia. Importantly, mutations in the RUNX1 gene are by far
the most frequent somatic secondary mutations in SCN-MDS/
AML and preferentially occurred in CSF3R mutation clones.
Additionally, mutations in SUZ12, ASXL1 and EP300 genes were
also identified (102). Recent studies on the mice model have
shown tertiary mutations in CXXC4 gene suggesting that TET2
dysfunction is also involved inMDS/AML evolution in SCN (103).

One possible explanation of leukemic risk among ELANE
carriers is an increased ROS level induced by misfolded proteins
leads to oxidative damage, which may be responsible for 2nd hits
and initiates malignant transformation, so AML or MDS
development. PML-NBs via MYC and mTOR signaling induce
metabolism and cell cycling that promotes malignant cell
proliferation (Figure 3) (84). However, looking at the clinical
perspective, since approximately 70% of SCN patients with AML
harbor additional mutations in the RUNX1 gene, patients with SCN
who are positive for CSF3R and/or RUNX1mutation should be also
transplanted to minimize the risk of MDS/AML occurrence.

Future Therapeutic Perspectives
So far, no effective treatment has been developed for patients
considered to be non-responders or resistant to G-CSF. Below,
we present current efforts and potential implementation of novel
methods based on NE inhibition, enhancing G-CSF functions or
CRISPR/Cas9 ELANE gene edition that may help these patients
in future studies. However, it should be noted, that the described
methods do not yet have clinical application.

Neutrophil Elastase Inhibitors
To treat neutropenia an administration of endogenous
recombinant or synthetic inhibitors of NE has been studied in
April 2021 | Volume 12 | Article 653932
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preclinical or clinical settings. The first effort was focused on a
small molecular weight compound, sivelestat sodium hydrate,
which is a specific inhibitor of polymorphonuclear neutrophil
elastase. Dokai et al. have shown decreasing apoptotic effects of
neutrophil elastase after neutralization of its enzymatic activity
by sivelestat in K562 and MEG-01 cell lines (104). In 2017,
Makaryan et al. presented a report on four b-lactam-derived
compounds, i.e. MK0339, L-910, L-538 and L-635. They also
selected four ELANE mutations, p.Pro139Leu, p.Cys151Tyr,
p.V174_C181del and p.Gly214Arg, on the model of patient-
derived iPSC and HL60 cell line. One of the drugs, MK0339,
showed not only improved survival of HL-60 cells and iPSc, but
also their potential to differentiate to mature neutrophils.
Pharmacokinetics studies of MK0339 have revealed that this
drug achieves a plasma concentration of less than 0.5 mg/ml after
an oral dosage of 10 mg/kg (83). Based on these preclinical
studies, inhibition of neutrophil elastase might be a therapeutic
option in future. However, some data also suggest that enzyme
activity of elastase is not really linked with neutropenia, thus the
further studies are needed in this field.

Nicotinamide
A small form of vitamin B3, nicotinamide (NAM), was
previously described as responsible for the upregulation of G-
Frontiers in Immunology | www.frontiersin.org 8
CSF and G-CSF receptors expression, through NAD+/SIRT1
deacetylation in cellular models (105). Interestingly, to date,
NAM at doses far above those recommended for vitamins is
suggested to be an effective and safe therapeutic option for a wide
spectrum of diseases and conditions, including neurological
dysfunctions, psychological disorders and inflammatory
diseases (106). In 2021, Deordieva et al. have shown, that
combined therapy of G-CSF with NA may have a beneficial
impact on increasing neutrophil count. Within 18 analyzed
patients including 14 who harbored ELANE mutation, who
received NA orally (20 mg/kg/day) and G-CSF (0.6-50.8 µg/kg/
day), 78% showed a gradual increase of ANC after 3 months of
therapy. Moreover, in half of the patients, treatment with NA
reduced G-CSF effective dose, with complete NA replacement in
one patient (107). These data have the strong and promising
perspective for a reduction of G-CSF clinical effectiveness,
especially in the case of patients with neoplastic predispositions.

CRISPR/Cas9 Gene Editing
Recent studies reveal a potential application of CRISPR/Cas9
mediated gene therapy in patients with ELANE mutated SCN.
In 2019 Ritter et al. published a report on efficient correction of
ELANE mutations in primary hematopoietic stem and
progenitor cells (HSPCs). They selected four ELANE
FIGURE 3 | At the stage of promyelocyte the increased ROS level triggered by misfolded elastase leads to oxidative damage, which may be responsible for 2nd hits
and initiate malignant transformation. PML-NBs via MYC and mTOR signaling promotes malignant cell proliferation. Created with BioRender.com.
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mutations in two exons (p.Ala57Val and p.Ala57Thr in exon 2
and p.Gly214Arg and p.Gly214Val in exon 5) that are hot spot
mutations in non-responders to G-CSF. Using CRISPR/Cas 9
to edit these mutations and adeno-associated virus 6 (rAAV6)
to deliver the template for repair the structure by homology
directed repair (HDR), they successfully achieved an increasing
number of mature neutrophils with NET formation and
chemotaxis improved. At the same time, there were no
changes in functionality of the produced cells (108). In 2020,
another team supervised by Skokowa successfully restored
neutrophil “maturation arrest” in SCN cells by complete
knockout of the ELANE gene (ELANE KO). They observed
granulocytic differentiation as well as phagocytic ability,
reactive oxygen species production and chemotaxis by
neutrophils without ELANE in SCN patient-derived iPSc,
primary hematopoietic stem cells and HL-60 cell line with
ELANE KO. It suggests an alternative method of SCN
treatment using ex vivo CRISPR/Cas9 ribonucleoprotein
mediated ELANE KO (47). An alternated approach to repair
ELANE mutations was performed using two different single
guide RNA (sgRNA) targeting both mutant allele and exon 4.
Using this method, a group headed by Chu successfully
repaired ELANE mutat ion in SCN pat ient-der ived
hematopoietic stem and progenitor cells together with
restored neutrophil differentiation and normal elastase
expression level (109).

Moreover, the group headed by Daniel E. Bauer confirmed,
that complete loss of NE is not associated with SCN using a new
approach of ELANE gene edition within early exons, which
elicited nonsense-mediated decay (NMD). They found that -1
frame insertions or deletions that produce premature
termination codons escaped from NMD and were responsible
for neutrophil maturation arrest, whereas -2 frame indels are tied
with translation repression and neutrophil maturation (48).
Those findings may be useful in therapeutic gene editing of
human HSPC that trigger NMD and can restore normal
neutrophil production, at the same time lay the groundwork
for a new and universal therapeutic strategy for ELANE-
mutant SCN.

All the above-mentioned studies focus on promising data to
further analyze a neutrophil elastase inhibitor or even gene
editing by CRISPR/Cas9 method and may pave the way to the
novel therapies for SCN.
Frontiers in Immunology | www.frontiersin.org 9
CONCLUSION

In light of the current literature and presented data on neutrophil
elastase amount, localization, and activity there is no versatile
model, which could explain how dysfunctions in NE lead to
maturation arrest of granulocytic differentiation. Several
hypotheses have emerged, the most popular of which indicates
the role of dysregulated vesicular sorting and mistrafficking of
mutated NE. The other theory points out the role of ER stress
and unfolded protein response. In addition, genetic and
epigenetic factors modulate these processes.

Although no clear genotype-phenotype correlation exists, the
spectrum of mutations identified in neutropenic patients indicates
that distribution of mutations across ELANE structure appears to be
crucial. Recent studies have shown that ELANE whole gene deletion
mutation does not cause neutropenia in humans and mice (45).
Interestingly, ELANE knockout restores the granulopoiesis and
increases differentiation into functional mature neutrophils in
vitro (47). Therefore, we expect the neutrophil elastase gene to be
a potential gene therapy target in patients with ELANE mutations,
especially those who do not respond to G-CSF or who are at high
risk of malignant transformation.
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