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Under normal physiological conditions, the lung remains an oxygen rich environment.
However, prominent regions of hypoxia are a common feature of infected and inflamed
tissues and many chronic inflammatory respiratory diseases are associated with mucosal
and systemic hypoxia. The airway epithelium represents a key interface with the external
environment and is the first line of defense against potentially harmful agents including
respiratory pathogens. The protective arsenal of the airway epithelium is provided in the
form of physical barriers, and the production of an array of antimicrobial host defense
molecules, proinflammatory cytokines and chemokines, in response to activation by
receptors. Dysregulation of the airway epithelial innate immune response is associated
with a compromised immunity and chronic inflammation of the lung. An increasing body of
evidence indicates a distinct role for hypoxia in the dysfunction of the airway epithelium
and in the responses of both innate immunity and of respiratory pathogens. Here we
review the current evidence around the role of tissue hypoxia in modulating the host-
pathogen interaction at the airway epithelium. Furthermore, we highlight the work needed
to delineate the role of tissue hypoxia in the pathophysiology of chronic inflammatory lung
diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease in
addition to novel respiratory diseases such as COVID-19. Elucidating the molecular
mechanisms underlying the epithelial-pathogen interactions in the setting of hypoxia will
enable better understanding of persistent infections and complex disease processes in
chronic inflammatory lung diseases and may aid the identification of novel therapeutic
targets and strategies.
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INTRODUCTION

The airway epithelium is located at the interface between the
internal and external environment and is strategically positioned
to interact with the environment in a dynamic fashion. The
pseudostratified mucosal barrier consisting of multiple cell types,
constitutes the lung epithelium (1). In a healthy state the airway
epithelium plays an integral role in host defense through a
physical and mechanical barrier, innate immune mediator
production, and chemokine and cytokine production to recruit
inflammatory cells for both propagation and resolution of the
immune response (2–4). The importance of the lung epithelium
is exemplified in chronic inflammatory lung diseases, where
epithelial cell dysfunction is associated with compromised
immunity and chronic inflammation in the lung (5–9).
Structural and functional abnormalities in both the airway and
alveolar epithelium have a significant impact on host defenses,
immune/inflammatory response, and the repair process leading
to progressive lung damage and impaired lung function.

Although an oxygen rich environment under normal
physiological conditions, the lung mucosal surface is susceptible
to conditions of oxygen deficiency or tissue hypoxia (10) during
infection and inflammation, which occurs when cellular demand
exceeds supply. Direct in vivo evidence has demonstrated that
pulmonary infection is associated with profound local hypoxia
(11–14). The occurrence of hypoxia during infection and
associated inflammation is multifaceted and involves increased
oxygen demand in order to satisfy the requirements of inflamed
resident cells, and in some instances, multiplying pathogens (15–
17). Furthermore, infiltrating inflammatory cells such as
neutrophils are thought to influence the tissue environment due
to their metabolic cost. For example, it has been demonstrated that
migration of neutrophils across the epithelium increases the
transcriptional activity of hypoxia-inducible genes in epithelial
cells, due to localized oxygen depletion, resulting in
microenvironmental hypoxia which in turn, influences the
resolution of inflammation (18). Furthermore, beyond acute
infection, chronic inflammatory respiratory diseases are also
commonly associated with mucosal hypoxia. The airways of
respiratory disease patients are characterized by chronic
inflammation, structural changes and fibrosis, and airways
obstruction through excessive mucus accumulation (19–22),
which can lead to regions of local tissue hypoxia. Cystic fibrosis
(CF) is an autosomal recessive disorder caused by mutations in the
CF transmembrane conductance regulator (CFTR) gene. CF is
characterized by airway mucus plugging, reduced mucus clearance
due CFTR defects which renders the CF airways vulnerable to
chronic infection and inflammation. The mucus filled CF airway,
infected with P. aeruginosa is extremely hypoxic (23). It is thought
that thick stagnant mucus infiltrated with immune cells and
multiplying pathogens creates a steep oxygen gradient within
the mucus, exposing the underlying epithelial cells to marked
hypoxia. Furthermore, the airway epithelium of mouse models of
CF stained strongly with the specific hypoxia probe, pimonidazole
hydrochloride (Hypoxyprobe, which binds at a threshold of
≤ 10 mmHg O2) (24), confirming that tissue hypoxia is present
in this inflamed airway epithelium. Chronic obstructive
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pulmonary disease (COPD) is characterized by chronic airway
inflammation and functional and structural alterations in the lung,
primarily caused by long-term inhalation of harmful particles such
as cigarette smoke (20, 25, 26). Remodeling in the large airway in
COPD, is accompanied by thickening and fibrosis of the
subepithelial microvasculature and perivascular fibrosis (27),
which may significantly reduce oxygenation of the airway
epithelium. Increased expression of hypoxia-inducible factor
(HIF)-1a is detected in the bronchial epithelium in COPD in
areas of airway remodeling and goblet cell hyperplasia (28–30).
Asthma, is another obstructive airway disease that involves
chronic airway inflammation of the respiratory tract and
excessive mucus production which is triggered by a variety of
airborne insults including allergens, dust, smoking and respiratory
pathogens. The increased expression of HIF-1a in lung mucosal
biopsy specimens from asthmatic patients (31), may also indicate
the presence of a tissue hypoxia in the asthmatic airway.

Pulmonary diseases associated with infection, excessive
airway inflammation, airway obstruction, airway remodeling
and emphysema can lead to decreased blood and also tissue
oxygenation and consequently a fall in the partial pressure of
oxygen in the arterial blood (10, 32, 33). This is particularly
evident in COVID-19 where hypoxia is a major risk factor for
pneumonia and respiratory distress following severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
(34, 35). Furthermore, in COPD, the progression of the disease
increases the risk of alveolar hypoxia and consequent hypoxemia
(36). Ventilation/perfusion (V/Q) mismatch resulting from
progressive airflow limitation and emphysematous destruction
of the pulmonary capillary bed is the main factor contributing to
hypoxemia in COPD patients (36). Hypoxemia associated with
COPD contributes to reduced quality of life, diminished exercise
tolerance, reduced skeletal muscle function, and ultimately
increased risk of death (37). Moreover, exacerbations of
COPD, which are associated with disease morbidity and
mortality (38–41), are also frequently associated with
deterioration in gas exchange and associated hypoxemia, due
to increased tissue oxygen consumption and V/Q mismatch (42).

Whilst local tissue hypoxia and systemic hypoxia in the lung
play a prominent role during infection and is present in chronic
inflammatory respiratory diseases, the role of hypoxia at the level
of the tissue in shaping the host-pathogen interactions in
respiratory diseases is not fully understood. Here we review the
current evidence around the role of tissue hypoxia in modulating
the host-pathogen interaction at the lung epithelium.
Furthermore, we highlight the essential work now needed to
outline the role of tissue hypoxia in the pathophysiology of
inflammatory lung diseases and emerging lung diseases such as
COVID-19 and post-COVID-19 chronic lung disease.
TRANSCRIPTIONAL RESPONSES TO
HYPOXIA

For the host to be able respond to pathogens effectively and
efficiently in hypoxic conditions, certain hypoxic regulatory
March 2021 | Volume 12 | Article 653969
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mechanisms are essential. Thus, it is important to fully
appreciate the significant effect that hypoxia has on
downstream signaling pathways in tissue resident and
infiltrating immune cells. The immune response under hypoxic
conditions is governed by several pathways and metabolic
activity, of which hypoxia-inducible factor (HIF), is the
best characterized and termed the master regulator of the
host response to hypoxia (Figure 1). HIF is a DNA-binding
transcription factor that associates with specific nuclear cofactors
during hypoxia. HIF regulates hundreds of downstream genes
which are involved in diverse biological pathways (43). The
regulatory complex is comprised of HIF-1b, a constitutive
subunit, and one of the HIF-a isoforms: HIF-1a or HIF-2a
(44). In the presence of oxygen, HIF-a subunits undergo
hydroxylation by prolyl hydroxylase domain (PHD) proteins
and an asparagine hydroxylase known as the factor inhibiting
HIF (FIH), in an oxygen and iron-dependent manner (45).
Hydroxylated HIF-a is then targeted by the von Hippel-
Lindau (VHL) protein, a substrate-recognition subunit of an
ubiquitin-protein ligase which subsequently interacts with HIF-
a to undergo proteasomal degradation (46). During hypoxia, the
activity of hydroxylase is reduced, leading to HIF stabilization,
translocating to the nucleus from the cytoplasm, ultimately
dimerizing with the HIF-1b subunit, to form the active HIF
complex (47). Finally, the active forms of HIF recruit coactivator
proteins to the hypoxia-response element, activating the
transcription of target genes required for undergoing
Frontiers in Immunology | www.frontiersin.org 3
adaptations to hypoxia. HIF-1a is widely expressed in many
innate immune cells including macrophages, neutrophils,
dendritic cells and epithelial cells. Integral innate immune
functions are preserved in hypoxic conditions through HIF.
For example, the survival of neutrophils is extended in hypoxic
conditions through HIF-1a and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-kB) activation (48).
Furthermore, it has been demonstrated that hypoxia-mediated
HIF-1 activation of NF-kB in airway epithelial cells releases
greater amounts of proinflammatory cytokines (49). However,
hypoxia may also suppress the epithelial inflammatory response
(50, 51). Exposure of murine airway epithelial cells to hypoxia
has been shown to reduce the expression of key innate immune
molecules through reduced NF-kB signaling (51). Moreover, the
macrophage response to bacterial lipopolysaccharide (LPS) is
enhanced under hypoxia, through HIF-1-mediated, increased
toll-like receptor (TLR) gene expression, resulting in increased
expression of cyclooxygenase-2, interleukin-6 and Regulated on
Activation, Normal T Cell Expressed and Secreted (RANTES)
(52, 53), suggesting that hypoxic conditions may contribute to
the aggravated inflammatory responses during infection.
Hypoxia also regulates other key transcription factors which
contribute to the overall cellular response, including the major
regulator of immunity NF-kB (54). Hypoxia-mediated activation
of NF-kB is through decreased PHD-dependent hydroxylation of
inhibitor of nuclear factor kappa B kinase subunit beta (IKKb),
resulting in the phosphorylation-dependent degradation of IkBa
FIGURE 1 | Regulation of HIF by hypoxia. During normoxia, HIF-a is hydroxylated by prolyl hydroxylase domain proteins (PHD) and factor inhibiting HIF (FIH), using
molecular oxygen. This leads to HIF-a interacting with Von Hipple-Lindau (VHL), before being targeted for proteasomal degradation. During conditions of hypoxia,
HIF-a hydroxylation by PHD/FIH is inhibited and HIF-a is not targeted for proteasomal degradation. HIF-a can translocate to the nucleus, where it binds with HIF-1b
and recruits co-activators at the hypoxia response element (HRE) to initiate gene transcription. Created with BioRender.com.
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and liberation of NF-kB. Therefore, HIF-dependent and HIF-
independent regulatory pathways in host cells that are regulated
during tissue hypoxia may impact on the progression of chronic
inflammatory respiratory diseases. Although hypoxia is essential
in driving immunological processes and resolving respiratory
infections, the relationship between immunity and hypoxia is
delicately balanced. Resultant sustained aberrant inflammation
and activity of immune cells leads to tissue damage and is a
pathological hallmark of many chronic inflammatory
respiratory diseases.
HYPOXIA-EPITHELIAL INTERACTIONS:
CONSEQUENCES FOR THE HOST
DURING RESPIRATORY INFECTION

The airway epithelium forms the interface between the external
environment and the internal milieu, making it a prime target
for inhaled pathogens. However, the epithelium is not just a
bystander, it forms an integral part of the innate immune system
through being a physical barrier as well as releasing effectors to
initiate and orchestrate immune and inflammatory responses
(1). Furthermore, dysfunction of the airway epithelium is
associated with inflammatory lung diseases and increases the
susceptibility to infection (55). Here we will discuss how
hypoxia influences the epithelial-pathogen interactions in the
Frontiers in Immunology | www.frontiersin.org 4
lung, with important implications for respiratory disease
(Figure 2).

Mucus Hypersecretion and Reduced
Mucociliary Clearance
A fundamental lung mucosal defense mechanism is the secretion
of mucus into the bronchial airway lumen to capture and trap
invading pathogens, before being mechanically removed via
mucociliary clearance (56, 57). The mucosal layer in the
conducting airways exhibits a continuous layer of secreted
proteins called mucins. Mucins are large glycoproteins formed
of O-linked polysaccharides, which form a fluid-like barrier
tethered to epithelial cells (57). The mucus-producing goblet
cells function as the primary secretory cell, with the more
abundant ciliated cells functioning as transporters to move the
mucus up the airways for removal (58, 59). The ratio of secretory
to ciliated cells is regulated both during normal physiological
processes and also during infection to maintain optimal
mucociliary function (60). However, chronic respiratory
diseases are associated with pathological changes with the
development of goblet cell hyperplasia, reduced expression of
ciliated cells, mucus hypersecretion and mucus plugging (61–65).
Sustained activation of disease associated signals such as from
cigarette smoke, allergens and pathogens, promote the excessive
differentiation towards goblet cell hyperplasia and mucus
hypersecretion (66). Consequently, increased mucus
production, dehydration of the airway surface liquid and mucus
FIGURE 2 | Summary of the potential contributions of tissue hypoxia to the epithelial-pathogen interactions in respiratory diseases. Hypoxia is sensed by airway
epithelial cells, that proceed to upregulate genes involved in the response to hypoxia through HIF-1a. The upregulated genes and proteins in response to HIF-1
transcription modulate several immune responses including impairing epithelial barrier function, reducing mucociliary clearance, modulating nutrient availability, and
reducing anti-proteolytic enzymes. Hypoxia could also play important roles in pathogen colonization of the lung epithelium by mediating bacterial adherence through
HIF-1-dependent mechanisms and enhance biofilm formation through bacterial-adaptive mechanisms. Finally, viral infected epithelial cells can be manipulated to
upregulate glycolytic pathways through a HIF-1a-dependent mechanism, which consequently increases viral replication in the cells. Created with BioRender.com.
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plugging prevents the mucociliary functions of the innate
immune system to adequately clear the airways of mucus and
pathogens (67, 68).

The development of mucus plugs has also been associated
with cellular hypoxia of epithelial cells lining the airways,
creating hypoxic niches within the adherent mucus and
subjacent epithelial cells (24). This is exemplified by mucus
obstructed airway epithelial samples from COPD patients
which are known to be hypoxic, exhibiting an increased
expression of HIF-1a in areas of goblet cell hyperplasia, and
the hypoxic mucus filled CF airways (23, 69). Furthermore,
analysis of CF and COPD lung tissue samples found that
hypoxic airway epithelial necrosis in the mucus obstructed
airways was a key trigger for neutrophilic inflammation,
which may further exacerbate epithelial hypoxia (70).
Interestingly, HIF-1a has been shown to induce goblet cell
hyperplasia and increase the expression of the mucin
MUC5AC, via the epidermal growth factor receptor (EGFR)
(71–73). The EGFR is upregulated in the diseased airway
epithelium and aberrant EGFR signaling has been implicated
in the pathogenesis of asthma, COPD and CF (74, 75). EGFR is
an important protein involved in the epithelial repair process
via the induction of epithelial migration, proliferation,
differentiation, and extracellular matrix synthesis. However,
the activation of EGFR, also leads to goblet cell hyperplasia,
mucus hypersecretion, and overproduction of MUC5AC,
which may exacerbate the pathological changes in respiratory
diseases (76–79). Overproduction of the MUC5AC gene is a
characteristic of many respiratory diseases including CF,
asthma, and COPD (7, 80, 81), creating hyper-concentrated
mucus, which is thicker, more adherent and prone to mucus
plugging (82). Consequently, thicker and more adherent mucus
may create further hypoxic niches within it. This has major
implications not only for the progression of diseases but also for
the host-pathogen interactions within the airways. Several
bacterial pathogens, including non-typeable Haemophilus
influenzae (NTHi), P. aeruginosa and Staphylococcus aureus,
are able to bind to and utilize mucins as a mechanism for
colonization of the lung (83–85). Additionally, the hypoxic
niches created in the mucus plugged airway may favour
infectious organisms that gain energy efficiently under
anaerobic conditions (86, 87). The increased presence of
anaerobic bacteria in the airway at more advanced stages of
respiratory diseases have been demonstrated in lung
microbiome studies (88–90). The changes in microbiota in
the diseased airway may negatively impact the progression of
the disease (91–93). For example, P. aeruginosa which is found
in sputum more frequently in advanced stages of COPD is
associated with exacerbations and increased risk of mortality
(94, 95). Furthermore the presence of obligate anaerobes have
been linked to disease severity and inflammation in CF (96, 97).
Although still unknown, it may be postulated that mucolytic
therapies which clear the airways of sputum, reduce mucus
production and plugging and prevent airway obstruction could
also play a role in reducing mucosal hypoxia. Alternatively,
interventions which correct local hypoxia e.g. long-term oxygen
Frontiers in Immunology | www.frontiersin.org 5
therapy could hypothetically improve mucosal regulation and
mucus hypersecretion and warrants investigation.

Disruption of the Epithelial Barrier
An important function of epithelial cells is to act as a physical
barrier towards the outside environment. Tight junctions (TJ),
adherens junctions (AJ) and desmosomes form the transcellular
junctions (98). These junctions are formed through intercellular
junctional proteins including claudins, connexins, paranexins,
cadherins, adhesions, and zonula occludins (ZO), which link to
the actin cytoskeleton (99, 100). This tightly regulated physical
barrier not only controls paracellular ionic movements and non-
permeability of the epithelium (101, 102), but also prevents
microbial compounds and airborne substances access to the
body interior. The epithelial barrier is critical in the innate host
defense as a loss of barrier function increases the susceptibility of
the host to infection and injury by pathogens and proteases (103).
In addition, a pathological hallmark of several chronic
inflammatory respiratory diseases, including asthma and
COPD, is impaired epithelial barrier function and increased
epithelial permeability, which may permit access for pathogens
to the underlying submucosa (5, 7, 104–107). A number of factors
have been implicated in epithelial barrier dysfunction including
infection (108–110) and inhalation of noxious particles such as
cigarette smoke (111). Several studies have also demonstrated
that exposing airway epithelial cells to hypoxia decreased the
expression of apical cytoskeleton proteins actin and a-spectrin
(112), and also the expression of the TJ proteins ZO-1, claudin-4,
occludin, and E-Cadherin (49, 112, 113), which consequently
reduced epithelial barrier function. One possible mechanism is
through the HIF-1a-mediated induction of vascular endothelial
growth factor (VEGF), during hypoxia, which has been shown to
increase epithelial permeability (114). VEGF is a pleiotropic
protein that regulates vascular angiogenesis and endothelial
permeability and is an important adaptive mechanism to
hypoxia, enhancing local vascularization and oxygen transport
(115), in addition to being an important mediator of
inflammation (116). The expression of VEGF is upregulated in
the diseased airway epithelium, and has been implicated in
airway remodeling processes (28, 117–119). Additionally,
VEGF expression itself in the epithelium is a good indicator of
local tissue hypoxia. Several studies have demonstrated that
exposing airway epithelial cells to hypoxia, increased the
expression of VEGF via HIF-1 (114, 120–122). Though the
induction of VEGF may be an adaptive response of
angiogenesis when oxygen availability is reduced; paradoxically
this may have pathological consequences in terms of epithelial
barrier disruption. Thus, the hypoxia-HIF-1a-VEGF axis may be
an important mechanism driving epithelial barrier disruption
and increased permeability of the epithelium. Regarding the lung
mucosal defense mechanisms, vulnerability to adherence and
invasion of pathogens is increased by the leaky epithelial barrier,
resulting in airway infection and subsequent inflammation.
Therefore, hypoxia-mediated epithelial permeability may
ultimately facilitate pathogen invasion of the epithelium and
persistence in the airway epithelium.
March 2021 | Volume 12 | Article 653969
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Increased Bacterial Adherence to the
Epithelium
A crucial step for effective bacterial colonization and invasion
involves adherence to host components in the airways (123, 124).
Platelet-activating factor receptor (PAFR) is one of the main
epithelial cell-derived adhesion molecules used by both Gram-
positive and Gram-negative bacteria (125–129). PAFR is a G-
protein coupled epithelial cell membrane receptor that naturally
binds the phosphorylcholine (ChoP) ligand on the eukaryotic
proinflammatory chemokine PAF (130). Several species of
airway bacteria display a host-derived zwitterionic/bipolar
molecule ChoP on their bacterial walls, mimicking PAF to
facilitate adherence to epithelial cells (131, 132). PAFR is
upregulated in the lungs of asthmatic and COPD patients
(133–135). The expression of PAFR is upregulated by noxious
environmental particles such as cigarette smoke, electronic
cigarettes, and biomass smoke exposure and exposure to
pathogens (126, 128, 134, 136–139). Additionally, hypoxia
prominently induces epithelial PAFR through HIF-dependent
mechanisms (140). The upregulation of PAFR in the lungs has
been associated with increased adherence to the mucosal surfaces
by respiratory pathogens, airway inflammation, speed of lung
function decline, and development of pneumonia (126, 136, 138,
141). Ultimately, microbial manipulation of PAFR, may be an
important strategy for successful colonization and infection. The
importance of ChoP-PAFR mediated bacterial adherence to
epithelial cells has been confirmed by the use of PAFR
antagonists, which have been shown to reduce bacterial
adherence and invasion (127–129, 137). Thus, the dynamic
and integral role of HIF-1a in key immune functions opens
complex questions regarding HIF-1a. However, there is still
much needed research regarding the role of HIF-1a and PAFR.
Enhanced Biofilm Formation
The formation of multicellular microbial communities called
biofilms is a critical step for pathogens during colonization of the
lung, enabling survival and persistence in the challenging
environment by attaching to a living surface (142, 143). Many
different microbes reside in biofilms and the majority of
persistent infections involve biofilms (144). Notably, biofilm
communities enhance antimicrobial resistance to exogenous
and endogenous effector molecules (145). There are clear
associations between biofilm formation, inflammation, and
respiratory disease and biofilms have been implicated in the
pathogenesis of COPD and CF (143, 144, 146, 147) and
developing bronchopneumonia (148, 149). Hypoxic conditions
in the diseased lung may provide prime conditions for biofilm
formation by P. aeruginosa which produce greater amounts of
alginate under anaerobic conditions, a component involved in
biofilm formation and protection against host immune responses
(23, 150). Additionally, P. aeruginosa grown under anaerobic or
hypoxic conditions yields greater antibiotic resistance and
biofilm formation suggesting that hypoxia may be a crucial
component in bacterial persistence (151, 152). The increase in
antibiotic resistance appears to be due to hypoxia altering the
Frontiers in Immunology | www.frontiersin.org 6
stoichiometry of multidrug efflux pumps (153). An important
mechanism of antibiotic resistance is the expulsion of antibiotics
through multidrug resistance efflux pump systems belonging to
the resistance-nodulation-division family (154). Therefore, these
may be important mechanisms facilitating bacterial adaptive
responses to hypoxia, increasing virulence and persistence in
the diseased airways. There are also suggestions that local tissue
hypoxia in the diseased lung is advantageous to anaerobic
pathogens such as P. aeruginosa over other pathogens (155).
For example, biofilm formation itself contributes to local hypoxia
of the diseased CF lung, which correlates with increased
dependency on systems that mediate the uptake of reduced
ferrous iron (Fe2+) by P. aeruginosa (156). Future studies
investigating the role of hypoxia in biofilm formation with the
use of ex vivo models would be valuable to understand the
mechanisms of biofilm formation in the hypoxic airways (157).
Such models could also be used to investigate potential future
biofilm-targeting therapeutics.

Dysregulated Proteolytic Activity
During inflammatory processes, a plethora of toxic inflammatory
by-products are released by immune cells. For example,
neutrophils infiltrating the site of infection have been
implicated in causing excessive tissue damage through release
of proteases and reactive oxygen species (ROS) (158).
Furthermore, macrophages produce matrix metalloproteinases
(MMPs) during infectious processes, which can lead to excessive
tissue damage (159). Therefore, an adequate protease-
antiprotease balance is required to prevent excessive tissue
damage and inflammation. Secretory leukocyte protease
inhibitor (SLPI) is an important antiprotease, which prevents
excessive tissue damage and inflammation (160). This protein
also possesses key antimicrobial functions against Gram-negative
and Gram-positive bacteria (161, 162). In vivo experiments have
demonstrated that SLPI has the ability to dampen the
macrophage associated inflammatory burden induced by LPS
(163). Furthermore, the pathogenesis of chronic inflammatory
respiratory diseases are thought to involve a protease-
antiprotease imbalance (164, 165). Sputum samples from
COPD patients display lower levels of SLPI during infectious
exacerbations (166, 167), and lower levels of SLPI are associated
with pronounced airway inflammation, susceptibility to
infection, and disease severity (168, 169). It has been
demonstrated that hypoxia downregulates the expression of
SLPI in airway epithelial cells via the upregulation of
transforming growth factor (TGF)-b (170). The expression and
function of TGF-b is mediated by HIF-1a during hypoxia to
promote cell growth and proliferation (171, 172). Furthermore,
TGF-b has been implicated in the vascular remodeling of
hypoxia-induced pulmonary hypertension and is also
upregulated in the lungs of CF and COPD patients (173–176).
Inhibition of SLPI by TGF-b via the SMAD signaling pathway
has been demonstrated at both the RNA and protein level (177,
178). This modulation of complementary mechanisms by tissue
hypoxia through alterations in TGF-b and thus SLPI expression
could accentuate the protease-antiprotease imbalance and
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exacerbate inflammatory responses leading to increased tissue
damage and progression of inflammatory lung diseases.

Disrupted Airway Glucose Homeostasis
In the airways, the composition of the airway surface liquid
(ASL) plays a critical role in the first line of defense against
infection. In health, glucose concentrations in the fluid lining the
ASL are maintained at 0.4 mM, about 12 times lower than the
concentration of glucose in the bloodstream (179). This is an
important airway defense mechanism against infection, limiting
bacterial growth by restricting nutrient availability (180).
However, in chronic inflammatory respiratory diseases
including CF and COPD, the concentration of glucose in the
ASL is increased (179, 181, 182). Disruption of airway glucose
homeostasis increases the availability of glucose as a nutrient
source in the ASL for bacterial pathogens. Consequently, this has
the potential to support proliferation of bacteria able to utilize
glucose as a carbon source, increasing bacterial loads and altering
bacterial communities. Evidence from in vitro (181, 183–185),
animal (186), and human studies (187), indicates that elevated
ASL glucose stimulates the proliferation of P. aeruginosa, S.
aureus, and other Gram-negative bacteria, which promote
bacterial lung infections (188–190). Additionally, elevated
levels of glucose in the ASL is associated with exacerbation,
inflammatory markers and bacterial load in COPD (181). The
principle mechanism thought to be limiting ASL glucose
concentration are the epithelial TJs, which restrict paracellular
glucose movement (191). It has previously been shown that
airway epithelial cell cultures infected with P. aeruginosa,
resulted in TJ protein disruption, which was associated with
increases in paracellular glucose flux, indicating the importance
of epithelial barrier integrity in glucose airway homeostasis
(192). It is not yet known if hypoxia impacts ASL glucose
concentrations but the presence of hypoxia in chronic
inflammatory respiratory diseases and the profound impact of
hypoxia on the epithelial barrier and TJ expression may indicate
a role for tissue hypoxia and HIF-1. Increased glucose
concentrations in the ASL may consequently facilitate nutrient
availability for invading pathogens and increase their persistence
in the airways. Thus, future experiments assessing the role of
hypoxia and glucose airway homeostasis could be explored
further in human ex vivo cell cultures.

Enhanced Viral Replication in Epithelial
Cells
Switching to glycolytic pathways may also be an important
mechanism for viral replication in the lungs. During hypoxic
stress, the rate of oxidative phosphorylation is reduced, switching
cellular metabolism to the use of anaerobic glycolytic pathways
via HIF-1a transcriptional activity (193). Airway epithelial cells
respond in a similar fashion, displaying both aerobic and
anaerobic glycolytic capacities (194). Ouiddir et al.,
demonstrated that airway epithelial cells exposed to hypoxia
induced a three-fold increase in the expression of the glucose
transporter GLUT1, at both the mRNA and protein level (195).
The authors concluded that the epithelial cells ability to sustain
Frontiers in Immunology | www.frontiersin.org 7
ATP production during hypoxia was due to an increase in
anaerobic glycolysis and increased glucose transport at the
membrane level (195). Additionally, hypoxia has been shown
to induce the expression and activation of key glycolytic enzymes
important for the breakdown of glucose, including pyruvate
kinase, lactate dehydrogenase (194), and glyceraldehyde
phosphate dehydrogenase (GAPDH) (196). More recently it
was discovered that airway epithelial cells exposed to hypoxia
resulted in an increase in HIF-1a (197). In these hypoxic cells
mitochondrial respiration was subsequently reduced as well as
the rate of protein synthesis and demands for ATP, and the
activity of GAPDH was increased (197). The influenza H1N1
virus has been found to exploit this mechanism, mimicking the
hypoxic response to stabilize HIF-1a during infection of airway
epithelial cells (198). This in turn, upregulates the expression of
GLUT1, which may reprogram the host cellular glucose
metabolism towards enhanced glycolysis to support nucleotide
biosynthesis and lipogenesis for efficient viral replication.
Rhinovirus infection has also been shown to induce metabolic
alterations in host cells by increasing GLUT1 expression with
increased glucose uptake and enhanced viral replication (199).
More recently, it was demonstrated that monocytes infected with
SARS-CoV-2 resulted in mitochondrial ROS-mediated
stabilization of HIF-1a and increased glycolysis (200). The
increase in glycolysis consequently promoted SARS-CoV-2
replication and cytokine expression. It is not yet known if
similar processes take place in airway epithelial cells. However,
it can be postulated that hypoxia in the airway during SARS-
CoV-2 infection may increase the use of glycolytic enzymes
through HIF-1 pathways which may support SARS-CoV-2
replication. In summary, tissue hypoxia and HIF-1 may play
an important role in the pathogenesis of viral infections through
the switching of glycolytic pathways which can support viral
replication. This could be of particular importance in COVID-19
and respiratory diseases such as asthma and COPD where viral
infections play a key role in exacerbations and disease
progression (201, 202).
CONCLUSIONS AND FUTURE DIRECTIONS

Our understanding of the role of tissue hypoxia in mediating
the epithe l ia l-pathogen interact ions in respiratory
diseases is increasing. Hypoxia modulates several innate
immune responses including impairing epithelial barrier
function, reducing mucociliary clearance, modulating nutrient
availability, and reducing protease inhibitors. Hypoxia could
also play an important role in pathogen colonization of the
lung epithelium through mediating bacterial adherence,
internalization, biofilm formation, and viral replication. This
review has highlighted potential future experimental work that
may aid identification of new drug targets and the development
of novel therapeutics. Developing a deeper understanding of the
oxygen microenvironment within the lung is now key to create
appropriate models and more accurately delineate mucosal host-
pathogen interactions. Furthermore, understanding the impact
March 2021 | Volume 12 | Article 653969
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of hypoxia-mediated modulation of transcription factors and the
potential numerous implications for respiratory disease is
essential. A greater understanding of the balance between
beneficial and detrimental HIF-1 activation is also needed.
Indeed, HIF-1 activity is critical for host response to pathogens
and helps shape the innate and adaptive response. Thus, not all
HIF-1 activation can be considered harmful and the therapeutic
inhibition of this pathway must be balanced against its beneficial
contribution. Nonetheless, targeting the HIF signaling pathway
in chronic respiratory disease may still hold promise in
effectively managing or delaying the progression of disease
(203). Novel therapeutics could be developed which specifically
interfere with mRNA expression, protein synthesis, protein
degradation, protein dimerization, DNA binding or
transcriptional activity of HIF-1. Several in vitro studies have
used various methods to inhibit or silence HIF-1 and have
ameliorated its deleterious effects in disease models (73, 114,
140, 204). Furthermore, the use of HIF-1a inhibitors for the
treatment of patients infected with COVID-19 has recently been
Frontiers in Immunology | www.frontiersin.org 8
highlighted (205). These potential strategies provide interesting
opportunities to potentially modulate tissue hypoxia and lung
mucosal host-pathogen interactions.
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