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Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. Joint
inflammation of RA is closely related to infiltration of immune cells, synovium
hyperplasia, and superfluous secretion of proinflammatory cytokines, which lead to
cartilage degradation and bone erosion. The joint synovium of RA patients contains a
variety of immune cellular types, among which monocytes/macrophages and T cells are
two essential cellular components. Monocytes/macrophages can recruit and promote the
differentiation of T cells into inflammatory phenotypes in RA synovium. Similarly, different
subtypes of T cells can recruit monocytes/macrophages and promote osteoblast
differentiation and production of inflammatory cytokines. In this review, we will discuss
how T cell-monocyte/macrophage interactions promote the development of RA, which
will provide new perspectives on RA pathogenesis and the development of
targeted therapy.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune disease that seriously affects human health. A
variety of immune cells are involved in the pathogenesis of RA (1), including cells from the innate
immune system, such as macrophages, dendritic cells (DCs), and natural killer (NK) cells; and from
the adaptive immune system, such as T lymphocytes (T cells) and B lymphocytes (B cells). In
addition, some non-immune cells, fibroblasts, and endothelial cells are also involved in the
development of RA. The interaction among these cellular components in joint synovium is quite
complicated, including T cells and DC cells (2), T cells and NK cells (3), macrophages and
fibroblasts (4), etc. Among them, T cells (5) and macrophages (6) are recognized as two critical
cellular components involved in RA.

The essential role of T cells in the pathogenesis of RA has been validated, including studies on the
infiltration of synovial T cells in inflammatory synovium of RA (7). However, the specific effects of
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T cells subsets and related cytokines on other immune cells in RA is
elusive. Furthermore, it is also uncertain how other cellular
components (such as macrophages) in modulate the activation,
polarization and function of subpopulations of CD4+ T cells in joint
synovium of RA. On the other hand, macrophages are also
important in the development of RA (8). A series of studies have
found that the heterogeneity of the synovial macrophages is quite
high (9–11), and synovial macrophages are modulated by direct
contact (cell-cell interaction) or indirect regulation (by cytokines
produced by other cells, such as T cells, B cells and fibroblasts) in
RA synovium (8). The ratio of inflammatory(M1) and anti-
inflammatory(M2) macrophages is impaired in RA (9). CD14+

Bone marrow (BM) monocytes/macrophages are present in the
joint synovium of RA patients, and they produce co-stimulatory
molecules and inflammatory cytokines, and present an active
phenotype (12, 13). In RA synovial fluid, the frequency of CD14+
+/bright CD16+ monocyte population increase compared to that of
healthy controls (14). After treatment with sodium aurothiomalate
(SAT), a widely-used disease modifying drugs (DMARDs), the
CD68+ macrophages around blood vessels and connective tissue
area decreased in synovium of RA patients (14); furthermore, a
significant correlation between lower macrophage counts and
favorable radiological results was observed in these patients. In
addition, it has been reported that a decrease in the synovial CD68+

macrophages amount was significantly associated with clinical
improvement (15). Currently, a series of drugs that target
macrophage-related factors are in clinical trial (16).

Although the functions of monocytes/macrophages and T cells
in RA have been investigated for many years, the study of their
interactions in RA has been scarcely approached. Colocalization of
Frontiers in Immunology | www.frontiersin.org 2
monocytes and T cells has been observed in RA synovium (17),
implying that T cell-monocyte/macrophage interactions may occur
at the site of inflammation. Given the critical role of T cells and
macrophages in RA, their interaction could be an essential factor to
consider as it may also play a central role in the development of this
autoimmune pathology (18). Therefore, to illustrate the specific
interaction between T cells and macrophages is essential to
understand the molecular pathogenesis of RA. This mini-review
summarizes previous research articles on T cell-monocyte/
macrophage interactions in RA, highlighting the key role of the
“crosstalk” between these cells in RA and pointing out possible
directions for future studies.
MACROPHAGES REGULATE T CELLS
IN RA

The regulation of T cells by macrophages in RA is mainly reflected
on the activation and amplification of T cells, and subsequent T
cell priming by monocytes/macrophages (Figure 1).

Macrophages Recruit T Cells in RA
Monocytes/macrophages recruit and maintain homeostasis of
CD4+ T cells in synovium from RA patients (17, 19). C-X-C
motif chemokine receptor (CXCR6) highly expressed in type 1
polarized effector memory T cells in synovial fluid from RA
patients (20). It has been reported that the expression of CXCR6
in T cells in joint synovium of RA patients was consistent with
the upregulation of CXCL16 (the ligand of CXCR6) in synovial
CD14+ monocytes/macrophages (20, 21). In vitro migration
FIGURE 1 | The regulation of T cells by macrophages in RA is mainly reflected on the 1) recruitment: Macrophages-secreted CXCL16 induces migration of CXCR6+

T cells in RA joint synovium, which is regulated by TNF-a. 2) Th17 differentiation: abnormal expression of CD200R1 was associated with Th17/Treg imbalance in
patients with active RA. Treatment with anti-CD3 mAb, peptidoglycan, or LPS-activated monocytes from peripheral blood can induce IL-17 secretion from CD4+

T cells. Treatment with anti-CD3/CD28-activated CD4+ T cells can boost Th17 polarization of PBMCs that were treated with RA synovial fluid from healthy donors,
which may be due to the up-regulation of IL-6 and IL-1b from monocytes. Human CD14+/bright CD16+ monocytes promoted Th17 differentiation of memory CD4+

T cells. Activation of the IL-34-CSF-1R pathway in synovial macrophages can promote Th17 differentiation of T cells. IRF5 promotes monocytes/macrophages-
induced Th17 differentiation of T cells. 3) induction of hyper-activation of T cells by monocytes/macrophages: IL-15 lead to increased expression of MHCII and
reduced expression of the SOCS3 in macrophages, which activate the proliferation of autoreactive CD4+ T cells in RA. Monocytes rescue synovial T cells from
glucocorticoid-induced apoptosis. LPS + IFNg-treated M-CSF-dependent macrophages inhibit the proliferation, activation and cytokine production of CD4+ T cells.
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experiments demonstrated that CXCL16 induces migration of
CXCR6+ T cells isolated from RA patient’s joint synovium (22).

CXCL16 is regulated by two groups of cytokines: Th2-related
cytokines IL-4 and IL-10, which inhibit the secretion of CXCL16
in monocytes/macrophages from RA patients; and Th1-related
cytokine IFN, which enhances CXCL16 secretion (23).
Moreover, earlier studies have found that TNF-a-treated
human monocytes promote transmembrane expression of
CXCL16, suggesting that the synovial TNF-a may affect the
recruitment of CXCR6+ T cells (20).

In a study that included three patients who received anti-TNF-a
therapy, the in situ immunohistochemistry results showed a
significant reduction of CXCL16 in the synovium. This observation
may be due to a reduction in the number of monocytes in joint
synovium after treatment, as it is known that synovial cellularity
rapidly decreases after anti-TNF-a therapy (24). In contrast, CXCL16
expression remained high in three patients who did not respond to
anti-TNF-a therapy. The expression of CXCL16 decreased in both
the joint synovium and serum of patients who responded to the TNF
treatment (25). These data suggest that upregulation of CXCL16 in
macrophages/monocytes promotes the recruitment of CXCR6+ T
cells in RA joint synovium, which may help understand the
pathological mechanisms of synovitis. However, the effect of
CXCL16 is not specific to monocytes/macrophages in RA. Other
antigen presenting cells, such as B cells (1) and DC cells (2), also are
potential sources of CXCL16 in RA.

Macrophages Promote Th17
Differentiation in RA
It was observed that the expression levels of CD200R1 on
macrophages of RA patient are lower than that of healthy controls.
This abnormal expression was associated with Th17/Treg imbalance
in patients with active RA (26). In addition, CD200R1 expression
negatively correlated with DAS28, ESR, and CRP levels.

It has been shown that both murine and human monocytes/
macrophages from arthritis joint synovial fluid can promote the
production of IL-17 in CD4+ T cells (27–29). In accordance,
treatment with anti-CD3 mAb, peptidoglycan, or LPS-activated
monocytes from peripheral blood can effectively induce IL-17
secretion from human CD4+ T cells (30). Treatment with anti-
CD3/CD28-activated CD4+ T cells can also boost Th17
polarization of PBMCs that were treated with RA synovial
fluid from healthy donors, which may be due to an increase of
the IL-6 and IL-1b produced by monocytes (31). Rossol et al.
demonstrated that human CD14+/bright CD16+ monocytes
promoted Th17 differentiation of memory CD4+ T cells.
The presence of CD14 +/bright CD16+ monocytes was positively
correlated with Th17 cell density in PBMCs from RA patients
(32). Accordingly, it has been reported that activation of the IL-
34-CSF-1R pathway in peripheral monocytes can promote Th17
differentiation of T cells from RA patients. In this sense, in an in
vitro co-culture experiment, binding of IL-34 to IL-34-CSF-1R
promoted the secretion of IL-6 by THP-1 cells (human monocyte
cell line) and increased percentage of Th17 cells through IL-6
production. It was also shown that ROS levels were induced in
this co-culture model (33).
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The expression of IRF5 in human macrophages can be reversibly
induced by inflammatory stimulation and contributes to
macrophage polarization (34). IRF5 is a marker of M1
macrophages, which directly activates transcription of
interleukin 12 subunit p40 (IL-12p40), IL-12p35, and IL-23p19;
and represses IL-10. In addition, M1 macrophages prepare the
micro-environment for a potent response of Th1/Th17.
Transcriptome analysis has proven that exogenous IRF5
upregulates or downregulates M1 or M2 associated phenotypic
markers, respectively (34). However, these studies only show that
inflammatory monocytes/macrophages promote Th17 differentiation
of T cells under certain conditions (mostly inflammatory stimulation
in vitro), it is important to further illustrate how the specific
mechanisms involved in T cell-monocyte/macrophage interactions
could favor the development of novel targeted therapies.

Macrophages Promote the
Hyper-Activation of T Cells in RA
Besides producing inflammatory cytokines and chemokines,
monocytes/macrophages also play a role in adaptive immune
system, which involves the pathogenesis of RA (13). In RA
synovium, CD14+ cells co-locate with CD4+ T cells, indicating that
monocytes/macrophages and T cells may crosstalk in vivo in an
inflammatory environment (17). Other related studiesmainly focused
on how macrophages promote the hyper-activation of T cells in RA.

Monocytes rescue synovial T cells from glucocorticoid-induced
apoptosis, which is a specific feature of RA. Co-culture of monocytes
and T cells from RA patients showed that soluble factors are important
for T cell resistance to glucocorticoid-mediated apoptosis; however, the
study does not clarify which cytokines secreted by macrophages
inhibited T cells apoptosis caused by the glucocorticoids (35).

Interleukin-15 (IL-15) is a proinflammatory cytokine that is
overexpressed in RA. In this context, excessive amounts of IL-15
lead to increased expression of major histocompatibility complex
class (MHC) II and reduced expression of the suppressor of
cytokine signaling (SOCS) 3 in macrophages, which activate the
proliferation of autoreactive CD4+ T cells in RA (36).

GM-CSF-stimulated macrophages demonstrate inflammatory
feature, specific of M1 macrophages; while M-CSF-dependent
macrophages show phenotype of M2 polarization. LPS + IFNg-
treated M-CSF-dependent macrophages inhibit the proliferation,
activation and cytokine production of CD4+ T cells (37). Both
human (CD14+CD68+) and murine (CD45+CD11b+GR-1-)
inflammatory synovial macrophages can further amplify the
hyper-activation of T cells (28, 38), which is an important cause
of RA. Therefore, the key to treating RA is to interrupt the source of
the amplification cascade.
T CELLS MODULATE MACROPHAGES
IN RA

The regulation of macrophages by T cells in RA mainly includes
effects on macrophage activation, polarization, and osteoclast
differentiation (Figure 2).
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T Cells Recruit Monocytes/Macrophages
in RA
IL-17 from RA synovial fluid has a direct recruitment effect on
monocytes in vitro. Moreover, human monocytes intravenously
transplanted into SCID mice are recruited to implanted sponges
pre-treated with human IL-17 (39). In this regard, tissue-immersed
human Th17 cells secrete CCL20, which has chemotactic effects on
monocytes (40). Nevertheless, this does not exclude the possibility
that IL-17 may have indirect chemotactic effects on monocytes by
inducing chemokine secretion from other cellular components of RA
synovium. IL-17 in the ankle joint was associated with an increase of
F4/80 (macrophage marker) and CCL2 levels. IL-17-mediated CCL2
upregulation involves PI3K, ERK, and JNK pathways.

However, not all T cells subtypes promote or activate the
inflammatory status of macrophages in RA. In the presence of
CD4+ CD25+ regulatory T cells (Tregs), primary human
monocytes/macrophages survive while adopting an anti-
inflammatory phenotype. The induction of monocyte death
requires activation of CD4+ CD25- responder T cell–cell
contact in a FAS-L/FAS dependent manner (41).

T Cells Promote Cytokine Production
by Macrophages in RA
As early as 1994, Wagner et al. proved that plasma membranes
from anti-CD3 activated human peripheral CD4+ T cells but not
from resting CD4+ cells were able to activate monocytes to
produce IL-1 in absence of co-stimulatory cytokines, in a
CD40-CD40L dependent manner (42).

T cell receptor (TCR)/CD3-mediated T cell activation induces
monocyte TNF-a production. It has been reported that addition
Frontiers in Immunology | www.frontiersin.org 4
of IFN-g or GM-CSF to T cell and monocyte co-cultures
enhanced T cell induction of TNF-a by monocytes from RA
patients (43). Another study demonstrated the specific
mechanism by which human T cells promote TNF-a secretion
from macrophages: T cells pretreated with Rolipram or
cAMP analogues inhibited the increase in proliferation induced
by IL-15, expression of cell surface molecules CD69, LFA-1 and
ICAM-1, and production of TNF-a from macrophages (44).

On the other hand, T cells can facilitate the production of
anti-inflammatory cytokines from macrophages under other
circumstances. IL-10 is an anti-inflammatory cytokine secreted
in the joints of RA by macrophages and blood-infiltrating
lymphocytes. It has been observed that IL-10 production in RA
synovial-membrane mononuclear cells and M-CSF-primed
macrophages is activated by interaction with cytokine-
stimulated T cells in a PI3K- and p70S6K-dependent manner
(45). However, the mentioned study did not explain which
subtype of T cells promoted the production of anti-
inflammatory cytokines by the macrophages.

T Cells Regulate Osteoclast
Differentiation in RA
The regulation of monocytes/macrophages by T cells in RA also
reflects in the ability of T cells to regulate the differentiation of
monocytes to osteoclasts, which is an important cause of bone
erosion in RA patients (46). Bone absorption of osteoclasts leads to
the production of “erosion points”, this has pathological significance
in RA and can be used as an index of disease severity (47).

Miranda-Carús et al. found that T cells from peripheral blood
of patients with early RA express the Receptor Activator for
FIGURE 2 | The regulation of macrophages by T cells in RA mainly includes effects on macrophage 1) recruitment: Synovial Th17 cells secrete CCL20 and CCL2,
which has chemotactic effects on monocytes. The induction of monocyte death requires activation of CD4+ CD25- responder T cell–cell contact in a FAS-L/FAS
dependent manner. 2) cytokine production: anti-CD3 activated peripheral CD4+ T cells can activate monocytes to produce IL-1 in a CD40-CD40L dependent
manner. TCR/CD3-mediated T cell activation induces monocyte TNF-a production, which is induced by IL-15. IL-10 production in RA synovial-membrane
mononuclear cells and M-CSF-primed macrophages is activated by interaction with cytokine-stimulated T cells in a PI3K- and p70S6K-dependent manner. and
3) osteoclast differentiation: Th1, Th17 and Th22 can induce osteoclast differentiation via producing IL-15, RANKL, M-CSF and IFN-g. However, IFNg also disrupts
the differentiation of osteoclasts via degrading RANK bridging protein TRAF6, this suggests that IFNg+ T cells can promote or hinder osteoclastogenesis under
different conditions.
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Nuclear Factor k B Ligand (RANKL) and IL-15 on the cell
surface, which promotes osteoclastogenesis of autologous
monocytes; this process was inhibited by osteoprotegerin
(OPG) and neutralizing monoclonal antibodies against IL-15,
IL-17, TNF-a, and IL-1b (48). However, this study did not
elucidate which T cell subtype induced osteoclast differentiation.

In a co-culture system, human IFNg+ T cells promoted the M-
CSF-induced differentiation of monocytes to osteoclasts through
the expression of RANKL (49). However, IFNg also disrupted the
differentiation of murine osteoclasts via degrading RANK
bridging protein TRAF6, this suggests that IFNg+ T cells can
promote or hinder osteoclastogenesis under different conditions
(50). In this sense, Th17 cells are usually associated with
osteoclastogenesis. Th17-related cytokines increase in RA
synovium and directly induce osteoclast differentiation (51). In
addition, murine RANKL+ Th17 cells have been demonstrated to
change mature osteoclasts to the “bone absorption” status (52). It
has been reported that T cells from synovial fluid of RA patients
express high levels of RANKL and that high amounts of
RANKL+ CD3+ T cells can be been found in synovial tissue of
RA patients (53). Therefore, T cells found in RA can contribute
to osteoclast formation, leading to consequent bone absorption.

Murine Th22 cells have been identified as a new subset of IL-22
producing cells (54). IL-22 production was considered characteristic
of the CD3+ CD4+ CCR4+ CCR6+ CCR10+ cells, and as their ability
to produce this cytokine exceeded that of other subgroups of Th
Cells, the population was designated as Th22. It has been reported
that co-culture of Th22 cells with monocytes in the presence of M-
CSF and RANKL induced osteoclast formationmore efficiently than
Th1 cells or Th17 cells from RA patients (55). Overall, RA T cell-
related cytokines could recruit, polarize, activate, or differentiate
monocytes/macrophages. In RA synovium, the cellular phenotype
Frontiers in Immunology | www.frontiersin.org 5
of monocytes/macrophages may also depend on the synergic
interaction between T cell-derived soluble factors and other cells.
MUTUAL INTERACTION BETWEEN
MACROPHAGES AND T CELLS IN RA

While certain studies focus on one-way regulation, other studies
illustrate the mutual interaction between T cells and macrophages
in RA (Figure 3). C-type lectin DC-SIGN is significantly expressed
by CD68+ macrophages in synovium of RA patients. Expression of
DC-SIGN and its ligand, intercellular adhesion molecule (ICAM-
3, mostly expressed in T cells), is substantially detected in RA
synovium, suggesting that the interaction of macrophages/T cells
via DC-SIGN/ICAM-3 promotes the additional activation of
synovial CD68+ macrophages and production of extracellular
matrix metalloproteinase inducer (EMMPRIN) and MMP-1 (56).

CD4+ T cells and macrophages from RA synovial fluid were
hyperresponsive to IL-7. This cytokine induced activation and
proliferation of CD4+ T cells and monocytes/macrophages from
synovium of RA patients in a cell contact-dependent manner. IL-7
also promoted co-stimulatory molecules CD80 and CD40 on
CD14+ monocytes in the presence of CD4+ T cells (57). However,
the specific molecular mechanisms by which IL-7 promotes
activation of co-cultured T cells/macrophages remains elusive.

In the early stages of RA, CCL21 treatment induced the ratio of
M1-polarized macrophages, leading to up-regulation of IL-6 and
IL-23 genes. These CCL21-induced M1 cytokines favor the
differentiation of naïve T cells into Th17 cells. In the erosive
stages of RA, CCL21 aggravated RA osteoclastogenesis via M1
macrophages-mediated Th17 differentiation. Consistent with the
FIGURE 3 | Mutual interaction between macrophages and T cells includes ICAM3/DC-SIGN, CD40/CD80 and CCL21/CCR7-Th17. The interaction of
macrophages/T cells via DC-SIGN/ICAM-3 promotes the additional activation of synovial macrophages and production of EMMPRIN and MMP-1. IL-7 promotes co-
stimulatory molecules CD80 and CD40 on CD14+ monocytes in the presence of CD4+ T cells. In the early stages of RA, CCL21-induced M1 cytokines favor the
differentiation of naïve T cells into Th17 cells. In the erosive stages of RA, CCL21 aggravates RA osteoclastogenesis via M1 macrophages-mediated
Th17 differentiation.
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in vitro findings, an in vivo study showed that CCL21-mediated
arthritis favors the exacerbation of joint inflammation
into bone erosion, and that this process was associated with M1-
macrophages dependent Th17 polarization. Therefore, CCL21 is
an potential target for RA therapy, as the suppression of CCL21-
mediated inflammation may relieve erosive arthritis modulated by
the interaction of M1 macrophages and Th17 cells (58).
THE EFFECTS OF RA THERAPIES ON T
CELLS AND MACROPHAGES

The imbalance of macrophages and T cell populations is an essential
element to RA. Given the significance of T cell-monocyte/
macrophage interactions in contributing to arthritis, targeting
these interactions may be beneficial to treat inflammation related
diseases. When we summarized the cytokines that mediate the
crosstalk between macrophages and T cells in RA, TNF-a and IL-6
were found as two key cytokines that widely involved in the
interaction between them. Currently, TNF-a and IL-6 related
monoclonal antibodies are the effective targeted drugs for the
treatment of RA. Therefore, people need to pay more attention to
further clarify the cytokines-mediated interaction of macrophages
and T cells in RA, which may help us to find more potential
therapeutical targets of RA treatment.

In fact, uncovered mechanisms of existing therapies, such as
CTLA4-Ig, may function by targeting monocytes/macrophages. For
example, inhibition of IL-6 with monoclonal antibodies against IL-
6R can increase the Treg ratio (59), but other mechanisms of action
may include reducing the proportion of inflammatory monocytes,
inducing monocyte apoptosis, and inhibiting IL-6 production in
monocytes. The function of Treg cells was enhanced after treatment
with TNF-a inhibitors (60). When antigen-presenting cells and
CD4+ T cells are co-cultured, TNF-a blockage promotes the
expression of IL-10 and immunomodulates effector CD4+ T cells.
It has found that after TNF-a blockage, IL-17 and IL-10 are
significantly induced in CD4+ T.

In addition, the JAK inhibitors, tofacitinib and ruxolitinib,
have been shown to effectively suppress the inflammatory
response of primary monocytes-induced macrophages from
PBMCs preparations. Moreover, tofacitinib effectively inhibited
the development of K/BxN serum transfer-induced arthritis
models (STIA) (61). JAK inhibition can induce osteoclast
differentiation. Furthermore, both tofacitinib and ruxolitinib
were able to activate the feedback inhibition of IL-10-mediated
transcription of cytokines, thereby blocking the production of
LPS-induced cytokines in macrophages (62). Therefore, JAK
inhibitors have the ability to regulate multiple cellular
functions of monocyte/macrophage.
CONCLUSION

Overall, there is emerging evidence that monocytes/macrophages
and CD4+ T cells play a central role in RA. Except secretion of
inflammatory cytokines, synovial monocytes/macrophages also
Frontiers in Immunology | www.frontiersin.org 6
produce chemokines that attract and maintain homeostasis of
CD4+ T cells in synovium. Activated monocytes can affect the
Th1/Th17 cells differentiation from CD4+ T cells. In addition,
monocytes/macrophages affect the number and function of
regulatory CD4+ T cells by producing certain cytokines. Similarly,
CD4+ effector T cells can activate, polarize, and kill monocytes/
macrophages and affect the chemotaxis of monocytes, while CD4+

Tregs can improve their survival and induce anti-inflammatory
monocytes/macrophages. However, due to the number of studies on
the interaction of these two kinds of cells in RA is limited, the
interaction of T cell subpopulations and macrophages in RA is not
fully investigated. Following studies should compare the worsening
effects of pro-inflammatory CD4+ T cell subpopulations or
monocytes/macrophages on anti-inflammatory monocytes/
macrophages or T cell subpopulations and the ameliorative effects
of anti-inflammatory T cell subpopulations or monocytes/
macrophages on pro-inflammatory monocytes/macrophages or
CD4+ T cell subpopulations, which can determine which immune
cells play a more important “commander” role in joint synovium
of RA.

Identifying additional cellular membrane markers able to reflect
the subtype characteristics of monocytes/macrophages will help
further investigate their specific role in RA. The specific role of
subtypes of monocyte/macrophage is still elusive in animal models
or immortal cell lines, the study of human primary monocytes and
macrophages is essential to understanding the role of these cells in
the pathogenesis of RA. Improving the knowledge on the ontogeny
of synovial macrophages could help us achieve a deeper
comprehension of the role of tissue-resident macrophages in
synovium of RA. The direct interaction between CD4+ T cell
subtypes and resident macrophages can further illustrate how the
effector T cell response is produced in situ and how effector CD4+ T
cells and Tregs differently regulate macrophages. A better
understanding of how the interactions between these cellular
components lead to immunopathology will facilitate the
development of new treatment strategies and the improvement of
the currently available strategies.
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