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gd T cells are distributed in various lymphoid and nonlymphoid tissues, and act as early
responders in many conditions. Previous studies have proven their significant roles in
infection, cancer, autoimmune diseases and tissue maintenance. Recently, accumulating
researches have highlighted the crosstalk between gd T cells and nervous systems. In
these reports, gd T cells maintain some physiological functions of central nervous system
by secreting interleukin (IL) 17, and neurons like nociceptors can in turn regulate the
activity of gd T cells. Moreover, gd T cells are involved in neuroinflammation such as stroke
and multiple sclerosis. This review illustrates the relationship between gd T cells and
nervous systems in physiological and pathological conditions.
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INTRODUCTION

gd T cells are T lymphocytes that express T-cell receptor gamma chain and delta chain to constitute
gd T-cell receptors (TCRs). Like conventional ab T cells and B cells, gd T cells also utilize somatic V,
D, J gene rearrangement to express various TCRs for antigen recognition. Different from major
histocompatibility complex (MHC) restricted manner, gd TCRs follow antibody-like recognition
manner to bind diverse ligands such as small and large, peptidic and non-peptidic, and foreign and
self-molecules (1–3). Though gd T cells contribute a minor population in the blood and lymphoid
tissue, they are abundant in barrier tissue and their frequency in the blood can expand dramatically
during infection (2). Using different V regions of gd TCR chains, different subsets of gd T cells reside
in meninges, skins, lungs, livers, peritoneal cavity, adipose tissue, uterus, tongue, gut, blood and
Abbreviation: TCR, T-cell receptors; MHC, major histocompatibility complex; IFN, interferon; IL, interleukin; IGF, insulin-
like growth factor; CXCR, CXC type chemokine receptor; CXCL, C-X-CMotif Chemokine Ligand; CCL, C-Cmotif chemokine
ligand; CCR, C-C chemokine receptor; IP-10, IFN-g-induced protein 10; CD, cluster of differentiation; GM-CSF, granulocyte-
macrophage colony-stimulating factor; TNF, tumor necrosis factor; BBB, blood-brain barrier; BDNF, neurotrophic factor;
WT, wild type; mPFC, medial prefrontal cortex; S1DZ, somatosensory cortex; GABA, gamma-aminobutyric acid; PNS,
peripheral nervous system; TRPV1, transient receptor potential vanilloid subfamily member 1; TRPA1, transient receptor
potential ankyrin 1; NLRP3, NLR family pyrin domain containing 3; IRF, interferon regulatory factor; IMQ, imiquimod; DC,
dendritic cells; RTX, resiniferatoxin; CGRP, calcitonin gene–related peptide; PD, Parkinson’s disease; MS, multiple sclerosis;
RRMS, relapsing-remitting MS; EAE, experimental autoimmune encephalomyelitis; Th17, T helper 17; CSF, Cerebrospinal
fluid; HSP, heat-shock protein; CNS, central nervous system; FCD, focal cortical dysplasia; CDR3, complementarity
determining region; IH, intracerebral hemorrhage; CM, cerebral malaria; ECM, experimental cerebral malaria; RE,
Rasmussen’s encephalitis; TLR, Toll-like receptors; PPR, pattern recognition receptor; MMP, matrix metalloproteinase;
WNV, West Nile Virus; LPS, lipopolysaccharide.
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secondary lymphoid organs, depending on the different waves of
gd T cell development before and after the birth (4–9).
Depending on TCR signaling strength during development, gd
T cells differentiate into two main effector subsets based on the
types of cytokines produced: interferon-gamma (IFN-g) and
interleukin17 (IL-17) (gd T17 cells) (5, 10). gd T cells can
participate in an immediate immune response as their direct
antigen recognition, wide distribution, diverse ligands of gd
TCRs and expression of innate receptors. Indeed, tons of
evidences have indicated that gd T cells play pivotal roles in
infection, tumor, autoimmunity and immune surveillance (7,
11–13). During the immune responses, gd T cells can be activated
by TCRs and/or by innate signals [e.g. cytokines and natural-
killer group 2, member D (NKG2D)] (14). The clear roles of TCR
signals and innate signals in regulating the functions of gd T cells
are still under debate. Regardless, the activated gd T cells can
secrete IL-17 to recruit neutrophils to amplify the inflammatory
signals, promote the maturation of dendritic cells to prime ab T
cells, eliminate infected cells by directly releasing IFN-g, perforin,
granzyme B, and granulysin after sensing antigen and antibody-
dependent cell-mediated cytotoxicity, and present antigen to ab
T cells (11). In addition, gd T cells can repair damaged tissues by
producing cytokines and chemokines, which is crucial for the
homeostatic maintenance in the epidermis, intestinal epithelium,
and adipose tissues (7). These tissue-resident gd T cells show
more functions than any other immune cells, as they can secrete
insulin-like growth factor 1 (IGF-1) to improve epithelial cell
survival and produce IL-17F to promote lipolysis and
thermogenesis in adipose tissue (15, 16).

gd T cells are also important for the inflammatory responses
in neurological diseases. More importantly, new evidences have
indicated that meningeal gd T cells play important roles in
maintaining the homeostasis of nervous system. These findings
have suggested the complex role of gd T cells in neuron-immune
interactions. To better understand the functions of gd T cells in
nervous system, it is necessary to summarize the latest progress
in the interaction between gd T cells and nervous system. In this
review, we will discuss how gd T cells interact with nervous
system in physiological and pathological conditions.
gd T CELLS INTERACT WITH THE
CENTRAL NERVOUS SYSTEM

For past decades, it has been conventionally believed that the
central nervous system (CNS) has immune-privileged properties
as it is shielded by the blood-brain barrier (BBB) that features
with low expression of leukocyte adhesion molecules and tight
junctions between brain capillary endothelial cells (17, 18).
However, accumulating evidences have suggested that CNS
and immune system can directly crosstalk with each other
(19). Some immune molecules, such as cytokines, play a role in
learning, memory and social behavior (20, 21). Moreover, a
triple-layered membrane surrounding brain parenchyma called
meninges is confirmed to bypass the BBB, which may be a place
for immune surveillance and maintaining homeostasis of CNS
Frontiers in Immunology | www.frontiersin.org 2
(19). Along this line, diverse meningeal immune cells have been
described in many articles. Among these immune cells,
meningeal T cells were identified to secrete interleukin 4 (IL-
4), interleukin 13 (IL-13), and IFN-g, which correlate with
learning, long-term memory and social behavior (20–22). IL-
17, a key cytokine for inflammation, has also been discovered to
administrate the fetal brain development and behavioral
abnormalities (23, 24). Since meningeal gd T cells have been
identified as well, it is interesting to know the role of gd T cells in
regulating brain functions. Recently, two elegant works by
Ribot’s group and Kipnis’ group found that meningeal gd T
cells could secrete IL-17 to regulate short-term memory and
anxiety-like behavior, which partially addressed this issue (8, 25)
(Figure 1).

Meningeal gd T cells are tissue-resident cells expressing C-X-
C Motif Chemokine Receptor 6 (CXCR6) and are attracted by
chemokine C-X-C Motif Chemokine Ligand 16 (CXCL16),
which is highly expressed in dura-resident myeloid cells (25).
They migrate to meninges shortly after birth and are prevalent in
dura mater. More importantly, they are the major source of IL-17
(8, 25). The majority of these meningeal gd T17 cells are fetal
derived Vg6Vd1 (the V region of TCR g chain uses TRGV6 gene
and the d chain uses TRDV1 gene) T cells with canonical
identical Vg6-Jg1 and Vd1-Dd2-Jd2 chains that can be found
in various non-lymphoid tissues (8, 9, 26, 27). Mice deficient gd T
cells and IL-17 showed impairments in short-term memory in
tests of Y-maze and the Morris water maze. gd T cell derived IL-
17 can modulate the expression of neurotrophic factor (BDNF)
in the hippocampus, which is able to regulate synaptic plasticity
of neurons required for short-term memory (8). On the other
hand, compared to WT mice, TCRd-/- mice and WT mice with
the presence of anti-TCRd antibodies in the Cerebrospinal fluid
(CSF) showed severe anxiety-like behavior in the elevated plus
maze and the open field (25). Collectively, these data suggested
that meningeal gd T17 cells played a key role in short-term
memory and anxiety-like behavior. In this scenario, it is
important to figure out the target of IL-17. Since IL-17
receptor A (IL-17RA) is expressed not only on astrocytes and
microglial cells, but also on neurons throughout all cortical layers
of the medial prefrontal cortex (mPFC) and somatosensory
cortex (S1DZ), the observation that conditional knockout of
IL-17RA on astrocytes and microglial cells did not disturb short-
term memory suggested that IL-17 could directly affect neurons
(8, 25, 28). Indeed, IL-17 signaling affected mPFC neurons by
down-regulating the activity of gamma-aminobutyric acid
(GABA)-benzodiazepine, the prototypical pathway for
anxiolytic drugs (25). The further detailed molecular
mechanism of how IL-17 signaling regulates short-term
memory and anxiety-like behavior requires further study.
Furthermore, unlike lungs, skins and guts, meninges do not
have pathogenic or inflammatory stimuli in steady state (18, 29).
How could meningeal gd T cells continuously produce IL-17? It
is found that the IL-17 production of meningeal gd T cells is
irrelative with pro-inflammatory cytokines interleukin 1 (IL-1)
and interleukin 23 (IL-23), and pathogen-associated molecular
pattern signals (8). In addition, it is still inconclusive whether
March 2021 | Volume 12 | Article 656097
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components of commensal microbiota regulate IL-17 production
of meningeal gd T cells (8, 25). Therefore, the detailed
mechanisms of continuous production of IL-17 by meningeal
gd T cells are still unclear.
gd T CELLS INTERACT WITH THE
PERIPHERAL NERVOUS SYSTEM

As one of the most essential protective mechanisms of human
body, nociceptive pain responds to chemical, mechanical, and
thermal stimuli and can be detected by nociceptors around the
body in peripheral nervous system (PNS) (30). As a particular
subset of primary sensory neurons, nociceptors can respond to
pain stimuli and subsequently convert the stimuli into nerve
impulses to inform brain to produce the sensation of pain (31).
Once receiving the stimuli, nociceptors can regulate the immune
cell response activity at the tissue by releasing neuropeptides
which were stored at the dense-core vesicles both in nociceptors’
synaptic terminals at the CNS and in the nerve endings within
Frontiers in Immunology | www.frontiersin.org 3
the peripheral tissues (32). The transducers of noxious stimuli
are voltage-gated and ligand-gated ion channels expressed on the
nociceptor nerve terminals, such as transient receptor potential
vanilloid subfamily member 1 (TRPV1), transient receptor
potential ankyrin 1 (TRPA1), Nav (Voltage-gated sodium
channels)1.7, Nav1.8, and Nav1.9 (33).

Among various immune cells, gd T cells are also regulated b
nociceptors. It has been reported that TRPV1+ and Nav1.8+

nociceptors were necessary factors to drive imiquimod (IMQ)
induced psoriasis-like inflammation in skin by promoting
dermal dendritic cells (dDCs) to produce Interleukin 23 (IL-
23). IL-23-producing dDCs could activate IL-23 receptor positive
(IL-23R+) dermal gd T cells to secrete IL-17A, IL-17F and IL-22,
which resulted in the recruitment of neutrophils to skin and
hyperproliferation of keratinocytes (34, 35). Extended studies
provided more details of how TRPV1+ nociceptors, dDCs and
dermal gd T cells interacted with each other in a fungus infection
mouse model. TRPV1+ neurons were activated through Dectin-1
by sensing the b-glucan of Candida albicans, a kind of sugars on
cell walls of fungus. Activated TRPV1+ neurons released
FIGURE 1 | Meningeal gd T cells involved in behavior regulation. Relying on CXCR6-CXCL16 axis, meningeal gd T cells migrate to dura mater shortly after birth.
Meningeal gd T cells influence brain by constant secretion of IL-17. Neurons in medial prefrontal cortex(mPFC) and somatosensory cortex (S1DZ) express IL-17Ra in
response to IL-17 to regulate anxiety-like behavior of mice. IL-17 induced glial brain-derived neurotrophic factor (BDNF) modulates hippocampal neuronal plasticity to
maintain short-term memory.
March 2021 | Volume 12 | Article 656097
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neuropeptide calcitonin gene–related peptide (CGRP) to drive
dDCs to produce IL-23, which could promote dermal gd T cells
to produce IL-17 and subsequently active downstream pathways
to inhibit C. albicans infection (36–38). Ablating TRPV1+

nociceptors by resiniferatoxin (RTX) could reduce the numbers
of IL-17 producing gd T cells and the efficiency of C. albicans
elimination (36). This finding, together with other findings that
a-hemolysin of Staphylococcus aureus (S. aureus) and
streptolysin S of Streptococcus pyogenes (S. pyogenes) can
activate TRPV1+ nociceptors to secrete CGRP, indicated that
some pathogen related molecules were sufficient for
TRPV1+nociceptors activation and CGRP secretion as a
consequence (39, 40). Therefore, Kaplan and colleagues tried
to figure out whether the activation of TRPV1+ neurons alone
could trigger gd T17 response in a pathogenic molecule-free
condition. By using optogenetic mouse model, they found that
activation of TRPV1+ neurons alone sufficiently induced IL-17
production by gd T cells in skin via releasing CGRP. More
importantly, activated TRPV1+ neurons provided signals
through nerve reflex arc that could induce gd T17 response at
adjacent, unstimulated skin (37). Therefore, neurons secreted
molecules are perfectly capable of activating skin innate immune
response, not only at the stimulated skin, but also at adjacent
unstimulated skin, which may be benefit for limiting the
infection. In addition, gd T cells can cooperate with TRPA1+

nociceptors to promote systemic skin regeneration. Leung’s
group found that in IMQ induced inflammation mouse model,
TRPA1+ neurons, but not NLR family pyrin domain containing
3 (NLRP3), Toll like receptor 7 (TLR7) and TRPV1+ neurons,
stimulated local IL-23 production by dDCs, thereby activating gd
T17 for tissue regeneration. Although the details of how TRPA1+

neurons promote dDCs to secrete IL-23 still need to be clarified,
the results in mice with genetically defective of TRPA1+ neurons,
gd T cells and chemical removing dDCs suggested that none of
these cells were redundant in skin wound healing (41). However,
since both TRPA+ and TRPV+ neurons can activate gd T17 cells
via IL-23 secreted by dDCs, the reason why only TRPA+ neurons
can promote gd T17 cells for wound healing needs to be clarified.
Other potential mechanisms may exist in wound healing by
TRPA+ neurons regulated gd T17 cells and are required for
further investigation. Taken together, the axis of nociceptors-
dDCs-gd T17 cells has been discovered and plays a key role in
defense against pathogen invasion and skin wound healing
(Figure 2).

The crosstalk of nociceptors and gd T cells is not always to
protect the host against infection. In lethal S. aureus pneumonia
mouse model, Chiu’s group found that TRPV1+neurons
downregulated lung gd T cells, resulting in a decrease in the
recruitment of neutrophils that are essential for bacterial
clearance. Mice ablating TRPV1+ nociceptors by RTX showed
better survival rate and could increase lung gd T cell number, in
which the major increased gd T cell subsets were Vg1+ and Vg1-

Vg2- subtypes (42). Although the blockade of CGRP antagonist
and the ablation of TPRV1+nociceptors have the similar
phenotypes in the regulation of S. aureus pneumonia, the
direct evidence of how CGRP regulates gd T cells is still
Frontiers in Immunology | www.frontiersin.org 4
missing. Moreover, the specific role of IL-17 in this model has
not been well described, even though the dynamic changes of
neutrophils in TPRV1+nociceptors ablated mice have indicated
that IL-17 played a pivotal role during the infection. In addition,
Ghasemlou’s group tried to decipher the function of gd T cells in
different pain mouse models. Compared with WT mice, TCRd-/-

mice had no differences in baseline sensitivity and mechanical or
thermal hypersensitivity after injury, but with higher numbers of
myeloid cells and monocytes. This finding suggested that gd T
cells did not contribute to the sensitization of inflammatory pain,
but were involved in regulating the recruitment of myeloid cells
and monocytes (43). Regardless, these data suggested that the
mechanism of nociceptors regulating immune cells may be very
complicated in different organs. A comprehensive study of how
nociceptors regulate the whole immune system is required.
gd T CELLS IN NEUROLOGICAL DISEASES

Neuroinflammation happens in the nervous system especially in
the CNS, and is associated with most neurodegenerative disease
(such as Parkinson’s disease (PD), multiple sclerosis (MS) and
amyotrophic lateral sclerosis) (44–46). Several factors, such as
autoimmunity, infection, injury and aging, may induce the
incidence of neuroinflammation (47–49). At the beginning of
neuroinflammation in the damaged tissue, recruited immune
cells help to reconstruct tissue and repair neurons (50, 51). The
persistent neuroinflammation results in chronic inflammation
and neuronal death (52). As kick-starters of inflammation, gd T
cells participate in many neuroinflammation related diseases
(53) (Table 1).

Multiple Sclerosis and Experimental
Autoimmune Encephalomyelitis (EAE)
As a potentially disabling disease of the CNS, multiple sclerosis
(MS) is caused by the immune system attacking on protective
myelin sheaths that cover neurons, eventually disabling the
communication between brain and the rest of the body (45).
Though many comparisons among patients with primary
progressive MS, patients with relapsing-remitting MS (RRMS),
healthy controls and patients with other neurological diseases
have been done and the differences of the frequency of gd T cells
in the peripheral blood in patients with MS remains
contradictory (54–58).While the percentage of Vd2 T cells
decreased and the percentage of Vd1 T cells increased in
peripheral blood of MS patients (58, 59), gd T cells in MS
patients expressed higher level of C-X-C Motif Chemokine
Receptor 3 (CXCR3) that was related to the migration of T
cells to MS plaques (60). As one of the two ligands of CXCR3,
IFN-g-induced protein 10 (IP-10) was elevated in both primary
progressive MS and RRMS (61). Another ligand Chemokine (C-
C motif) ligand 21 (CCL21) was remarkably reduced in the CSF
during remission (62). For a better understanding of infiltrated
gd T cells in CNS, TCR repertoire analyzes were performed and
the data revealed an oligo clonal expansion of gd T cells in CNS
of MS patients, suggesting these gd T cells responded to common
March 2021 | Volume 12 | Article 656097
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antigens (63–65). Along this line, the non-classical major
histocompatibility complex (MHC) molecule CD1d, which
could express lipid antigens to T cells, was found to be able to
present myelin-derived glycosphingolipid antigen sulfatide in
MS and recognized by gd TCRs in sulfatide-specific manner (66).
CD1d immunoreactivity was increased in MS, which suggested
that one of early events in active phases of demyelination might
be the lipid antigen presentation to gd T cells (67). Furthermore,
another potential gd TCRs ligand, heat-shock protein 65
(HSP65), could induce gd T cells expansion (68). Vd1T cells
could co-localize with HSP65+ oligodendrocytes within the sites
of remyelination in MS lesions (69, 70). Studies further revealed
that Vd1 T cells expressed high level of IFN-g that correlated with
Frontiers in Immunology | www.frontiersin.org 5
inflammation and nerve damage in newly diagnosed MS,
whereas CD161high CCR6+ gd T cells (a gd T cell subset
expressing IL-17 in human) were enriched and produced IL-17
in the CSF of patients during relapse (58, 71). The component
and function of gd T cells have been extensively studied in EAE
mouse model.

Experimental autoimmune encephalomyelitis (EAE) is one of
widely used MS animal models that shares the same pathological
feature including inflammation, demyelination, axonal loss and
gliosis (115). Several immune response–modifying therapies
have been successfully translated from EAE studies to clinical
practice for MS treatment (116). IL-17 is indicated as a key pro-
inflammatory cytokine in EAE, which is secreted by T helper 17
FIGURE 2 | Dermal gd T cells involved in nociceptors-induced skin protection. By sensing molecules such as C. albicans-derived soluble b-glucan and imiquimod
(IMQ) respectively, TRPV1+ neuron and TRPA1+ neuron active dermal dendritic cells produce IL-23. In response to IL-23, dermal gd T cells produce IL-17 and IL-22
to repair the wound and recruit neutrophils for pathogen clearance.
March 2021 | Volume 12 | Article 656097

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. gd T Cells and Neurons
(Th17) cells and gd T17 cells (72–74).The two cell types cannot
be replaced by one another, as a reduced EAE severity was
observed in either Th17 depletion or gd T cell deficient mice (74,
75). In the process of EAE, gd T cells expressed CD11a-d that
might be essential for gd T cell trafficking to the CNS, as
indicated by the fact that deletion three out of four CD11
molecules dramatically reduced the severity of EAE (76–78).
Moreover, gd T17 cells with a downregulation CCR6 and an
upregulation C-C Motif Chemokine Receptor 2 (CCR2)
promoted the migration of gd T cells to CNS in EAE (79).
Therefore, these molecules promoted the rapid infiltration of gd
T17 cells into CNS and enabled them to be involved in early
inflammation in EAE. Notably, a dynamic gd TCR repertoire
analysis indicated that most of infiltrated gd T cells at the early
phase of EAE were Vg4Vd6 and Vg6Vd1 with a highly focused gd
TCR repertoire, which has been reported as natural gd T17 cells
(ngd T17) (74, 80–82). This data was consistent with early studies
that the majority of infiltrated gd T cells in the brain and spinal
cord expressed Vg1, Vg4 and Vg6 at the onset of EAE, while the
majority of Vg transcripts could be detected at the later phase,
suggesting that different gd T subsets participate the process of
EAE (80). In addition to thymic-derived ngd T17, peripheral gd T
cells, especiallyVg4+T cells, can be induced to differentiate and
produce IL-17 upon IL-23 stimulation in EAE (83). Both Vg4
and Vg6 T cells could produce high expression levels of IL-1
receptor (IL-1R) and IL-23R to bind activated monocytes and
dendritic cells secreted IL-1b and IL-23 to release IL-17 and
Frontiers in Immunology | www.frontiersin.org 6
interleukin 21 (IL-21), which could facilitate Th17 cells to
produce IL-17, IL-22 and granulocyte-macrophage colony
stimulating factor (GM-CSF) to exacerbate neuroinflammation
(74, 83–85). IL-17 could also stimulate BBB endothelial cells,
microglia and astrocytes to release multiple cytokines and
chemokines to recruit neutrophils to breakdown BBB, and
finally, to attract various leukocytes into the CNS (86–89). IL-
23-activated gd T cells could not only promote Th17 cells
function, but also restrained the conversion of naïve T cells to
Tregs and suppressed the Treg responses to enhance
inflammation (74, 90). In addition, a subset of interleukin 15
(IL-15)-secreting gd T cells was found to induce CD44high

memory T cells by releasing IL-15 and help to switch memory
T cells to Th17 cells to induce EAE (91). However, not all gd T
cells were inflammatory signals promoter. IFN-g producing gd T
cells, majority of which were Vg1 T cells, induced IFN-g
expression by encephalitogenic T cells, suppressed the activity
of Th17 and released Chemokine (C-C motif) ligand 4 (CCL4) to
recruit C-C Motif Chemokine Receptor 5 (CCR5) + Tregs to
reduce the inflammatory signals (92, 93). Additionally, gd T cells
regulated inflammation through Fas/Fas ligand, which could
induce encephalitogenic T cells apoptosis and facilitate the
recovery from EAE (94). Regardless, given that the infiltrated
gd T cells highly expressed IL-17 in the CNS and amplified Th17
responses, it was recognized that gd T cells were more pathogenic
than protective, especially in the early stage of the diseases (74).
Therefore, Therapies targeting IL-17, IL-17 receptor (IL-17R) or
TABLE 1 | The role of gd T cells in neurological diseases.

Diseases species Role of gd T
cells

gd T cell subsets Main cytokines of gd T
cells

Related protein References

MS Human Detrimental Vd1 /Vd2 T cells IFN-g
IL-17

• Migration: CXCR3, IP-10, CCL21. (54–71)

EAE Mouse Detrimental Vg4/ Vg6 T cells (natural and induced
gd T17 cells)

IL-17
IL-21
IL-15

• Migration: CD11a-d, CCR6, CCR2.
• Stimulator: IL-23, IL-1b.

(72–93)

Protective Vg1 T cells IFN-g
CCL4

– (93, 94)

Stroke Human Detrimental – IL-17 – (95–97)
Mouse Detrimental CCR6+gd T cells (mainly Vg6 T cells) IL-17 • Synergy: TNF-a

• Inhibition: IL-10
• Migration: CCL20, CCR6
• Stimulator: IL-23

(95–100)

IH Human Detrimental – IL-17 • Stimulator: hemoglobin, TLR2/TLR4
heterodimer, IL-23

(101)

RE Human Detrimental Vd1 T cells TNF
IFN-g

– (102, 103)

CM Human Protective Vg9Vd2 T cells Granzyme B • Stimulator: granulysin.
• Antigen: soluble phosphoantigens.

(104–106)

Mouse Protective Vd6.3 T cells IFN-g
M-CSF
CCL5
CCL3

– (107–110)

Detrimental – IFN-g – (111)
WNV
infection

Mouse Protective Vg1 T cells IFN-g – (112, 113)
Detrimental Vg4 T cells IL-17

TNF-a
– (114)
March 2021 | Volume 12 | A
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autoimmune encephalomyelitis; CCR, C-C chemokine receptor; CD, cluster of differentiation; GM-CSF, granulocyte-macrophage colony-stimulating factor; TNF, tumor necrosis factor;
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upstream cytokines IL-1b or IL-23 would not only suppress
Th17 and gd T17 cells function, but also blocked the positive
feedback loop between Th17 and gd T17 cells (117–119). Indeed,
several clinical trials targeting IL-17 have already shown
encouraging results in relapsing remitting MS patients (117,
120, 121). As a potential therapeutic target, gd T cells are
required for more detailed investigation.

Stroke
Stroke ranks second as the leading cause of death and third as the
cause of disability all over the world. As a main kind of stroke,
Ischemic stroke results from the middle cerebral artery
occlusion, followed by brain tissue damage in the affected
territory, which is caused by inflammatory response (122).
Pathogenic mechanisms of gd T cells in stroke are mainly due
to the production of IL-17 (123). In human brain tissues,
immunohistochemistry staining for gd T cells and IL-17
showed the presence of gd T cells and the production of IL-17
shortly after stroke (95). In addition, compared to healthy
control, patients with stroke have increased level of IL-17 in
peripheral blood (96). In rodent models, gd T cells, rather than
Th17 cells, was found as the major IL-17 producers in ischemia-
reperfusion (I/R) injury (123). In this scenario, IL-23 is found to
be a key cytokine to induce IL-17 production by gd T cells during
the delayed phase of ischemia. The mice with the deficiency of
IL-23 or IL-17 had significantly reduced infarct size, whereas
mice treated with IL-17 neutralizing antibodies within 3 hours of
stroke had a better prognosis (95, 123). Further studies illustrated
that interferon regulatory factor 4 (IRF4) +/CD172a+

conventional type 2 DCs infiltrate into the ischemic brain
rapidly and became the major source of IL-23 within 24 hours
to stimulate CCR6+ gd T cells (mainly Vg6 T cells) to express IL-
17 (97, 98). The absence of CD11c+ cells or the impaired IL-23
signaling could abrogate the production of IL-17 by gd T cells
(97). Genetic deficiency in Ccr6 significantly diminished the
infiltration of gd T cells, highlighting the important role that
chemokine (C-C motif) ligand 20 (CCL20)/CCR6 axis plays for
gd T cell migration in stroke (98). gd T17 cells are not the only
source of IL-17, astrocyte-derived IL-17 A facilitates survival and
neuronal differentiation of neural precursor cells in the recovery
phase of stroke (99). After synergistic stimulation of IL-17
produced by gd T cells and TNF-a produced by macrophages,
astrocytes secrete chemokines, such as CXCL-1, to facilitate the
infi l tration of neutrophils, thereby inducing matrix
metalloproteinase 3 (MMP3) and MMP9, which were involved
in the destruction of the BBB (95, 98). Blocking the signal of IL-
17 or CXCL-1/CXCR2-axis could inhibit the invasion of
neutrophils and improve neurological prognosis (95). It is
worth noting that intestinal gd T17 cells could migrate to the
meninges to induce ischemic neuroinflammation by producing
IL-17 after stroke. Intestinal dysbiosis affected stroke through gd
T cells by inhibiting intestinal gd T17 cells trafficking from gut to
meninges (100). After the treatment of antibiotics, the altered
intestinal commensal bacteria activated CD103+ DCs in
mesenteric lymph node, thereby inducing Tregs expansion and
secreting the anti-inflammatory cytokine interleukin 10 (IL-10),
which could suppress the differentiation of gd T17 cells in lamina
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propria of the small intestine (100). Interestingly, as
aforementioned, most of meningeal gd T17 cells were
Vg6Vd1T cells and the secretion of IL-17 contributed to the
physiological functions of the brain (8). Moreover, commensal
microbiota might conduce to IL-17 production of meningeal gd
T cells (25). Therefore, it is interesting to know whether
meningeal gd T17 cells are the main source of infiltrated gd T
cells into the ischemic brain and how commensal microbiota
affect IL-17 production of meningeal gd T cells directly or
indirectly. Moreover, since IL-17 plays a key role in the
progression of stroke, it can be a therapeutic target to reduce
the severity of stroke (99). Controlling commensal microbiota
may also benefit for the prognosis of stroke.

Injury Related Neuroinflammation
The mechanical injury induced neuroinflammation in CNS is
normally the outcome of BBB breakdown and inflammatory
immune cells infiltration. For example, during intracerebral
hemorrhage, hemoglobin from the hematoma can activate
macrophages via Toll like receptor 2 (TLR2)/Toll like receptor
4(TLR4) heterodimer, which can secrete IL-23 to induce gd T
cells to produce IL-17 to aggravate secondary damage (124).
Brain damage of Periventricular leukomalacia is also partially
attributed to gd T cells through the IL-17/IL-22 unrelated
signaling pathways (101). While in Spinal cord injury, gd T
cells are sources of producing IFN-g to aggravate lesions in the
early phase (125). Moreover, traumatic brain injury has been
linked with gd T cells in the gut, for their increasing frequency
after fluid percussion injury (126). Notably, most of mechanical
injury induced neuroinflammation is pathogen free in CNS,
suggesting that pattern recognition receptors (PRRs) expressed
on gd T cells are important signals for their activation. Therefore,
further investigation is required to reveal how the respective and/
or integrated TCRs and PRRs signals regulate gd T cells function
in CNS.

Neurodegenerative Disease
PD is a chronic neurodegenerative disease that leads to a
detrimental result of the CNS, especially the motor nervous
system. The most important pathological features of PD are
the degeneration of dopaminergic neurons in the substantia
nigra and the accumulation of unique cytoplasmic inclusions
(Lewis bodies) containing a-synuclein (44). A few preliminary
correlations between PD and gd T cells have been documented
clinically. Compared to some other neurological diseases and
tension headache, a higher proportion of gd T cells was observed
in the CSF in patients with PD (127). The frequencies and total
numbers of gd T cells were significantly decreased in the blood of
PD group than that in healthy control group (128). In addition,
gd T cells partially expressed CD25 in the CSF of PD patients
whereas they hardly expressed CD25 in blood, indicating a
preferential activation of gd T cells in the CSF (127). The
relation between gd T cells and PD might rely on microglia,
which serve as tissue-resident macrophages within the brain.
Stimulated through TLR2, TLR4, TLR7 or TLR9, microglia can
release IL-1b and IL-23 to active gd T cells to produce IL-17 in
vitro (129). And neuron-released a-synuclein could directly bind
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TLR2 and trigger inflammatory responses in the microglia (130).
TLR2 was additionally expressed on gd T cells and exhibited co-
stimulatory effects for activated gd T cells (131). a-synuclein may
be important for gd T cells to participate in the PD. In addition,
as another main neurodegenerative disease, Alzheimer’s disease
(AD) is also connected with gdT cells. Clonotypes of TCR g chain
are more specific in patients with AD and in the brain compared
with that in peripheral blood (132).

Rasmussen’s Encephalitis
Rasmussen’s encephalitis (RE), especially occurring in children
under the age of 10, is a rare chronic inflammatory neurological
disease without the involvement of pathogenic microorganisms
that feature with progress local atrophy of the cerebral cortex on
unilateral cerebral hemisphere, refractory epilepsy and cognitive
impairment (133). The majority of infiltrated T cells are
cytotoxic CD8+ T cells and CD4+ T cells. gd T cells can also be
found in brain and they contribute to the secretion of TNF and
IFN-g. The ratio of gd T cells to ab T cells is obviously higher in
brain-infiltrating lymphocytes than that in peripheral blood
(134). The same TCRd1 chain with the identical third
complementarity determining region (CDR3) sequences was
found in the brains of RE patients, suggesting that gd T cells
might respond to the same antigen(s) and be clonally expanded.
What’s more, the same gd TCR clones were found in focal
cortical dysplasia (FCD), a disease with congenital abnormality
of brain development, implying that the ligands recognized by gd
TCRs were more likely to come from self-antigens rather than
foreign antigens (102). Identifying the potential gd TCR ligands
may be benefit for investigating the function of gd T cells in RE or
related diseases in CNS.

Infection Related Neuroinflammation
As a lethal neurological complication of Plasmodium infection,
cerebral malaria (CM) is responsible for the majority of child
mortality (103). gdT cells can protect against Plasmodium
infection by killing extracellular merozoites and intracellular
late-stage parasites and regulating other lymphocytes such as
ab T cells and dendritic cells in both human and Plasmodium
infection mouse model (104–109, 135). However, IFN‐g
producing gd T cells in the liver stage of infection are
responsible for experimental cerebral malaria (ECM). This
proportion of liver gd T cells promote a proinflammatory
microenvironment to activate CD4+ and CD8+ T cells (110).
These functional CD4+ and CD8+ T cells subsequently migrate to
the brain and cause neuroinflammation resulting in ECM (110,
111). Besides, the parasites become more virulent in the presence
of liver IFN‐g producing gd T cells to induce more pathogenic
inflammation causing ECM development (110). In TCRd-/- mice
or mice injected antibody to deplete gd T cells, the CM
development can be partially inhibited (110, 136).

West Nile Virus (WNV) infection is lethal for the induction
of encephalitis (137). In WNV infected mice, gd T cells play a
dual role (138). On the one hand, gd T cells can eliminate
infected cells and contribute to the maturation of DCs to
Frontiers in Immunology | www.frontiersin.org 8
prime ab T cells (112, 114). In this case, IFN-g producing
Vg1+ T cells are able to limit the dissemination of WNV and
prevent mortal WNV encephalitis (114, 138). On the other hand,
gd T17 cells (mainly Vg4+T cells) can suppress the proliferation
of Vg1+ T cells, produce IL-17 and TNF-a to enhance BBB
permeability and finally induce encephalitis (138). Similarly, gd
T17 cells have the same detrimental effects in the infection
induced neuroinflammation in the mouse model of
Angiostrongylus cantonensis infection. Among them, gd T17
cells contributed to demyelination of the brain (113).

Perinatal infection can cause cerebral white matter injury in
infants. In LPS-induced sepsis of postnatal days’mice, it was gd T
cells, rather than ab T cells, that contributed to white matter
injury and subsequent abnormal motor function (139). Taken
together, as one of the earliest immune responders, gd T cells
secret variety of cytokines to defend or exacerbate the infection
in CNS.
CONCLUSION

Most studies are focused on the detrimental or protective effects
of gd T cells in the diseases of nervous system. Here, we have also
reviewed that the meningeal gd T17 cells can support the short-
term memory and anxiety-like behavior of mice, and the
nociceptors induced activating or suppressing reactivity on
dermal or lung gd T cells. However, it is just a beginning. The
reactions between gd T cells and nervous system are far more
than what these studies have reported. For example, meningeal
gd T cells will increase the expression of IL-17A to modulate
anxiety-like behavior after the injection of LPS, indicating the
possible link between meningeal gd T cells and microbiota (25).
It is interesting to know the role of meningeal gd T cells play in
gut-brain axis crosstalk. In addition, nociceptors regulate
immune system (including gd T cells) to respond infection
(32). In this condition, the details of how neurons interact with
immune cells are still missing. Therefore, further investigations
about gd T cells and behaviors, neuron-immune interactions in
various disease models are required. More systematic researches
need to be performed to reveal their relationships.
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