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Inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative colitis
(UC) are multifactorial diseases with still unknown aetiology and an increasing prevalence
and incidence worldwide. Despite plentiful therapeutic options for IBDs, the lack or loss of
response in certain patients demands the development of further treatments to tackle this
unmet medical need. In recent years, the success of the anti-a4b7 antibody vedolizumab
highlighted the potential of targeting the homing of immune cells, which is now an
important pillar of IBD therapy. Due to its complexity, leukocyte trafficking and the
involved molecules offer a largely untapped resource for a plethora of potential
therapeutic interventions. In this review, we aim to summarise current and future
directions of specifically interfering with immune cell trafficking. We will comment on
concepts of homing, retention and recirculation and particularly focus on the role of tissue-
derived chemokines. Moreover, we will give an overview of the mode of action of drugs
currently in use or still in the pipeline, highlighting their mechanisms and potential to reduce
disease burden.
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INTRODUCTION

Trafficking of immune cells, including T lymphocytes, to the gut is a tightly regulated multistep
process important for maintaining homeostasis and initiating immune responses (1–4). Naïve T
cells circulate through secondary lymphoid organs until they encounter their cognate antigen
presented by dendritic cells (DCs) in the gut-associated lymphoid tissue (GALT). This interaction
leads to activation, proliferation and imprinting of T cells with a gut homing phenotype through
upregulation of specific adhesion molecules. T cells imprinted for small intestinal homing express
integrin a4b7, a4b1, b2 integrins and CCR9, while cells primed for migration to the colon show
high levels of integrin a4b7 and GPR15 (5–8). Upon recirculation, these T cell subsets may
subsequently migrate to the gut as their target tissue along chemotactic gradients, where they
interact with the molecules expressed by endothelial cells to initiate the multistep extravasation
org May 2021 | Volume 12 | Article 6564521
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process of gut homing. Tethering and rolling mediated by low-
affinity binding of selectins (predominantly L-selectin) and
integrins (a4b7, a4b1) on T cells to their ligands expressed on
endothelial cells (GlyCAM-1, mucosal addressin cell adhesion
molecule-1 (MAdCAM-1), vascular cell adhesion molecule 1
(VCAM-1), respectively) slow the cells down to increase
availability for activation by tissue-secreted chemokines (e.g.
CCL25, CXCL10) (9). This leads to conformational changes of
the integrins and, hence, to firm interaction of integrins with cell
adhesion molecules and subsequent arrest of activated T cells,
followed by transmigration through the endothelium into the
tissue. Upon arrival at the site of action, T cells adapt their make-
up of surface molecules to their environment (e.g., upregulation
of integrin aEb7) leading to retention in the tissue or, if not
activated, recirculation to the blood and lymph (e.g., via S1PR/
S1P) (10, 11).

T cell trafficking has emerged as one of the hallmarks of IBD
pathogenesis and as a potential goldmine for a plethora of new
treatment options for IBD by targeting the different steps of this
process. This mini-review aims to provide a comprehensive
overview of current and future therapeutics based on
interference with T cell trafficking, highlighting their
mechanisms and potential to reduce disease burden (Figure 1).
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TARGETING CELL ADHESION
MOLECULES – BLOCKADE ON THE SIDE
OF THE EFFECTOR TISSUE
Cell adhesion molecules expressed by effector tissues are major
mediators of T cell recruitment and intestinal inflammation
and serve as promising targets for therapeutic anti-
trafficking strategies.

Already in the 1990s, selectively blocking the interaction of b2
integrins with intercellular adhesion molecule 1 (ICAM-1) using
antibodies against CD18/ICAM-1 or ICAM-1 antisense
oligonucleotides showed promise by reducing inflammation
and cell infiltration in 2,4,6-trinitrobenzenesulfonic acid
(TNBS)-colitis in rats (12), dextran sodium sulfate (DSS) colitis
in mice (13) or acetic acid-induced inflammation in rats (14).
Expression of ICAM-1 is upregulated by endothelial cells under
inflammatory conditions (13, 15), which leads to increased
extravasation of leukocytes (e.g., neutrophils and T cells)
expressing b2 integrins. In 1998, Yacyshyn and colleagues
could demonstrate that the ICAM-1 antisense oligonucleotide
ISIS 2302/alicaforsen administered intravenously was well
tolerated and showed promising results for the treatment of
CD (16). Treatment with alicaforsen reduced expression of
FIGURE 1 | Overview of T cell trafficking in the intestine indicating the points of action of current and potential future anti-trafficking agents for the treatment of IBD.
Tethering and rolling of cells on the endothelial wall mediated by interaction of low-affinity integrins with their respective ligands (e.g. a4b7-MAdCAM-1) leads to the
exposure to a chemokine gradient (CCL25, CXCL10, CCL20). Subsequent activation of cells causes conformational changes of the integrins, followed by firm arrest
and extravasation of T cells to the gut. There, cells are either retained in the tissue through interaction with the epithelium (aEb7-E-cadherin) or antagonism of egress,
or recirculate into the blood from gut and GALT along the S1P-gradient. CD, cluster of differentiation; CCR, Chemokine receptor; CXCR, CXC-motif chemokine
receptor; GPCR, G-protein coupled receptor; S1P, Sphingosine-1-phospate; S1PR, Sphingosine-1-phosphate receptor; ICAM-1, Intercellular adhesion molecule 1;
VCAM-1, Vascular cell adhesion molecule 1; MAdCAM-1, Mucosal addressin cell adhesion molecule-1; GALT, Gut-associated lymphoid tissue.
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ICAM-1 on high endothelial venules (HEV), thereby hindering
leukocyte extravasation. However, two subsequent trials with
alicaforsen in active CD could not demonstrate superiority over
placebo (17, 18). Alicaforsen was also investigated as an enema
for topical application in the treatment of UC and pouchitis.
Initial clinical evaluations showed improved clinical scores for
both diseases (19, 20). However, later studies in mild-to-
moderate UC failed to reach their primary endpoints (21, 22).
A phase III trial with alicaforsen enema for the treatment of
pouchitis patients refractory to antibiotics was completed last
year. The treatment with alicaforsen was safe and even though
the primary endpoint of endoscopic remission at week 10
showed no difference between treatment with alicaforsen and
placebo, the portion of patients reporting a reduction of stool
frequency was higher in the alicaforsen compared with the
placebo group (NCT02525523).

Another important cell adhesion molecule involved in gut
homing and upregulated upon inflammation is VCAM-1.
VCAM-1 antagonists proved superior to ICAM-1 and
MAdCAM-1 blockade in the murine model of DSS colitis (23),
and the monoclonal anti-a4 integrin antibody natalizumab has
been successfully used for blockade of VCAM-1-dependent
leukocyte trafficking in patients with active CD (24–27). However,
due to the ubiquitous expression of VCAM-1, systemic blocking of
the VCAM-1 homing cascade was associated with severe adverse
events like progressive multifocal leukoencephalopathy (PML) (28,
29), underscoring the need for gut-selective targeting of T cell
trafficking. Therefore, although VCAM-1–a4b1 is strongly involved
in small intestinal T cell recruitment (30), it is questionable, whether
targeting VCAM-1 is a promising target for the treatment of IBD.

Ontamalimab (formerly SHP647) is an antibody binding
MAdCAM-1, the ligand of a4b7 integrin and L-selectin.
MAdCAM-1 is predominantly expressed on HEVs of the gut and
GALT (31) and its expression is strongly induced by TNF-a under
inflammatory conditions and in IBD patients (32–34). Pre-clinical
trials with the murine anti-MAdCAM-1 antibody MECA-367
demonstrated reduced lymphocyte recruitment to the gut and
reduction of inflammation in the T cell transfer colitis model in
Scid mice (35, 36). A first human phase I study could show safety of
anti-MAdCAM-1 therapy in patients with active UC and a change
of biomarkers compared to baseline (37), and efficacy in the
treatment of UC was confirmed in a phase II trial (TURANDOT)
(38). In a phase II trial for the treatment of moderate-to-severe CD
(OPERA) clinical endpoints did not reach statistical significance in
comparison to placebo (39, 40), but treatment led to a reduction of
soluble MAdCAM-1 and to an increase of circulating b7+ central
memory T cells and elevated CCR9 gene expression (41). The phase
III trials for ontamalimab in both UC and CD were discontinued
following a take-over of the developing company (42). However,
ontamalimab remains a promising therapeutic agent. Treatment did
not lead to central nervous system complications and induced very
low levels of anti-drug antibodies (43). With regard to L-selectin as
an additional interaction partner of MAdCAM-1, ontamalimab
might not just be an imitation of anti-a4b7 antibody therapy, but
dispose over a unique mechanism of action (44, 45). Furthermore,
expression of MAdCAM-1 in other mucosal tissues as well as in
Frontiers in Immunology | www.frontiersin.org 3
joints, eyes, skin and liver (46–48) make it a potential treatment
option for extraintestinal manifestations of IBD and other
inflammatory diseases (49).

Taken together, these data show the potential of targeting
cell adhesion molecules in the treatment of IBD, especially in
selected subgroups of patients, and suggest that, despite some
deceptions and obstacles, it seems worth further developing
respective compounds.
BLOCKADE OF CHEMOKINES –

REDUCING LEUKOCYTE ATTRACTION

In addition to cell adhesion molecules, chemokines play a pivotal
role in T cell recruitment to the gut and offer another approach
for therapeutic targeting.

CCL25 is a chemokine expressed in the small intestine under
homeostatic conditions and strongly upregulated in the ileum and
also the colon upon inflammation (50–52). Its receptor CCR9 is
found on T cells imprinted for gut homing (53–56). Even though
CCR9 is highly expressed on regulatory T cells (Treg) and plays a
leading role in establishing self-tolerance in the thymus (57), the
CCR9-CCL25 axis has been implicated in inflammation, especially
of the small intestine (52). Isolated CCR9+ T cells from CD patients
show markedly higher expression of IL17 and IFNg upon
stimulation compared to controls (58), and stimulation of T cells
through CCR9 leads to activation of a4b1 and a4b7 integrins and,
hence, increased extravasation (59, 60).

Blocking either CCR9 or CCL25 in mice treated with TNFa or
in the SAMP1/YitFc model of ileitis demonstrated reduction of
leukocyte migration to the small intestine and strong inhibition of
inflammation (61, 62). The oral CCR9 antagonist CCX282-B/
vercirnon was successfully used in the TNFDARE ileitis mouse
model (63) as well as for the treatment of moderate-to-severe CD
in a phase II study (64). A subsequent phase III study failed to
demonstrate efficacy of vercirnon as induction therapy (65, 66).
Data from animal models and patients show a strong homeostatic
role for the CCR9-CCL25 axis in the small intestine, but a clear
association with inflammation in the colon (66, 67) and a study
depleting CCR9+ cells through leukapheresis (68) showed
promising results, suggesting that blocking CCR9-CCL25
interaction might be an option for the treatment of UC.

Another chemotactic stimulus for gut infiltration of T cells is
CXCL10. CXCL10 expression is induced by IFNg (69) and
markedly upregulated in colitis (70, 71). Its receptor CXCR3 is
found on effector T cells, b7+ peripheral blood mononuclear cells
(PBMCs), lamina propria mononuclear cells (LPMCs) and
intraepithelial lymphocytes (IELs) and a high number of
CXCR3+ cells can be found in biopsies from UC and CD
patients (72). Treatment with anti-CXCL10 antibodies
attenuated colitis in IL10-deficient mice and in DSS colitis and
reduced cell infiltration to the lamina propria (73–76). In clinical
studies, treatment with a monoclonal antibody against CXCL10
was efficient for the treatment of rheumatoid arthritis (MDX-
1100) (77). However, blocking CXCL10 with the antibody
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eldelumab failed to induce remission in patients with moderate-
to-severe UC or CD (78–80). Still, in subgroups of anti-TNFa
naïve patients, CXCL10 blockade ameliorated mucosal response,
suggesting that this treatment could be effective in selected
patients (66).

CCL20 is a chemokine implicated in both inflammation and
homeostasis and is predominantly expressed by mucosal
epithelial cells (81). CCL20 expression is induced through
TNFa and elevated in CD patients (82). In pre-clinical studies,
neutralization of CCL20 reduced T cell infiltration and
attenuated colitis in the murine TNBS-model (83). Bouma and
colleagues reported a dose-dependent decrease of cells bearing
CCR6, the receptor for CCL20, in healthy human volunteers
after treatment with the humanized antibody GSK3050002
against CCL20 (84). However, to our knowledge, no CCL20
antagonist has been used in clinical trials of IBD so far. Yet,
mongersen, an oral Smad7 anti-sense oligonucleotide indirectly
regulates CCL20 expression. Smad7 is highly expressed in the
mucosa of IBD patients and acts as an inhibitor of TGFb1
signalling, an important negative regulator of TNFa signalling.
Consistently, blocking Smad7 expression through the
administration of an anti-sense nucleotide restored TFGb1
signalling (85). In the TNBS and oxazolone colitis mouse
models, treatment with a Smad7 anti-sense oligonucleotide led
to reduction of inflammation (86). Treatment of CD organ
explants with mongersen reduced Smad7 and CCL20
expression and serum levels of CCL20 in patients responding
to mongersen were significantly reduced (82). In 2015,
Monteleone and colleagues reported significantly higher
response and remission rates after treatment with mongersen
compared to placebo in patients with active CD (87). However, a
subsequent phase III study published last year failed to
demonstrate efficacy for the treatment of CD (88). Data to
interpret these results with regard to the indirect effect on
CCL20 are lacking.

GPR15 is a recently deorphanized receptor expressed on a
large subset of colon-homing T cells. GPR15 is found on Foxp3+

Treg cells in mice and important for the maintenance of large
intestinal homeostasis, while data from humans suggest higher
expression on effector T cells (7, 89, 90). The ligand for GPR15
(GPR15L) is expressed by epithelial cells in the colon and the
skin and chemotactic abilities have been reported (91),
suggesting that the GPR15-GPR15L axis might be a potential
target for modulating intestinal inflammation.

Collectively, these studies show the large potential of treating
IBD by targeting chemokines and their receptors, but also
indicate that interfering with chemokine signalling seems to be
a complex approach that has not resulted in the approval of
therapeutic agents so far.
TARGETING TRAFFICKING ON THE
T CELL SIDE – A STORY OF SUCCESS

The prime example for successful treatment of IBDs by targeting
leukocyte trafficking is the anti-a4b7 integrin antibody
vedolizumab (92–97). Binding to its target leads to the
Frontiers in Immunology | www.frontiersin.org 4
internalization of the a4b7 integrin, inhibiting the interaction
with its ligand MAdCAM-1, which is virtually exclusively
expressed on the endothelium of the gut and GALT (31, 98,
99). This very selective and highly gut-specific mode of action
leads to reduced intestinal lymphocyte counts and inflammation,
while retaining an excellent safety profile with few side effects
(100–102). The gut specificity is also thought to account for the
safety profile advantage over broader a4 integrin blockade by
the antibody natalizumab, which, while being effective for the
treatment of preclinical cotton-top tamarin colitis (103) and
active CD (24, 25), was withdrawn from widespread use after
several cases of PML (28, 29).

The example of vedolizumab paved the way for the current
development of additional drugs with a similar mode of action.
Abrilumab, another anti-a4b7 integrin antibody that is
subcutaneously administered, successfully completed phase II
trials for moderate-to-severe UC (104–106). Moreover, the oral
small molecule a4 integrin inhibitor AJM300 successfully
attenuated inflammation and cell infiltration in the adoptive T
cell transfer colitis model (107) and currently undergoes phase
III testing in UC. While no cases of PML were observed in phase
II trials, it will be important to thoroughly investigate the safety
profile of AJM300 in further studies, since it is likely that it affects
central nervous immune surveillance similar to natalizumab,
although it might have a favorable pharmacological profile
(108, 109).
INTEGRIN BLOCKADE BEYOND Α4Β7-
BLOCKADE – INTERFERING WITH
RETENTION

Aiming to expand the clinically successful anti-a4b7 strategy, the
humanized monoclonal antibody etrolizumab was developed to
target the b7-subunit of a4b7 as well as aE (CD103) b7 integrin
hetereodimers (110). CD103 expression on T cells is induced by
T cell receptor signalling and TGFb, which is released by several
cellular sources in the intestine (111, 112). aEb7-expressing cells
are able to interact with epithelial (E-) cadherin expressed by
intestinal epithelial cells (IECs) and may thereby be retained in
the tissue (113). Furthermore, evidence from cancer and gastritis
research suggests that this interaction serves as a costimulatory
factor for T cell receptor activation in CD8+ and CD4+ T cells,
respectively (114–117). Despite CD103 expression being
associated with a Treg phenotype in mice (118–120), recent
evidence suggests a pro-inflammatory Th1, Th17 and Th1/17
phenotype for aEb7+ CD4+ T cells with reduced expression of
Treg markers in the large intestine of UC patients, proposing a
role for these cells in disease pathobiology (121). Furthermore,
the role of CD4+ tissue resident memory T cells (Trm), which
can also express CD103, in human IBD and murine models of
colitis has recently been highlighted (122). The data suggested
involvement of these cells in the development of IBD flares and
as a switch-point for experimental colitis further substantiating
the potential of aEb7 as a therapeutic target (122). With
promising results from the adoptive transfer colitis mouse
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model (123) and phase II trials, large-scale phase III programs
were launched for etrolizumab in active UC and CD. In recently
presented data from the UC trials, etrolizumab, while being well
tolerated, only met the primary endpoint in two out of three
induction studies and in none of the two maintenance studies
(124–126). Despite these discouraging results, several key
secondary endpoints were met and, strikingly, numerically
similar clinical and endoscopic outcomes were reported for
etrolizumab and the anti-TNFa antibodies infliximab and
adalimumab (127, 128), thus supporting biological activity of
etrolizumab. Further analyses, including the previously
suggested ability of CD103 to predict response to therapy (129)
are eagerly awaited. Moreover, the pivotal CD phase III trial
program is nearing its completion and experimental evidence
indicates that aEb7 integrin might be even more important in
that context. Specifically, in line with previous reports, Ichikawa,
Lamb and colleagues demonstrated an increased abundance of
CD103+ cells in the ileum compared to the colon (130),
suggesting that ileal CD might be a particularly promising
entity to treat with etrolizumab. This is further supported by
the observation that a4b7 blockade alone did not sufficiently
reduce homing of CD patient-derived effector T cells to the ileum
in an adoptive transfer model (131).

Taken together, in spite of disappointing results in the UC
phase III trials, books should not be closed prematurely over
etrolizumab, especially regarding subsets of patients with
increased CD103 expression or ileal disease location.
SEQUESTRATION OF CELLS IN LYMPH
NODES BY S1PR MODULATORS

Cellular retention cannot only be modulated by interfering with
tissue anchorage, but also by modifying exit cues. This is the
principle of the emerging field of S1P modulation.
Physiologically, recirculation of T cells from the tissue to the
blood is mediated by a constantly generated S1P gradient, with
high concentrations in the blood. Low concentrations in tissues
are upheld by enzymatic degradation of S1P by the S1P-lyase
(132–134). S1P is sensed by S1P receptors (S1PR)1-5, which
internalize on ligand binding, thereby inducing transient tissue
retention and providing the opportunity for activation and
antigen sensing of retained cells (135–137). Furthermore, it has
been demonstrated that activation-induced CD69 directly
interacts with S1PR1 and leads to its removal from the cell
surface, thereby contributing to tissue retention of activated T
cells (138). S1P modulation for IBD therapy aims to sequester
naïve and central memory T cells in lymphoid tissues, inducing
circulatory lymphopenia and thereby cutting off the supply of
potentially pathogenic T cells migrating to the site of
inflammation (11). Generally, S1PR modulators for IBD
treatment are agonists, which can be distinguished by
differential selectivity for S1PRs.

After showing promising result in preclinical models (TNBS
colitis in rats and adoptive transfer colitis in Scid mice) (139) and
after successfully completing a phase II study in moderate-to-
Frontiers in Immunology | www.frontiersin.org 5
severe UC (140), first results from phase III trials of the oral
S1PR1- and S1PR5-selective agonist ozanimod for the treatment
of moderate-to-severe UC were presented recently. Ozanimod
demonstrated statistically significant improvements in clinical
remission and response, endoscopic and mucosal healing
without raising safety issues and can therefore be considered to
enter the treatment algorithm for UC in the future (141, 142). In
the adoptive transfer colitis model, etrasimod, a S1PR1, 4, 5
agonist, was able to reduce inflammation (143). After successful
completion of phase II trials, etrasimod recently entered phase III
testing for moderate-to-severe UC (144). In contrast, a clinical
trial of the selective S1PR1 modulator amiselimod as a treatment
for CD could not demonstrate an impact on clinical or
biochemical disease activity, despite promising results in a
preclinical study employing the adoptive T cell transfer model
of chronic colitis (145, 146).

Taken together, S1PR modulation proved to be a potent tool
for the treatment of IBD, but different results observed with
agonists with differential selectivity highlight the complexity of
this approach and therefore warrant further research.
DISCREPANCIES BETWEEN MOUSE
AND MAN – CHALLENGES IN DRUG
DEVELOPMENT

As referenced at several points of this review, promissing
preclinical observations have promted clinical trials (Table 1).
However, not all insights from preclinical studies have been
reproducable in humans. Reasons for late stage failures in drug
development despite preclinical efficacy and often clear
indications of biological effects in humans are manifold.
Animal models are a valuable and indispensable tool to
uncover disease pathogenesis and mechanisms underlying
therapeutic effects (3, 134) and advances in medical research
today would not be on the same level without insights from such
model systems. However, mouse models of intestinal
inflammation cannot fully reproduce the complexity of IBD as
a multifactorial disease in certain aspects. In recent years, the
importance of the microbiome in IBD was highlighted by several
studies (147–150). The controlled environments in animal
facilities limit microbiome diversity in experimental animals,
but can differ between facilities and therefore can influence
results (151). Specific-pathogen-free (SPF) environments in
preclinical setups limit the predictability of adverse events
related to infections (e.g. PML). These apparent limitations can
also be considered as a strength, as comparable housing and
nutrition enables researchers to uncover the influence of
microbiota on disease pathology (152). Furthermore, IBD
pathomechanisms are portrayed only partially, e.g. DSS-
induced colitis is driven by the innate immune system and is
induced even in the absence of lymphocytes (153–155), whereas
pathology in the T cell transfer colitis model is induced by the
transfer of naïve T cells to immunodeficient hosts (156, 157).
Therefore, different models can produce contradicting results for
the same treatment, as it is, for instance, the case for anti-a4b7
May 2021 | Volume 12 | Article 656452

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wiendl et al. Targeting Immune Cell Trafficking
TABLE 1 | Anti-trafficking agents used in the clinic or still in development with details on their specific target, mode of action and preclinical and clinical efficacy.

Target Origin Drug Mode of
action

Preclinical Data Clinical Data Observed effects

Model Effective? Disease Administration Primary
endpoint
(s) met?

ICAM-1 Endothelium Alicaforsen Anti-sense
oligonucleotide

DSS colitis mouse
model (13)

Yes CD (Phase II)
(16)

IV No Steroid withdrawal

CD (Phase II)
(17)

IV No Steroid withdrawal

CD (Phase II)
(18)

IV No N/A

UC (20) Enema Yes Clinical response
Pouchitis
(NCT02525523)

Enema Not yet
published

Reduced stool
frequency

MAdCAM-
1

Endothelium Ontamalimab Monoclonal
antibody

Adoptive T cell transfer
colitis mouse model
(35,36)

Yes UC (Phase I)
(37)

IV/SC No Changes in
biomarkers
compared to
baseline

UC (Phase II)
(38)

SC Yes Clinical remission

CD (Phase II)
(39,40)

SC No Clinical remission in
patients with higher
endoscopic activity

UC and CD
(Phase III)

SC Discontinued

CCR9 Lymphocytes Vercirnon Small
molecule
antagonist

TNFDARE ileitis mouse
model (62)

Yes CD (Phase II)
(64)

PO Yes Clinical response,
remission and
steroid-free
remission

CD (Phase III)
(65)

PO No N/A

CXCL10 Epithelium Eldelumab Monoclonal
antibody

IL-10-/- and piroxicam
colitis mouse model (74)

Yes UC (Phase II)
(78)

IV No Improvement of
IBDQ score

DSS colitis mouse
model (75)

Yes UC (Phase II)
(80)

IV No N/A

IL-10-/- colitis mouse
model (76)

Yes CD (Phase II)
(79)

IV No Numerically higher
remission and
response rates

Smad7 Epithelium Mongersen Anti-sense
oligonucleotide

TNBS and oxazolone
colitis mouse model (86)

Yes CD (Phase II)
(87)

PO Yes Clinical remission
and response

CD (Phase III)
(88)

PO No N/A

a4
integrin

Lymphocytes Natalizumab Monoclonal
antibody

Cotton-top tamarin
colitis model (103)

Yes CD (24) IV Yes Clinical remission
and response

CD (25) IV Yes Clinical remission
and response

CD (Phase III)
(26)

IV Yes Clinical response

CD (27) IV Yes Clinical response
AJM300 Small

molecule
antagonist

Adoptive T cell transfer
colitis mouse model
(107)

Yes UC (Phase II)
(109)

PO Yes Clinical remission
and mucosal healing

a4b7
integrin

Lymphocytes Vedolizumab Monoclonal
antibody

Cotton-top tamarin
colitis model
(96)

Yes UC (Phase III)
(94)

IV Yes Clinical response,
remission and
mucosal healing

CD (Phase III)
(97)

IV Yes Clinical response,
remission and
steroid-free
remission

Abrilumab Monoclonal
antibody

N/A UC (Phase II)
(104)

SC Yes Clinical response,
remission and
mucosal healing

UC (Phase II)
(105)

SC Yes Numerically higher
remission, response

(Continued)
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blockade in acute DSS-induced and T cell transfer colitis (158).
On the other hand, this cell specific mode of action can help to
unravel the contribution of different cell types to disease
processes and lead to a better understanding of therapeutic
mechanism (122).

Moreover, GPR15 expression was previously reported to direct
Treg cells to the large intestine and defects in GPR15 led to
increased susceptibility to colitis in a Citrobacter rodentium
infection model and reduced suppression or rescue of
inflammation in anti-CD40 and T cell transfer colitis models (7).
In contrast, Nguyen and colleagues demonstrated GPR15
expression on murine Th1 and Th17 cells in addition to Treg
cells and a GPR15 dependency in the induction of colitis in the T
cell transfer model, thus further highlighting the potential of
differential outcomes even when working with the same receptor
in different setups (159). The same study also highlighted another
reason for potential species discrepancies: in contrast to GPR15
expression on murine Th1, Th17 and Treg cells, expression of
GPR15 was associated with a Th2 phenotype in the large intestinal
lamina propria of UC patients. This observation was attributed to
species-specific enhancer sites binding GATA3, the Th2 lineage
defining transcription factor, in the human GPR15 gene, which are
absent in the mouse genome. Species differences between mouse
and man have also been reported for other potential targets of
investigated drug candidates, including CD103 (118–121).
Inadequate experimental design can further be the cause for
limited reproducibility. Therefore, many groups have developed
concepts to improve the quality of animal studies (e.g., by using
completely randomised experimental designs or by conducting
experiments at a similar time of day) (160–162). Finally, several
of the compounds reviewed here showed promising results in phase
II trials but failed to reach primary endpoints in phase III studies
Frontiers in Immunology | www.frontiersin.org 7
(see Table 1). Possible explanations could be the stricter definition
of primary endpoints in phase III trials [e.g. mongersen (87, 88)], or
differences in patient cohorts or study design [e.g. vercirnon
(64, 65)].

Taken together, these aspects demonstrate the complexity
and importance of preclinical testing in IBD anti-trafficking
agent development underscoring the need for careful
evaluation of different model systems as well as systematic
analysis of potential species differences for successful
translation of preclinical findings to the clinic.
CONCLUDING REMARKS

The implication of intestinal T cell trafficking in the pathogenesis
of IBD is undisputed. Targeting associated either on endothelial/
epithelial cells or on the circulating T cells has proven to hinder
cell infiltration effectively. However, the important role of T cell
recruitment for tissue homeostasis and pathogen defence
underscores the need for selective inhibition strategies to
ensure the safety of the therapeutic agent. Discrepancies
between human and murine physiology (e.g. GPR15, CD103
expression) need to be carefully evaluated, when translating
preclinical findings into clinical treatment options. Despite
being outside the scope of this mini-review, the therapeutic
options discussed may also affect trafficking of other immune
cells that need to be taken into account. And, finally,
development of further and a more detailed understanding of
approved therapeutic options can only be the first step.
Regarding the substantial portion of patients showing primary
or secondary non-response, individualized treatment strategies
to predict and optimize therapeutic outcomes are an important
TABLE 1 | Continued

Target Origin Drug Mode of
action

Preclinical Data Clinical Data Observed effects

Model Effective? Disease Administration Primary
endpoint
(s) met?

and mucosal healing
rates

b7 integrin Lymphocytes Etrolizumab Monoclonal
antibody

Adoptive T cell transfer
colitis mouse model
(123)

Yes UC (Phase II)
(110)

SC Yes Clinical remission

UC (Phase III)
(124, 125, 127)

SC Yes/No Clinical response
and endoscopic
improvement

CD (Phase III) SC Ongoing
S1PR Lymphocytes Ozanimod

(S1PR1/5)
Small
molecule
agonist

TNBS colitis rat model
and adoptive T cell
transfer colitis mouse
model (139)

Yes UC (Phase II)
(140)

PO Yes Clinical response
and mucosal healing

UC (Phase III)
(141, 142)

PO Yes Clinical remission,
response and
mucosal healing

Etrasimod
(S1PR1/4/5)

Small
molecule
agonist

Adoptive T cell transfer
colitis mouse model
(143)

Yes UC (Phase II)
(144)

PO Yes Clinical remission,
response and
histological
improvement

Amiselimod
(S1PR1)

Small
molecule
agonist

Adoptive T cell transfer
colitis mouse model
(146)

Yes CD (145) PO No Reduced lymphocyte
counts
May 2021 | Volum
IV, intravenous; SC, subcutaneous; PO, per os; UC, ulcerative colitis; CD, Crohn's disease; N/A, not available.
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unmet need. However, advances in the field of T cell trafficking
might also contribute to solutions to that problem.
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et al. Eldelumab [Anti-IP-10] Induction Therapy for Ulcerative Colitis: A
Randomised, Placebo-Controlled, Phase 2b Study. J Crohn’s Colitis (2016)
10:418–28. doi: 10.1093/ecco-jcc/jjv224

79. Sandborn WJ, Rutgeerts P, Colombel JF, Ghosh S, Petryka R, Sands BE, et al.
Eldelumab [Anti-Interferon-G-Inducible Protein-10 Antibody] Induction
Therapy for Active Crohn’s Disease: A Randomised, Double-Blind,
Placebo-Controlled Phase Iia Study. J Crohn’s Colitis (2017) 11:811–9.
doi: 10.1093/ecco-jcc/jjx005

80. Mayer L, SandbornWJ, Stepanov Y, Geboes K, Hardi R, Yellin M, et al. Anti-
IP-10 Antibody (BMS-936557) for Ulcerative Colitis: A Phase II
Randomised Study. Gut (2014) 63:442–50. doi: 10.1136/gutjnl-2012-303424

81. Cook DN, Prosser DM, Forster R, Zhang J, Kuklin NA, Abbondanzo SJ, et al.
CCR6 Mediates Dendritic Cell Localization, Lymphocyte Homeostasis, and
Immune Responses in Mucosal Tissue. Immunity (2000) 12:495–503.
doi: 10.1016/S1074-7613(00)80201-0

82. Marafini I, Monteleone I, Dinallo V, Fusco D, De Simone VD, Laudisi F,
et al. CCL20 is Negatively Regulated by TGF-Beta 1 in Intestinal Epithelial
Cells and Reduced in Crohn’s Disease Patients With a Successful Response
to Mongersen, a Smad7 Antisense Oligonucleotide. J Crohn’s Colitis (2017)
11:603–9. doi: 10.1093/ecco-jcc/jjw191

83. Katchar K, Kelly CP, Keates S, O’Brien MJ, Keates AC. MIP-3a Neutralizing
Monoclonal Antibody Protects Against TNBS-Induced Colonic Injury and
Inflammation in Mice. Am J Physiol - Gastrointest Liver Physiol (2007) 292:
G1263–71. doi: 10.1152/ajpgi.00409.2006

84. Bouma G, Zamuner S, Hicks K, Want A, Oliveira J, Choudhury A, et al. CCL20
Neutralization by aMonoclonal Antibody in Healthy Subjects Selectively Inhibits
Recruitment of CCR6+ Cells in an Experimental Suction Blister. Br J Clin
Pharmacol (2017) 83:1976–90. doi: 10.1111/bcp.13286

85. Monteleone G, Kumberova A, Croft NM, McKenzie C, Steer HW,
MacDonald TT. Blocking Smad7 Restores TGF-Beta 1 Signaling in
Chronic Inflammatory Bowel Disease. J Clin Invest (2001) 108:601–9.
doi: 10.1172/JCI12821

86. Boirivant M, Pallone F, Di Giacinto C, Fina D, Monteleone I, Marinaro M,
et al. Inhibition of Smad7 With a Specific Antisense Oligonucleotide
Facilitates TGF-Beta 1-Mediated Suppression of Colitis. Gastroenterology
(2006) 131:1786–98. doi: 10.1053/j.gastro.2006.09.016

87. Monteleone G, Neurath MF, Ardizzone S, Di Sabatino A, Fantini MC,
Castiglione F, et al. Mongersen, an Oral SMAD7 Antisense Oligonucleotide,
and Crohn’s Disease. N Engl J Med (2015) 372:1104–13. doi: 10.1056/
nejmoa1407250

88. Sands BE, Feagan BG, Sandborn WJ, Schreiber S, Peyrin-Biroulet L,
Colombel JF, et al. Mongersen (GED-0301) for Active Crohn’s Disease:
Results of a Phase 3 Study. Am J Gastroenterol (2020) 115:738–45.
doi: 10.14309/ajg.0000000000000493

89. Xiong L, Dean JW, Fu Z, Oliff KN, Bostick JW, Ye J, et al. Ahr-Foxp3-Rorgt
Axis Controls Gut Homing of CD4+ T Cells by Regulating GPR15. Sci
Immunol (2020) 5. doi: 10.1126/sciimmunol.aaz7277

90. Fischer A, Zundler S, Atreya R, Rath T, Voskens C, Hirschmann S, et al.
Differential Effects of Alpha 4 beta 7 and GPR15 on Homing of Effector and
Regulatory T Cells From Patients With UC to the Inflamed Gut in Vivo. Gut
(2016) 65:1642–64. doi: 10.1136/gutjnl-2015-310022

91. Ocón B, Pan J, Dinh TT, Chen W, Ballet R, Bscheider M, et al. A Mucosal
and Cutaneous Chemokine Ligand for the Lymphocyte Chemoattractant
Receptor GPR15. Front Immunol (2017) 8:1111. doi: 10.3389/
fimmu.2017.01111

92. Yajnik V, Khan N, Dubinsky M, Axler J, James A, Abhyankar B, et al.
Efficacy and Safety of Vedolizumab in Ulcerative Colitis and Crohn’s Disease
Patients Stratified by Age. Adv Ther (2017) 34:542–59. doi: 10.1007/s12325-
016-0467-6

93. Loftus EV, Colombel JF, Feagan BG, Vermeire S, Sandborn WJ, Sands BE,
et al. Long-Term Efficacy of Vedolizumab for Ulcerative Colitis. J Crohn’s
Colitis (2017) 11:400–11. doi: 10.1093/ecco-jcc/jjw177

94. Feagan BG, Rutgeerts P, Sands BE, Hanauer S, Colombel JF, Sandborn WJ,
et al. Vedolizumab as Induction and Maintenance Therapy for Ulcerative
Colitis. N Engl J Med (2013) 369:699–710. doi: 10.1056/NEJMoa1215734
May 2021 | Volume 12 | Article 656452

https://doi.org/10.1189/jlb.1206726
https://doi.org/10.1152/ajpgi.00167.2003
https://doi.org/10.1152/ajpgi.00167.2003
https://doi.org/10.1053/j.gastro.2006.08.031
https://doi.org/10.1053/j.gastro.2006.08.031
https://doi.org/10.1124/jpet.110.169714
https://doi.org/10.1371/journal.pone.0060094
https://doi.org/10.1371/journal.pone.0060094
https://doi.org/10.1111/apt.13398
https://doi.org/10.1093/ecco-jcc/jjx145
https://doi.org/10.1016/j.jaut.2016.01.001
https://doi.org/10.1016/j.jaut.2016.01.001
https://doi.org/10.1093/ecco-jcc/jjw196
https://doi.org/10.1152/ajpgi.00208.2019
https://doi.org/10.1053/gast.2001.20904
https://doi.org/10.1053/gast.2001.20914
https://doi.org/10.1053/gast.2001.20914
https://doi.org/10.1097/00054725-200111000-00001
https://doi.org/10.1097/00054725-200111000-00001
https://doi.org/10.2174/187153007780832109
https://doi.org/10.2174/187153007780832109
https://doi.org/10.1097/01.MIB.0000178263.34099.89
https://doi.org/10.1002/1521-4141(200211)32:11%3C3197::AID-IMMU3197%3E3.0.CO;2-1
https://doi.org/10.1002/1521-4141(200211)32:11%3C3197::AID-IMMU3197%3E3.0.CO;2-1
https://doi.org/10.4049/jimmunol.171.3.1401
https://doi.org/10.1002/art.34330
https://doi.org/10.1093/ecco-jcc/jjv224
https://doi.org/10.1093/ecco-jcc/jjx005
https://doi.org/10.1136/gutjnl-2012-303424
https://doi.org/10.1016/S1074-7613(00)80201-0
https://doi.org/10.1093/ecco-jcc/jjw191
https://doi.org/10.1152/ajpgi.00409.2006
https://doi.org/10.1111/bcp.13286
https://doi.org/10.1172/JCI12821
https://doi.org/10.1053/j.gastro.2006.09.016
https://doi.org/10.1056/nejmoa1407250
https://doi.org/10.1056/nejmoa1407250
https://doi.org/10.14309/ajg.0000000000000493
https://doi.org/10.1126/sciimmunol.aaz7277
https://doi.org/10.1136/gutjnl-2015-310022
https://doi.org/10.3389/fimmu.2017.01111
https://doi.org/10.3389/fimmu.2017.01111
https://doi.org/10.1007/s12325-016-0467-6
https://doi.org/10.1007/s12325-016-0467-6
https://doi.org/10.1093/ecco-jcc/jjw177
https://doi.org/10.1056/NEJMoa1215734
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wiendl et al. Targeting Immune Cell Trafficking
95. Vermeire S, Loftus EV, Colombel JF, Feagan BG, Sandborn WJ, Sands BE,
et al. Long-Term Efficacy of Vedolizumab for Crohn’s Disease. J Crohn’s
Colitis (2017) 11:412–24. doi: 10.1093/ecco-jcc/jjw176

96. Hesterberg PE, Winsor-Hines D, Briskin MJ, Soler-Ferran D, Merrill C, Mackay
CR, et al. Rapid Resolution of Chronic Colitis in the Cotton-Top Tamarin With
an Antibody to a Gut-Homing Integrin Alpha 4b7. Gastroenterology (1996)
111:1373–80. doi: 10.1053/gast.1996.v111.pm8898653

97. Sandborn WJ, Feagan BG, Rutgeerts P, Hanauer S, Colombel J-F, Sands BE,
et al. Vedolizumab as Induction and Maintenance Therapy for Crohn’s
Disease. N Engl J Med (2013) 369:711–21. doi: 10.1056/NEJMoa1215739

98. Wyant T, Fedyk E, Abhyankar B. An Overview of the Mechanism of Action
of the Monoclonal Antibody Vedolizumab. J Crohn’s Colitis (2016) 10:1437–
44. doi: 10.1093/ecco-jcc/jjw092

99. Binder MT, Becker E, Wiendl M, Schleier L, Fuchs F, Leppkes M, et al.
Similar Inhibition of Dynamic Adhesion of Lymphocytes From IBD Patients
to Madcam-1 by Vedolizumab and Etrolizumab-S. Inflammation Bowel Dis
(2018) 24:1237–50. doi: 10.1093/ibd/izy077

100. Sands BE, Peyrin-Biroulet L, Loftus EV, Danese S, Colombel JF, Törüner M,
et al. Vedolizumab Versus Adalimumab for Moderate-to-Severe Ulcerative
Colitis. N Engl J Med (2019) 381:1215–26. doi: 10.1056/NEJMoa1905725
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