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Introduction: Coronavirus disease 2019 (COVID-19) is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, resulting in a range of
clinical manifestations and outcomes. Laboratory and immunological alterations have
been considered as potential markers of disease severity and clinical evolution. Type I
interferons (IFN-I), mainly represented by IFN-a and b, are a group of cytokines with an
important function in antiviral responses and have played a complex role in COVID-19.
Some studies have demonstrated that IFN-I levels and interferon response is elevated in
mild cases, while other studies have noted this in severe cases. The involvement of IFN-I
on the pathogenesis and outcomes of SARS-CoV-2 infection remains unclear. In this
study, we summarize the available evidence of the association of plasma protein levels of
type I IFN with the severity of COVID-19.

Methods: The PRISMA checklist guided the reporting of the data. A systematic search of
the MEDLINE (PubMed), EMBASE, and Web of Science databases was performed up to
March of 2021, looking for articles that evaluated plasma protein levels of IFN-I in mild,
severe, or critical COVID-19 patients. Comparative meta-analyses with random effects
were performed to compare the standardized mean differences in plasma protein levels of
IFN-I of mild versus severe and mild versus critical patients. Meta-regressions were
performed to test the moderating role of age, sex, time that the IFN-I was measured, and
limit of detection of the assay used in the difference between the means.

Results: There was no significant difference in plasma levels of IFN-a when comparing
between mild and severe patients (SMD = -0.236, 95% CI -0.645 to 0.173, p = 0.258, I2 =
82.11), nor when comparing between patients mild and critical (SMD = 0.203, 95% CI
-0.363 to 0.770, p = 0.481, I2 = 64.06). However, there was a significant difference
between healthy individuals and patients with mild disease (SMD = 0.447, 95% CI 0.085
to 0.810, p = 0.016, I2 = 62.89).

Conclusions: Peripheral IFN-a cannot be used as a severity marker as it does not determine
the clinical status presented by COVID-19 patients.
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INTRODUCTION

Coronavirus disease 2019 (COVID-19) is caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infections,
which has already affected more than 134,525,543 people in 217
countries and territories (1). COVID-19 has been considered a
pandemic since March 11, 2020, causing more than 2 million
deaths globally. SARS-CoV-2 can be transmitted from person to
person through droplets from breathing, coughing, sneezing,
talking, or through direct contact with contaminated individuals
or objects and surfaces (2). The average incubation period is 5
days (3), and the most prevalent signs and symptoms are fever,
cough, headache, myalgia, fatigue, gastrointestinal symptoms,
and dyspnea (4, 5). COVID-19 causes distinct clinical
manifestations among affected individuals, ranging from
asymptomatic cases to cases with mild, moderate, severe, or
critical symptoms, where they might progress to an acute
respiratory distress syndrome (SARS) or even to dysfunction of
multiple organs, complications that lead to death (6, 7). The risk
of developing a more aggressive disease condition is influenced
by age and the presence of comorbidities, such as diabetes,
hypertension, obesity, and cardiovascular diseases (2, 8).
Markers, such as the increase in C-reactive protein (CRP), D-
dimer, and prothrombin time, are important to predict the
outcome of the disease (9, 10). Also, immunological disorders
were observed, such as leukopenia (11, 12), as well as a significant
increase in serum cytokines levels, such as IL-6, TNF-a, and IL-8
(12, 13). Among the altered cytokines, interferons present
conflicting results (14).

Interferons are divided into type I (IFN-a and IFN-b), type II
(IFN-g), and type III (IFN-l) and have a fundamental role in the
innate immune system, being part of the first line of defense
against viral infections (15). In humans, the type I IFN (IFN-I)
family consists of multi-genes that encodes 13 partially
homologous IFN-a subtypes (IFN-a1, a2, a4, a5, a6, a7, a8,
a10, a13, a14, a16, a17, and a21) and genes that encodes IFN-
b, IFN-e, IFN-k, and IFN-w (16, 17). Among the IFN-a2 present
subvariants, the best described are a2a and a2b (18). Type I
interferons (IFN-I) act as inhibitors of viral replication in
infected cells and have a defensive action in uninfected cells.
IFN-I can affect dendritic cells, B, T, and NK cells function,
enhancing immune response. Most infected cell types can
produce IFN-b , but IFN-a i s mainly produced by
hematopoietic cells (19, 20). Plasmacytoid dendritic cells
(pDCs) are considered as a major producer of IFN-a (21).
These cells detect viruses through TLR7 and TLR9, inducing
secretion of IFN-I through the MyD88-IRF7 signaling pathway
(22, 23).

IFN-I is produced rapidly after virus infection and exhibits
antiviral activity by binding to its receptor IFNAR and inducing
the expression of the interferon-stimulated genes (ISGs) (24).
ISGs play an important role in viral infection, presenting an
inhibitory effect at different stages of viral replication, such as
viral membrane fusion and viral gene expression. They are
responsible for the direct antiviral effects or molecules that can
regulate IFN-I induction and signal (24–27). Some ISGs can
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control cell death and metabolism, RNA degradation, and
protein synthesis. The IFN-I response can recruit several
immune cells and lead to inflammatory disease, and this can
develop beneficial or detrimental outcomes for the host (17).
Despite its great importance in the antiviral response, the role of
IFN-I in COVID-19 is complex (28–30); some studies have
suggested a protective role for IFN-I during infection (31, 32),
while other studies suggested a deleterious role for IFN-I in
COVID-19 (33, 34).

Aging impairs the IFN-I production in pDCs (35, 36).
Monocytes from the elderly exhibited impaired RIG-I signaling
due to the absence of TRAF3, reducing induction of IFN-I
production (37). Also, pDC from healthy males produces less
IFN-I after stimulation comparing to females (38). These
findings might explain why the elderly are more susceptible to
complications from the SARS-CoV-2 infection (39, 40) and the
higher prevalence of COVID-19 in men (41). In contrast,
smoking and body mass index (BMI) also affect the expression
of IFN-I but increasing it, and these two factors tend to worsen
the clinical course of the SARS-CoV-2 infection (42). Also, the
response to IFN-I was initially considered an inducer of the virus
receptor, the angiotensin-converting enzyme 2 (ACE2) (43),
which could worsen the patient’s condition. However, it has
recently been shown that interferon induces an ACE2 isoform,
which does not function as a virus receptor (44).

IFN-I is used to treat various diseases, including hepatitis C
(45, 46) and B (47), multiple myeloma (48), polycythemia Vera
(49), and are also tested for the treatment of COVID-19. Studies
carried out with inhaled or intramuscularly administered IFN-
a2b have demonstrated that treatment can accelerate viral
clearance and reduce circulating IL-6 and CRP levels (50), in
addition to preventing disease progression (51). IFN-b-1b used
subcutaneously effectively decreased the time to clinical
improvement in severe COVID-19 patients (52). However,
IFN-b used subcutaneously did not reduce mortality in
patients with COVID-19 in a large clinical study conducted by
WHO in 30 countries (53). Conversely, inhaled IFN-b1a
improved the recovery time for patients infected with SARS-
CoV-2 (54). In a descriptive review of literature about the role of
IFN-I in treating COVID-19, it is highlighted that IFN-a use at
the early phase of COVID-19 presents a positive outcome, but
IFN-b-1a and -1b are more effective to hinder COVID-19 (55). A
systematic review and meta-analysis have been previously
performed to evaluate the effects of IFN-I and Janus Kinase-
inhibitors as treatments for COVID-19 patients and their
effectiveness to produce positive outcomes (56). They found
that IFN-I treatment is associated with positive clinical
outcomes regarding mortality and discharge (56). The time to
start IFN-I treatment might be crucial (57).

Disagreements related to the role of IFN-I in patients with
COVID-19 demonstrate the importance of further studying these
cytokines in the disease. The importance of IFN-I in the
pathogenesis of the COVID-19 had been previously reviewed
(30, 57–61). Nonetheless, the available evidence regarding the
circulating levels of IFN-I and its response and the association
with the severity of the disease has not been meta-analyzed.
May 2021 | Volume 12 | Article 657363
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This review aims to integrate the different studies on this subject
to verify whether the increase or decrease levels of IFN-I in
serum/plasma from patients with COVID-19 is linked to the
disease severity.
METHODOLOGY

Search Strategy
The articles search was carried out by two reviewers (RPS and
JIBG), from August 25 to March 21, 2021, in three different
bibliographic databases - MEDLINE (PubMed), EMBASE, and
Web of Science. The terms used were (“COVID-19” OR “SARS-
COV-2” OR “Coronavirus Infections”) AND (“IFN” OR
“Interferon type I” OR “Interferon-alpha” OR “Interferon-
beta”). Additional research was also carried out on the
references of the articles that had the full reading in the second
screening phase, and searching in the Research Gate and
medRxiv, using the same terms listed above, looking for
studies not yet peer-reviewed.

Inclusion and Exclusion Criteria
All articles that performed comparisons between plasma protein
levels of IFN-I (b, a, and subtypes) in patients with different
degrees of COVID-19 severity (mild, severe, and critical) were
included. Studies that did not present the mean and standard
deviation values or errors in the text or figures were excluded.
Review articles and meta-analyses were excluded.

Data Extraction
Authors, publication date, study design, number of participants
included (healthy, mild, severe, and critical), mean age, gender,
symptoms related to COVID-19, criteria used for classification
severity of the disease, comorbidities, IFN-I levels in plasma/
serum, methodology for IFN-I analysis, and days after infection
that IFN-I was measured were extracted from each of the selected
articles. The data of IFN- I levels presented in the format of a
graph were extracted using the Graph Grabber software (62).

Quality Assessment
The methodological quality of the studies was evaluated with the
Newcastle-Ottawa scale (63). The quality score of the case-
control studies was calculated according to three aspects: the
selection of cases and controls (0–4 stars); the comparability of
cases and controls (0–2 stars); and the outcomes evaluation (0–3
stars). The maximum score is nine stars, representing high
methodological quality.

Statistical Analysis
Comparative meta-analyses of plasma protein levels of IFN-a
were performed between patients with mild versus severe and
mild versus critical COVID-19 and between healthy individuals
versus patients with mild COVID-19 and healthy individuals
versus patients with severe COVID-19. Due to clinical
heterogeneity, the use of meta-analyses of random effects was
established a priori. The effects of individual studies were
Frontiers in Immunology | www.frontiersin.org 3
calculated using the standardized mean difference (SMD) and
95% confidence interval (95% CI). Effect sizes are considered
weak if > 0.2, moderate if > 0.5, or strong if > 0.8 (64). The
heterogeneity of effects between studies was calculated using the
I² test (65). Meta-regressions were performed to explore whether
age, sex, time that the IFN-I was measured, and limit of detection
of the assay used are moderators of the difference between
different groups. Subgroup analyzes were performed to verify
how much the different measuring techniques used influence
heterogeneity. Finally, the Egger (66) and Begg-Mazumbar (67)
regression tests were performed, together with the visual analysis
of the Funnel plot, to assess the presence of publication bias.
RESULTS

Search Results
The searches of the databases resulted in 1564 articles. Another
17 articles were added manually through searches on Research
Gate and medRxiv as they have potentially relevant titles and
abstracts. After removing 699 duplicates, 819 articles were
excluded for their titles and abstracts. Afterward, 63 studies
were read entirely. Of these, 15 studies were included in the
meta-analysis (68–81). Figure 1 represents the flowchart of the
meta-analysis containing the details of the articles excluded in
each of the stages, including the reason for their exclusions. A
complete table listing those articles excluded after an evaluation
is given Supplementary Material 1.

Description of Studies and Participants
The measurement of IFN-a was presented in all studies, while of
IFN-b in only two of them. The methods used for measuring
IFN-a were ELISA, single molecular array (Simoa), Luminex
magnetic bead, electrochemiluminescent, bead-based
immunoassay for flow cytometry, and microfluid immunoassay
fluorescence detection. The average age of participants was 43 to
63 years, and the percentage of male participants ranged from 42
to 83%. The comparison between mild and critical was
performed in four of the studies, between mild and severe in
15 studies and between healthy and mild and healthy and severe
in nine studies. The cases were considered mild to moderate
when presenting fever, myalgia, fatigue, diarrhea, signs of
pneumonia on chest CT scan, and requirement of up to 3 L/min
of supplemental oxygen to maintain more than 92% SpO2 (68–
76). Severe cases were characterized by the need for admission to
the intensive care unit (ICU) due to breathing difficulties, needing
more than 3 L/min of oxygen, and partial pressure of arterial
oxygen (PaO2)/fraction of inspired oxygen (FiO2) ≤ 300 mmHg
(69–74, 76, 77). Critically ill patients had respiratory failure,
septic shock, and/or multiple organ dysfunction or failure (70–
75, 77). Table 1 contains the main characteristics of the
selected studies.

Quality Assessment
The general methodological quality of the studies included in this
review was high, with all the studies presenting scores on the
May 2021 | Volume 12 | Article 657363
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Newcastle-Ottawa scale ranging from 7 to 8, demonstrating good
methodological quality (Table 2).

Meta-Analysis
The pooled data from 15 studies showed a non-significant
difference between patients with mild and severe disease
(SMD = -0.236, 95% CI -0.645 to 0.173, p = 0.258, I2 = 82.11)
(Figure 2). A subgroup analysis was made exploring how much
the analysis technique explains heterogeneity. When the single
molecular array (Simoa) was used there was a significant
difference in the analysis (p = 0.001). The Begg-Mazumdar
(Tau = -0.28, p = 0.137) and Egger tests did not indicate
publication bias (interception = -4.35, p = 0.006). The meta-
regression analyzes did not indicate the existence of moderation
of the effects by sex (coefficient = 0.0170, 95% CI -0.0080 to
0.0421, p = 0.1818, R² = 0.00), age (coefficient = 0.0058, 95% CI -
0.0184 to 0.0300, p = 0.6395, R² = 0.00), limit of detection of the
assay used (coefficient = 0.0020, 95% CI -0.0575 to 0.0615, p =
0.9476, R² = 0.00), and time after infection that IFN-I was
measured (coefficient = 0.0400, 95% CI -0.1057 to 0.1857, p =
Frontiers in Immunology | www.frontiersin.org 4
0.5906, R² = 0.00). Between mild and critical, with data grouped
from four studies, the difference was also not significant (SMD =
0.203, 95% CI -0.363 to 0.770, p = 0.481, I2 = 64.06) (Figure 3).
The pooled data from nine studies showed a significant
difference between healthy individuals and patients with mild
disease (SMD = 0.447, 95% CI 0.085 to 0.810, p = 0.016, I2 =
62.89) (Figure 4). Between healthy individuals and patients with
severe disease the difference was not significant (SMD = -0.466,
95% CI -0.939 to 0.008, p = 0.054, I2 = 74.73) (Figure 5).
DISCUSSION

Our results indicate that the circulating levels of IFN-a alonearenot
determinant in the clinical status of patients affected byCOVID-19.
We found a significant difference in the plasma protein levels of
IFN-a between healthy individuals and mild to moderate cases of
COVID-19, which is expected since IFN-a increases during viral
infection. Most of the studies included in our meta-analysis, which
analyzed healthy controls and COVID-19 patients, found
FIGURE 1 | Flowchart of article selection.
May 2021 | Volume 12 | Article 657363
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TABLE 1 | Main characteristics of the selected articles.

Methodology IFN-I
Subtype

Time
(days)

Limit of detection
(pg/ml)

Number of participants
that IFN was measured

(detected)

Single molecular array IFN-a 0-40 0.003 58 (57)
-plex Luminex magnetic bead IFN-a2 11 0.49 34 (34)

ELISA IFN-a 01-03 1.0 26 (26)
Single molecular array IFN-a2 10 0.003 50 (50)
Electro chemiluminescence IFN-a2a 7 4.0 52 (52)
Bead-based immunoassay for
Flow cytometry

IFN-a 05-10 1.5 31 (8)

nel Luminex magnetic bead IFN-a2 07-10 0.49 20 (20)

1-403 Luminex magnetic bead IFN-a2 10 6.56 221 (u)

e) Microfluid immunoassay
fluorescence detection

IFN-a – 0.39 110 (0)

(pbl ELISA IFN-a 8 1.95 64 (10)

a kit Electro chemiluminescence IFN-a2a – 0.0049 83 (83)

Bead-based immunoassay for
Flow cytometry

IFN-a 7 1.5 40 (u)

Luminex magnetic bead IFN-a 9 30 54 (u)

Single molecular array IFN-a 9 0.003 52 (52)
te, Bead-based immunoassay for

Flow cytometry
IFN-a – – 93 (93)
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Authors N (% men) Mean
Age

Kit Source

Arunachalam et al. 76 (58%) 55 Simoa Technology
Chi et al. 70 (56%) 43.4 Bio-Plex Pro Human Cytokine Screening 4

panel (BioRad)
Galani et al. 32 (69%) 63 High sensitivity ELISA (Abcam)
Hadjadj et al. 50 (58%) 55 Simoa Technology (Quanterix)
Henry et al. 52 (57.7%) 51 U-Plex assay (MSD)
Kwon et al. 31 (42%) 50 Cytometric bead array (BD Bioscience)

Liu et al. 12 (66.7%) 62.5 BioPlex Pro Human Cytokine Screening Pa
(BioRad)

Lucas et al. 113 (46%) 62.9 Human Cytokine Array/ Chemokine Array 7
Plex Panel (HD71)

Ruetsch et al. 151 (66%) 51 Ella custom-design cartrigge (Protein Simp

Sánchez-Cerrillo et
al.

64 (57.8%) 61 Human IFN-a all subtypes Serum ELISA k
assay science)

Silvin et al. 158 (44%) 53 Ultra-sensitive assay S-plex Human IFN-a2
(MSD)

Tincati et al. 40 (83%) 61 Cytometric bead array (BD Bioscience)

Turnbull et al. 63 (49.3%) 55.6 Cytokine Human Magnetic 35 Plex Panel,
(ThermoFisherScientific)

Thwaites et al. 471 (64.9%) 58.4 Simoa Technology (Quanterix)
Yang et al. 93 (60%) 46.4 Human Th1/2 cytokine kit II (ACEA NovoC

Guangzhou, China)
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differences in the IFN-a levels. However, we compared the data
from severe patients, and no significant differences were found
between the groups. To our knowledge, this is the first systematic
review andmeta-analysis associating the circulating levels of IFN-I
with the COVID-19 severity.

Regarding the susceptibility to severe COVID-19, Beck et al.
(61), in a qualitative review of the literature, provide the
perspective that impaired type I interferon response might be a
hallmark of severe COVID-19. Still, our findings provide insight
that this is not the case, at least for IFN-a circulating levels.
However, they also described studies that did not fit our
inclusion criteria, such as the study of Zhang et al. (82), that
reported in a large genetic sequencing effort to define risk factors
to SARS-CoV-2 infection an association with defects in genes of
TLR3 and IRF7 – dependent induction and amplification of IFN-
I. Also, these authors highlighted the study of Bastard et al. (31),
who found the presence of autoantibodies against interferons,
Frontiers in Immunology | www.frontiersin.org 6
including IFN-a, in at least 10% of patients with life-threatening
COVID-19. These autoantibodies lead to a plasma reduction of
IFN-I, facilitating the viral cycle since the host’s response against
it is weakened and increasing the chances of the patient
manifesting the severe or critical form of the disease (31). In
line with this hypothesis, another article that could not be
included in our meta-analysis due to its study design, carried
out by Trouillet-Assant et al. (32), assumed that patients who
have a decreased plasma concentration of this cytokine have a
poor prognosis, whereas patients with the lowest IFN-I
concentration have longer stay in the ICU, strengthening the
crucial role of IFN-I in antiviral responses.

Another point is that we did not meta-analyze studies
measuring IFN-b levels because only a few studies performed
these analyses. IFN-I concentrations are tightly regulated and
normally difficult to be measured. Hadjadj et al. demonstrated
that patients affected by COVID-19 present undetectable IFN-b
gene expression and circulating protein in plasma (70).
Additionally, an impaired IFN-I response can occur due to the
evasion mechanisms of SARS-CoV-2, which allows the virus
module to host the immune response. Among these mechanisms
is the inhibition of IFN-I production through non-structural
protein, such as nsp6, the inhibition of IFN-I signaling through
nsp1 (83), and the possible antagonism by nsp13 and the
accessory protein ORF6 (84), and more recently, the role of M
protein in inhibiting RIG/MDA signaling (85).

Further studies addressed the role of IFN-I during SARS-
CoV-2 infection, analyzing IFN-I and ISGs gene expression
using molecular approaches, particularly single-cell RNA
sequencing analysis, which was also not included in our meta-
analysis (86–88). Studies carried out with single-cell RNA
sequencing determined a hyperactivation of the IFN-I
signaling pathways in critically ill patients, contributing to
immune dysfunction, leading to exaggerated reactions that can
TABLE 2 | Quality assessment of studies using the Newcastle-Ottawa scale.

Studies Selection Comparability Exposure Total

Arunachalan et al. 3 2 2 7
Chi et al. 4 2 2 8
Galani et al. 4 2 2 8
Hadjadj et al. 4 2 2 8
Henry et al. 4 2 1 7
Kwon et al. 4 2 2 8
Liu et al. 4 2 2 8
Lucas et al. 4 2 2 8
Ruetsch et al. 3 2 2 7
Sánchez-Cerrillo et al. 4 2 2 8
Silvin et al. 4 2 2 8
Tincati et al. 4 2 2 8
Turnbull et al. 4 2 2 8
Thwaites et al. 3 2 2 7
Yang et al. 4 2 1 7
FIGURE 2 | Comparison of plasma IFN-a concentration between mild and severe patients.
May 2021 | Volume 12 | Article 657363
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FIGURE 3 | Comparison of plasma IFN-a concentration between mild and critical patients.
FIGURE 4 | Comparison of plasma IFN-a concentration between mild patients and healthy individuals.
FIGURE 5 | Comparison of plasma IFN-a concentration between severe patients and healthy individuals and.
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damage tissues and impair the patient’s evolution (88, 89) mainly
at the pulmonary level. This was observed in post-mortem
analyzes performed on patients who die due to COVID-19, as
they had a high concentration of IFN-I in lung tissues (90). Also,
Menezes et al. investigated the interferon, I, II, and III gene
expression at the nasal mucosa of COVID-infected patients.
These authors found that higher levels of the IFNB1 transcript
predicted poor outcomes (91). However, children with COVID-
19 present higher levels of IFN-a in nasal fluid than adults and
present less severe symptoms, indicating a good outcome (92).

The immunopathogenic role of IFN-I also occurs when an
infection has a prolonged duration (93). IFN-I’s role in
exacerbating pulmonary inflammation is due to the
recruitment of NK cells, T cells, dendritic cells, monocytes, and
macrophages through the release of chemokines, such as CCL2
and CXCL10 (60). IFN-I also potentiates the inflammatory
response induced by TNF-a and IL-1b in severe disease
progression (90), and IFN-a may be the main cytokine
mediating these responses (94). A late release of IFN-I in
response to SARS-CoV-2, in addition to a superabundant
response of the innate immune system, capable of a pro-
inflammatory reaction with immunopathogenic potential,
might be the reason for a poor outcome (73, 95). The IFN-a
role in the COVID-19 might depend on the instant when the
initial response was launched, the possible interferences in that
response, such as the mechanisms of viral evasion and genetic
host mutations, and the duration of the infection.

Limitations
The present study has some limitations. First, only a small
number of articles are included since the subject is recent and
does not have many studies exploring the theme in depth. Second,
high heterogeneity was found among the studies analyzed and
due to the small number of studies. Another limitation is the low
sensitivity of the assays used in some studies to measure IFN-a,
which might be why IFN-a has not been detected in many cases.
An ultrasensitive method is recommended to measure the
circulating levels of IFN-I. Although the progression of the
infection might affect the levels of IFN-a, in our study, this
parameter did not have a significant influence, as demonstrated
by the meta-regression analysis.
Frontiers in Immunology | www.frontiersin.org 8
CONCLUSION

With the current systematic review and meta-analysis, it is
possible to conclude that the plasma protein levels of type I
IFN, based on peripheral measurement of IFN-a, do not
demonstrate significant differences between mild, severe, or
critical patients. Therefore, IFN-a cannot be used alone as a
severity marker for COVID-19.
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