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Ulisses Gazos Lopes2, Márcia Berrêdo-Pinho1 and Maria Cristina Vidal Pessolani1*

1 Laboratory of Cellular Microbiology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil,
2 Laboratory of Molecular Parasitology, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro
(UFRJ), Rio de Janeiro, Brazil, 3 Mycobacteria Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University (CSU), Fort Collins, CO, United States, 4 Division of Research and Teaching, Lauro de
Souza Lima Institute, Bauru, Brazil

The respiratory tract is considered the main port of entry of Mycobacterium leprae, the
causative agent of leprosy. However, the great majority of individuals exposed to the
leprosy bacillus will never manifest the disease due to their capacity to develop protective
immunity. Besides acting as a physical barrier, airway epithelium cells are recognized as
key players by initiating a local innate immune response that orchestrates subsequent
adaptive immunity to control airborne infections. However, to date, studies exploring the
interaction ofM. leprae with the respiratory epithelium have been scarce. In this work, the
capacity of M. leprae to immune activate human alveolar epithelial cells was investigated,
demonstrating that M. leprae-infected A549 cells secrete significantly increased IL-8 that
is dependent on NF-kB activation. M. leprae was also able to induce IL-8 production in
human primary nasal epithelial cells. M. leprae-treated A549 cells also showed higher
expression levels of human b-defensin-2 (hbD-2), MCP-1, MHC-II and the co-stimulatory
molecule CD80. Furthermore, the TLR-9 antagonist inhibited both the secretion of IL-8
and NF-kB activation in response to M. leprae, indicating that bacterial DNA sensing by
this Toll-like receptor constitutes an important innate immune pathway activated by the
pathogen. Finally, evidence is presented suggesting that extracellular DNA molecules
anchored to Hlp, a histone-like protein present on the M. leprae surface, constitute major
TLR-9 ligands triggering this pathway. The ability of M. leprae to immune activate
respiratory epithelial cells herein demonstrated may represent a very early event during
infection that could possibly be essential to the generation of a protective response.
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INTRODUCTION

Leprosy is a chronic infectious disease caused by the obligate
intracellular pathogen Mycobacterium leprae. The ability of this
mycobacterium to infect Schwann cells may result in peripheral
nerve damage with severe physical deformities, a hallmark of the
disease (1). Despite the overall effectiveness of multidrug therapy
(MDT), leprosy remains a public health problem with
approximately 200,000 annual new registered cases worldwide (2).
Even with the easy availability of MDT, it has largely failed to
interrupt disease transmission. Furthermore, attempts to prevent
the spread of M. leprae are severely constrained by the lack of an
effective vaccine with potential prophylactic and therapeutic usages.

The disease is transmitted from person to person and the
respiratory tract has been considered the most probable route of
bacterial entry (3). It is well established, for example, that, in
urban areas, the nasal discharge from leprosy patients with a high
bacillary load (multibacillary [MB] patients) is the main source
of infection (4). However, most M. leprae-infected individuals
will generate an effective T helper 1 (Th1)-based immune
response upon producing IFN-g and will never develop any
clinical sign of the disease (5, 6).

The epithelium of the respiratory tract serves as the first line
of defense against invading airway microorganisms. Besides
acting as a physical barrier, respiratory epithelium cells express
a variety of pattern recognition receptors (PRRs), including Toll-
like (TLRs), RIG-1-like, and NOD-like receptors that recognize
the pathogen-associated molecular patterns (PAMPs), initiating
a local innate immune response while orchestrating a subsequent
adaptive immune response to control the infection. PAMPs
recognition triggers signaling pathways mediated by Jak-Stat,
NF-kB, and IRFs, leading to the secretion of cytokines,
chemokines, reactive nitrogen and oxygen species, and anti-
microbial peptides, all of which evoke immune cell recruitment
along with a critical immune response for the early control of
infection (7).

Over the years, many studies in the mycobacterial field have
highlighted the prominent role played by the respiratory epithelium
during Mycobacterium tuberculosis infection. After adhesion and
internalization into epithelial cells, M. tuberculosis induces
cytokine (such as TNF, IL-6 and IL-10) and chemokine (IL-8, IP-
10, IL-27, MCP-1 andMIG) production that allows immune cells to
migrate to the infection site and subsequent activation (8–10).
However, very little is known about the interactions taking place
between M. leprae and airway epithelial cells and even less about
how these interactions may contribute to the infection outcome.

Interestingly, shortly after airborne or intranasal infection of
mice with M. leprae, acid-fast bacilli are preferentially found in
the lungs, and only rarely observed in the nasal mucosa. This
demonstrates that the lungs are the main portal of both the entry
and dissemination of the leprosy bacillus (11, 12). In a recent
study, the capacity of M. leprae to infect nasal and alveolar
epithelial cells was confirmed in in vitro cell culture assays (12).
Moreover, the heparin-binding hemagglutinin (HBHA)
protein and the histone-like protein (Hlp), previously
implicated in the adhesion and internalization of M.
tuberculosis in airway epithelial cells (13, 14), were also
Frontiers in Immunology | www.frontiersin.org 2
detected on the M. leprae surface and shown to promote
mycobacterial interaction with these cells (12, 15).

Besides its role as an adhesin, Hlp, also referred to as a
laminin-binding protein (LBP) (16), or mycobacterium DNA-
binding protein 1 (MDP-1), was shown to elicit a protective
immune response in mice against M. tuberculosis (17). This
protective activity, occurring only when Hlp was administered
together with mycobacterial DNA, and not when DNA or Hlp
was injected alone, was dependent on TLR-9 recognition (17).
Indeed, TLR-9, which recognizes unmethylated deoxycytidylate-
phosphate-deoxyguanylate (CpG) motifs in viral and bacterial
DNA (18), has been shown to be an important innate immune
pathway for the generation of a protective immune response
against M. tuberculosis (8, 19, 20). More recently, the M. leprae-
derived DNA-Hlp complex was shown to activate the TLR-9
pathway (21).

In the present study, the capacity of M. leprae to immune
activate alveolar epithelial cells by analyzing the secretion of
cytokines and chemokines and the nuclear translocation of
transcriptional factor NF-kB was tested. Moreover, due to the
known involvement of TLR-9 in mycobacterial recognition and
its expression in respiratory epithelial cells (8), the participation
of this pathway in this activation was also examined. Finally, the
potential role of bacterial surface-exposed DNA-Hlp complexes
as TLR-9 ligands was explored.

It is hoped that the knowledge generated in this study may
contribute to designing an effective leprosy vaccine.
MATERIALS AND METHODS

Mycobacterial Use and Growth Conditions
M. leprae (Thai-5 strain), purified from the footpad of athymic
mice (nu/nu), was kindly provided by Dr. Patrıćia Sammarco
Rosa from the Lauro de Souza Lima Institute (ILSL, Bauru, SP).
Bacilli were g-irradiated for 5 minutes using two linear electron
accelerators, each equipped with 18 kW of power and 10 MeV of
energy (Acelétron, Rio de Janeiro, RJ). The Mycobacterium
smegmatis mc2 155 wild type (wt) and the knockout strain for
the hlp gene (Dhlp) were donated by Dr. Thomas Dick of the
University of Singapore. Mycobacterial strains were cultivated in
Middlebrook 7H9 medium (Sigma-Aldrich), supplemented with
10% (v/v) ADC (albumin and dextrose) and 0.05% (v/v) Tween
80 at 37°C, under constant agitation, until the end of the
exponential growth phase (OD600nm). M. smegmatis Dhlp was
grown in the presence of 20 µg/mL of kanamycin.

Cell Culture Conditions
The human alveolar epithelial cell line A549 and the murine
macrophage RAW 264.7 were purchased from the American
Type Culture Collection (ATCC). The cells were maintained,
respectively, in DMEM/F12 and RPMI-1640 culture medium
containing 2 mM L-Glutamine (LGC Biotechnology, SP, Brazil),
and supplemented with 10% of fetal bovine serum (FBS) (Cultilab,
SP, Brazil). Cultures were kept at 37°Cwithin a humidified 5%CO2

atmosphere. The A549 cells were seeded for 24 hours at 37°C prior
to stimulation in 6-well plates (5 x 105 cells for well) for the PCR
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assays and 24-well plates (7 x 104 cells for well) for the other assays.
In the current study, we also used primary nasal epithelial cells
obtained from the nasal polyps of patients submitted to
polypectomy for nasal clearing (further details see [12]). The
procedures described for the use of nasal polyps were approved
by the Pedro Ernesto University Hospital, the State University of
Rio de Janeiro, and the Oswaldo Cruz Foundation (FIOCRUZ)
Ethical Committee located in Rio de Janeiro, RJ, Brazil. All
participants provided their written consent.

Cell Infection and Stimulation
A549 cells were incubated at different time periods at 37°C. For
cell infected with live M. leprae cultures were incubated at 33°C.
The stimuli used were: 1) live M. leprae; 2) irradiated-killed M.
leprae; 3) CpG oligonucleotide (ODN 2395; 1 µM; Invivogen, San
Diego, CA, USA); 4) M. leprae rHlp protein (0.5 µM); 5) CpG-
rHlp complex; 6) LPS from Escherichia coli (1 µg/ml; Sigma-
Aldrich, San Luis, MO, USA); and 7) M. smegmatis wt and Dhlp
pre-incubated or not with 1 µM of CpG oligonucleotide. Human
primary nasal epithelial cells were incubated only with
irradiated-killed M. leprae for 24 hours at 37°C. For the
experiment with RAW 264.7 cells, the stimuli used were:
1) CpG oligonucleotide (0.5 µM); 2) M. leprae rHlp protein
(0.25 µM); 3) Hlp synthetic peptides (0.25 µM); 4) CpG-rHlp or
-peptides complexes; and 5) LPS (100 ng/ml).

The rHlp protein was incubated with CpG oligo, as previously
described (21), to obtain the CpG-Hlp complex. The same
protocol was adopted to acquire the CpG-peptide complexes.
The Hlp synthetic peptides p2, p3, and p10 (30 amino acids each)
were donated by Dr. Tom Ottenhoff of the University Medical
Center of Leiden (Netherlands). At the end of each incubation
period, the cell culture supernatants were stored at -70°C for
subsequent mediators quantification by commercial ELISA kits
(R&D Systems, Minneapolis, MN, USA).

For the NF-kB translocation inhibitory experiments,
pretreatment of the A549 cells was performed with the drugs
wedelolactone (Sigma-Aldrich) at 80 µM or Bay11-7082 (Sigma-
Aldrich) at 10 µM. Alternatively, the cells were also transfected
with 2.5 µg of the expression plasmid pEGFP-C3 (Clontech,
Kusatsu, Shiga, Japan) coding for a dominant-negative form of
IkBa (DN-IkBa; kindly provided by Dr. Patrick Baeuerle of the
Gene Center, Martinsried, Germany) (22) plus 1.25 ml of
Lipofectamine-2000 reagent (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions for 24 hours
followed by washing with PBS and infection or stimulation as
described above. For TLR-9 blocking assays, cells were pretreated
with the synthetic antagonist E6446 (Eisai, Bunkyo-ku, Tokyo,
Japan) at 0.2 µM.

Incubation times varied according to the type of experiment,
as specified in the Results section. Each experiment was done
in duplicate.
Real-Time Quantitative Reverse
Transcription PCR (qRT-PCR)
Total RNA of the treated A549 cells was extracted with the Trizol
reagent (Life Technologies, Carlsbad, CA, EUA), according to
Frontiers in Immunology | www.frontiersin.org 3
the protocol provided by the manufacturer. The cDNA was
obtained from the total RNA using the reverse transcriptase
enzyme Superscript III® (Life Technologies) whereas qRT-PCR
was performed using the SYBR Green I system (Applied
Biosystems, Waltham, MA, USA), accompanied by specific
primers for the coding sequences of the human b-defensin-2
(hbD-2) and 60S ribosomal protein L13 (RPL-13) genes in line
with recommendations of the manufacturer, followed by
incubating the reactions in the ViiA-7® qPCR system (Applied
Biosystems). In each sample, the cDNA of the gene of interest
(hbD-2) and the constitutive gene used as a normalizer (RPL-13)
were amplified. Gene expression analysis was performed via the
delta-delta CT (DDCT) method. Once the DCT of the samples
was determined, the cDNA in the experimental condition of the
unstimulated cells was chosen as the normalizing sample.
Relative gene expression values were obtained by applying the
2-DDCT formula (23).

Determination of NF-kB Activation
The A549 cells were resuspended in a hypotonic lysis buffer (10
mmol/L HEPES [pH 7.9], 1.5 mmol/L MgCl2, 10 nmol/L KCl, 0.05
mmol/L of PMSF, 0.5 mmol/L of dithiotheitirol, and a cocktail of
protease inhibitors at 1x [Complete Mini® - Roche, Basel,
Switzerland]) for 15 minutes after which 10% Igepal was added to
complete the lysis. The homogenates were centrifuged (13,000 x g)
for 30 seconds; and the pellet containing the nuclei was resuspended
in a nuclear extraction hypertonic buffer (10 mmol/L HEPES [pH
7.9], 0.42 M NaCl, 1.5 mmol/L MgCl2, 10 nmol/L KCl, 0.5 mmol/L
PMSF, and 1 mmol/L dithiotheitirol and protease inhibitors). After
40 minutes of continuous stirring, the extracts were centrifuged
(13,000 x g) for 10 minutes at 4°C, and the proteins containing the
nuclear extracts were quantified via the BCA technique (Pierce,
Groton, CT, USA). The presence of NF-kB in the nuclear extract
was determined by immunoblotting or ELISA.

For electrophoresis, in conjunction with the subsequent
immunoblotting step, 10 µg of the nuclear protein extract were
applied in gel with 15% polyacrylamide and 0.1% SDS. To
perform the immunoblotting, the proteins placed in the gel
were transferred to a nitrocellulose membrane (Hybond-C
Extra - GE Healthcare, Chicago, IL, USA), incubated for 1
hour with anti-p65 monoclonal antibody (NF-kB subunit;
Santa Cruz Biotechnology, Dallas, TX, USA) diluted 1:1000,
followed by an additional 1 hour incubation period with anti-
mouse IgG conjugated to peroxidase (Sigma-Aldrich) diluted
1:30000. Lamin A/C (1:1000; Santa Cruz Biotechnology) was
used as a nuclear marker normalizer. The membrane was
developed with the chemiluminescent substrate ECL (GE
Healthcare) by exposing the membrane to a film that was later
analyzed by densitometry through Image-J® software.

For the ELISA assays, 10 µg of nuclear extract protein were
used, as stated in the manufacturer’s protocol (NF-kB p65 ELISA
kit; e-Bioscience, Santa Clara, CA, USA), a methodology based
on the detection of chemiluminescence caused by the binding of
the NF-kB present in the nucleus (detection of the p65 subunit)
in the consensus oligonucleotidal sequence attached to the plate.
As a positive control, the kit includes proteins from purified
nuclear extracts taken from treated cells.
August 2021 | Volume 12 | Article 657449
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Flow Cytometry
The A549 cells were detached from the plate with 10 mM EDTA,
washed with PBS containing 1% FSB, and incubated with
monoclonal antibodies to MHC-II conjugated to allophycocyanine
(APC) and CD80 conjugated to phycoerythrin (PE), in addition to
their respective isotype controls (all from Biolegend, San Diego, CA,
USA), at a concentrationof 1:10 (v/v) at 4°C in the absenceof light for
30 minutes. Finally, the cell suspension was fixed with 1%
paraformaldehyde. The cells were analyzed by way of FACS Accuri
flow cytometer (BD Bioscience, Franklin Lakes, NJ, USA), and the
resulting data, via FlowJo V10 software (Tree Star).

Binding of Recombinant Hlp to DNA
Polystyrene microtiter plates (Corning Inc., Corning, NY, USA)
were covered with 10 µg/mL of mycobacterial genomic DNA
obtained from the culture mass of the Pasteur strain of M. bovis
BCG (24), diluted in buffer carbonate/bicarbonate at 0.1M (pH 9.6),
and incubated overnight at 4°C. The wells were then washed with
PBS and blocked for 2 hours at room temperature with PBS
containing 3% bovine serum albumin (BSA; Sigma-Aldrich).
After washing with PBS containing 0.05% Tween 20 (Sigma-
Aldrich; PBS/T), different rHlp concentrations were added to the
wells and incubated at 37°C for 2 hours. The wells were then
incubated with the monoclonal antibody for Hlp (5G9; 1:500) (25)
for 1 hour at 37°C, at which time the wells were once again washed
with PBS/T, followed by incubation with peroxidase-conjugated
anti-mouse IgG (1:1000; Sigma-Aldrich) for an additional period of
50 minutes at 37°C. Peroxidase activity was revealed by using
hydrogen peroxide and tetramethylbenzidine (TMB; LGC
Biotechnology). The colorimetric reaction was interrupted with
2.5 N sulfuric acid; and the optical density reading at 450nm was
determined on a spectrophotometer via the SOFTmax®PRO 4.0
program (Life Sciences Edition, Molecular Devices Corporation).

Statistical Analysis
Statistically significant differences among the values were
determined using the GraphPad Prism 5 Project program
(GraphPad Software Inc.), after applying the unpaired t test, the
One-way analysis of the variance test (ANOVA) with Bonferroni, or
the linear trend post-test, in which a p value of <0.05 was
considered significant.
RESULTS

M. leprae Induces Immune Activation of
Alveolar Epithelial Cells
As a first step, an investigation was launched into whetherM. leprae
was able to induce the secretion of the chemokines MCP-1 (CCL2)
and IL-8 (CXCL8) in alveolar type II pneumocytic epithelial A549
cells, known to play an important role in mediating immune cell
migration to the infection site (26). For the quantification of MCP-1
and IL-8, the A549 cells were incubated or not with live or irradiated
(killed) M. leprae for 24 and 48 hours and the chemokines were
measured by ELISA in culture supernatants. The results showed
that both live and killed M. leprae (bacterium:cell ratio of 10)
induced the production of MCP-1 in A549 cells in view of the
Frontiers in Immunology | www.frontiersin.org 4
higher MCP-1 levels detected in the supernatants of the treated
versus control cells after 24 hours of incubation (Figure 1A).
However, at later time point of incubation (48 hours) only killed
bacteria was able to induce MCP-1 (Supplementary Figure 1A).
Both live and killedM. leprae were also able to induce IL-8 in A549
cells, but at higher bacterium:cell ratios (50 and 100), in a dose-
dependent manner at 24 and 48 hours (p-values <0.05) (Figure 1B
and Supplementary Figure 1B). To verify whether IL-8 induction
also occurs in primary epithelial cells, we incubated human primary
nasal epithelial cells isolated from four healthy volunteers with killed
M. leprae for 24 hours at a bacterium:cell ratio of 10. Figure 1C
shows that M. leprae is also able to induce IL-8 production in
primary epithelial cells.

Alveolar epithelial cells are also able to produce such
antimicrobial peptides as hbD-2 and LL-37 (8), known to be
effective against mycobacteria (27–30). Therefore, as a next step,
hbD-2 expression was evaluated by qRT-PCR in M. leprae-
incubated A549 cells. Cells infected with live or treated with
killed M. leprae at a bacterium:cell ratio of 100 for 24 hours
showed significantly higher expression levels of hbD-2 over
unstimulated cells (Figure 1D).

It has been shown that, in addition to MHC-II, type II
pneumocytes can express several co-stimulatory molecules
after different stimuli, indicating that these cells can take up,
process, and then present antigens to T cells (31–36). Hence, we
assessed by flow cytometry the expression of MHC-II and CD80
on the surface of A549 cells after incubation with live or killed
mycobacteria (bacterium:cell ratio of 50) for 48 hours (Figure 2).
Both the percentage of positive cells and median fluorescence
intensity (M.F.I.) were significantly higher for MHC-II (Figure 2,
left) and CD80 (Figure 2, right) when cells were treated with
killed bacteria. Similar results were observed in cells infected with
live bacteria, but statistical significance was reached only when the
percentage of positive cells for MHC-II was evaluated (Figure 2,
left). Altogether, these results indicate that independent of its
viabilityM. leprae induces immune activation of epithelial cells of
the respiratory tract.

M. leprae Promotes Activation of the
NF-kB Transcription Factor in Alveolar
Epithelial Cells
NF-kB is themaster transcriptional factor involved in the activation
of the innate immune response (37). It was then investigated ifM.
leprae activates NF-kB in A549 cells by monitoring the
translocation of the p65 subunit to the nucleus. The p65 levels in
the nuclear extracts were determined by immunoblotting
(Figure 3A) and ELISA (Figure 3B). Cells treated with killed M.
leprae showed significantly higher p65 subunit levels in the nucleus
at 30 minutes of stimulation than in untreated cells via both
methods, indicating activation and translocation of NF-kB in
epithelial cells. Comparable results were obtained with live M.
leprae as shown in Figure 3B. To determine whether NF-kB
activation was linked to the increased MCP-1 and IL-8 levels
observed in M. leprae-stimulated cells, A549 cultures were
infected with live or treated with killed bacteria for 24 hours in
the presence of the pharmacological inhibitors wedelolactone
(Figure 3C) or Bay11-7082 (Figure 3D). Both inhibitors impair
August 2021 | Volume 12 | Article 657449
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the release of NF-kB from the cytosolic complex IkB/NF-kB,
avoiding NF-kB translocation to the nucleus (38–40). Treatment
with wedelolactone was able to reduce the amount of IL-8 to
baseline levels in cells that were infected with live or incubated
with killed bacteria (Figure 3C). Similar results were obtained with
Bay11-7082 (Figure 3D). Interestingly, no effect of wedelolactone
on MCP-1 levels was observed (Supplementary Figure 2).

To confirm the involvement of NF-kB in IL-8 production in
response to M. leprae, we also utilized DN-IkBa-transfected A549
cells, expressing a dominant-negative form of IkBa that lacks all N-
terminal phosphorylation sites, thus being resistance to degradation
but still with the ability of binding to NF-kB (22). Transfected cells
incubatedwith killedM. leprae for 24hours exhibited significant lower
IL-8 levels in comparisonwithnon-transfected cells or cells transfected
with the empty vector used as negative control (Figure 3E). Identical
results were obtained with transfected cells incubated for 48 hours
(Supplementary Figure 3). Altogether, our results demonstrates that
the production of IL-8 in A549 cells in response to M. leprae is
dependent on NF-kB translocation to nucleus.

DNA Sensing by TLR-9 Plays a Role in
M. leprae Immune Recognition by Alveolar
Epithelial Cells
TLR-9 bacterial sensing has been shown to play an important
role in the immune response against mycobacteria (19, 20).
Frontiers in Immunology | www.frontiersin.org 5
Since alveolar epithelial cells express TLR-9 (41), the potential
involvement of this pathway in the immune activation induced
by M. leprae in these cells was analyzed. Firstly, the capacity of
the CpG-rHlp complex to stimulate A549 cells was evaluated by
measuring IL-8 secretion. For these assays, the M. leprae
recombinant Hlp was purified from E. coli and some tests were
performed for quality control. When used to stimulate PBMC, the
purified recombinant proteinwas unable to induce detectable levels
of TNF production, pointing to low levels of LPS contamination
(Supplementary Figure 4). As expected, M. leprae rHlp was also
found to bind DNA (Supplementary Figure 5). In this assay, M.
bovis BCG genomic DNA was used since Hlp, a highly conserved
protein among mycobacterial species, was shown to bind in a non-
specific way to nucleic acids molecules (42, 43). Moreover, as
previously shown in the context of M. tuberculosis Hlp, M. leprae
rHlp, when complexed to the CpG oligo, was able to significantly
increase the capacity of CpG alone to induce TNF secretion in
murine macrophages (Supplementary Figure 6B) (17).
Furthermore, by using the 30 mer synthetic peptides p2, p3 and
p10 with sequences derived from different regions of Hlp (44)
(Supplementary Figure 6A), only the p3 peptide corresponding to
theDNA-binding site of the protein (43)managed to increaseCpG-
induced TNF secretion in macrophages (Supplementary
Figure 6B). As expected, rHlp or the peptides alone could not
induce TNF (Supplementary Figure 6B). Altogether, these results
A B

DC

FIGURE 1 | M. leprae induces secretion of chemokines and expression of hbD-2 gene in human respiratory epithelial cells. (A, B) ELISA quantification of MCP-1
(A) and IL-8 (B) levels in the culture supernatant of A549 cells stimulated with live or killed M. leprae at different bacterium:cell ratios for 24 hours. (C) ELISA
quantification of IL-8 levels in the culture supernatants of primary human nasal epithelial cells obtained from 4 donors and stimulated with killed M. leprae at a
bacterium:cell ratio of 10 for 24 hours. (D) Quantitative RT-PCR analysis of hbD-2 mRNA levels in A549 cells stimulated with live or killed M. leprae at different
bacterium:cell ratios for 24 hours. (A, C, D) Unpaired t-test with differences considered statistically significant in relation to the untreated cells. (B) ANOVA test with
differences considered statistically significant in relation to the untreated cells comparing the different doses by applying a linear-trend post-test. *p < 0.05;
**p < 0.01; ****p < 0.0001. Values represent the mean ± standard deviation of at least 3 independent experiments performed in duplicate.
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confirm the capacity of recombinantHlp to enhanceDNA immune
recognition by TLR-9, dependent on the DNA-binding site of
the protein.

Figure 4A displays the results obtained after stimulating A549
cells with the CpG-rHlp complex. CpG and rHlp alone were also
used to stimulate A549 cells; and LPS was included as a positive
Frontiers in Immunology | www.frontiersin.org 6
control. Supernatants of CpG-rHlp complex-stimulated cells for 24
hours showed significantly higher levels of IL-8 when compared to
those collected from cells stimulated with CpG alone while the levels
of IL-8 in cultures treated with rHlp alone ended up being similar to
baseline levels (Figure 4A). We also evaluated the capacity of CpG-
rHlp complex to activate NF-kB in A549 cells. LPS, a TLR-4 ligand,
FIGURE 2 | Human alveolar epithelial cells express MHC-II and CD80 in response to M. leprae. Flow cytometry measurement of MHC-II (left) and CD80 (right)
expression on the surface of A549 cells stimulated with live or killed M. leprae at a bacterium:cell ratio of 50 for 48 hours. Top panel shows the gating strategy to
select the A549 cells population. The representative histogram plot together with the marker’s levels of positive cells and median fluorescence intensity (M.F.I.) are
shown by immunofluorescent labeling using anti-MHC-II and anti-CD80 antibodies conjugated to APC and PE, respectively. Unpaired t-test with differences
considered statistically significant in relation to the untreated cells. *p < 0.05. Results shown as representative of 3 independent experiments performed in duplicate.
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was also included as control. Through ELISA we detected a
significant increase of p65 in the nuclear extract after 30 minutes
of stimulation with CpG-rHlp or LPS (Figure 4B). Next, we showed
that IL-8 production in response to the CpG-rHlp is dependent on
NF-kB activation (Figures 4C, D). A549 cells pretreated with
Bay11-7082 blocked the production of IL-8 after CpG-Hlp
stimulation for 24 hours (Figure 4C). Moreover, DN-IkBa-
transfected A549 incubated with CpG-Hlp for 24 (Figure 4D)
Frontiers in Immunology | www.frontiersin.org 7
and 48 hours (Supplementary Figure 7) also showed significantly
lower levels of IL-8 production when compared to control cells.
Hence, the stimulation of TLR-9 by CpG-Hlp in A549 cells triggers
the activation of NF-kB, which subsequently leads to the production
of IL-8.

The question as to whether TLR-9 sensing plays a role in M.
leprae immune recognition by A549 cells was then addressed by first
stimulating them with increasing bacterium:cell ratios in the
A

B

D

E

C

FIGURE 3 | M. leprae induces activation of the NF-kB transcription factor in human alveolar epithelial cells. The relative levels of p65 in the nuclear extract of A549
cells were measured by immunoblotting (A) and by ELISA (B). For immunoblotting assays, the cells were stimulated with killed M. leprae at a bacterium:cell ratio of
50 for 30, 60, and 120 minutes while for ELISA the cells were stimulated with live or killed M. leprae at bacterium:cell ratio of 50 for 30 minutes. Normalization was
performed with lamin A/C and the densitometric units were arbitrary. Immunoblotting image shown as representative of 3 independent experiments performed in
duplicate. (C, D) ELISA quantification of IL-8 levels in culture supernatants of A549 cells pretreated with wedelolactone (C) or Bay11-7082 (D) followed by
stimulation with live or killed M. leprae at a bacterium:cell ratio of 50 for 24 hours. (E) ELISA quantification of IL-8 levels in culture supernatants of A549 cells
transfected with DN-IkBa and stimulated with killed M. leprae at a bacterium:cell ratio of 50 for 24 hours. (A–E) Unpaired t-test with differences considered
statistically significant between them (A, C–E) or in relation to the untreated cells (B). *p < 0.05; **p < 0.01; ****p < 0.0001. Values represent the mean ± standard
deviation of at least 3 independent experiments performed in duplicate.
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presenceofE6446, a synthetic antagonist ofTLR-9. LPSand theCpG-
Hlp complex were included as negative and positive controls,
respectively. After incubation, IL-8 levels were quantified in culture
supernatants. E6446was able to completelyblock the secretionof IL-8
by A549 cells in response to killedM. leprae after 24 (Figure 5A) and
48hours (SupplementaryFigure8)of incubationatall bacterium:cell
ratios tested. Comparable results were obtained with cells infected
with liveM. leprae, although statistical significance was reached only
for the bacterium:cell ratio of 50 (Figure 5A and Supplementary
Figure 8). As expected, the chemokine levels in the supernatant of
LPS-stimulated cells were unaffected by the presence of E6446. In
contrast, a complete inhibition of IL-8 secretion was observed in
response to the CpG-Hlp complex. E6446 was also able to block the
nuclear translocation of p65 induced by live/killedM. leprae in A549
cells as shown inFigure5B.Altogether, these resultsdemonstrate that
production of IL-8 in response to M. leprae infection in A549 cells
occurs via TLR-9/NF-kB.

Surface-Exposed Hlp Binds Extracellular
DNA, Augmenting Mycobacterial
Immunostimulatory Capacity
Since TLR-9 seems to play a prominent role inM. leprae immune
recognition by alveolar epithelial cells, the hypothesis was raised
that bacterial extracellular DNA anchored to Hlp molecules
present on the bacterial surface could act as potent TLR-9
Frontiers in Immunology | www.frontiersin.org 8
ligands by specifically triggering this immune activation
pathway during infection. To test this hypothesis, experiments
were conducted using M. smegmatis wild type (wt) and Dhlp
mutant strains. This mycobacterium was chosen due to the
complete inability to generate mutants in M. leprae. In
addition, the Hlp protein is a highly conserved protein among
the different species of mycobacteria (45). A549 cells were treated
with M. smegmatis wt and Dhlp strains previously incubated or
not with CpG oligo; and, after 48 hours, IL-8 levels were
measured in culture supernatants. LPS-incubated A549 cells
were included as positive controls. Both M. smegmatis strains
were able to induce IL-8 production in A549 cells at similar
levels. However, while pre-incubation of the wt strain with CpG
resulted in approximately 2.3-fold more IL-8 when compared to
cells stimulated with mycobacteria alone, this increment was not
observed in the Dhlp strain (Figure 5C). These results strongly
suggest that surface-exposed Hlp interacting with bacterial
extracellular DNA forms DNA-Hlp complexes that may act as
potent TLR-9 ligands during their interaction with host cells.
DISCUSSION

One of the most important gaps in knowledge concerning the
natural course ofM. leprae infection in humans revolves around the
A B

DC

FIGURE 4 | Mycobacterial CpG-Hlp complex induces immune activation of human alveolar epithelial cells. Quantification of IL-8 levels in the culture supernatant
(A, C, D) and assessment of the relative levels of p65 subunit in the nuclear extracts (B) of A549 cells through ELISA. (A) Cells were stimulated with CpG, rHlp, or
CpG-Hlp complex for 48 hours. LPS was used as a positive control. (B) Cells were stimulated with CpG-Hlp complex or LPS for 30 minutes. (C, D) Cells were
pretreated with Bay11-7082 (C) or transfected with DN-IkBa (D) and then stimulated with CpG-Hlp complex or LPS for 24 hours. (A) ANOVA test with differences
considered statistically significant between them after applying Bonferroni post-test. (B–D) Unpaired t-test with differences considered statistically significant in
relation to the untreated cells (B) or between them (C, D). *p < 0.05; **p < 0.01; ***p < 0.001. Values represent the mean ± standard deviation of at least 3
independent experiments performed in duplicate.
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earliest interactions between the pathogen and the respiratory tract,
considered the main infection route of the bacillus. Earlier studies
have shown that, after airborne exposure or intranasal infection of
mice,M. leprae can reach the lungs and is able to invade and survive
inside pulmonary epithelial cells (11, 12). Given the proven weight
of the respiratory pulmonary epithelium in generating an immune
response against invading microorganisms (7), the present study
investigated immune pathways activated in vitro in M. leprae-
challenged alveolar epithelial cells.

In most experiments performed, the effects of live and killedM.
leprae were compared, since in other cell types modulation of
several host cell functions by M. leprae was shown to be induced
only by live bacterium (46–48). To our surprise, in the case of A549
cells, all effects herein demonstratedwere proven to be independent
of bacterial viability. Initially, the capacity ofM. leprae to induce the
secretion of pro-inflammatory mediators in A549 cells was
analyzed. Among the mediators evaluated, the chemokines
MCP-1 and IL-8 showed higher levels in the supernatants of M.
leprae-stimulated cells. M. leprae also augmented the secretion of
IL-8 in human primary nasal epithelial cells, reinforcing that this
response might occur in M. leprae-exposed individuals during
bacterial entry through the respiratory airways.

MCP-1 is a chemoattracting molecule of CD4+ T cells and
monocytes (49) whereas IL-8 predominantly attracts neutrophils,
Frontiers in Immunology | www.frontiersin.org 9
which are the first inflammatory cells to migrate to the infection site,
restricting bacterial spread. The production of both chemokines by
alveolar epithelial cells subsequent to M. tuberculosis infection has
already been well demonstrated (50–55). The protective role of
MCP-1 in mycobacterial infection has been documented in several
studies as well. The presence of circulating MCP-1 serum levels was
shown to be significantly greater in pulmonary as compared to extra-
pulmonary tuberculosis patients and endemic individuals (56).
Moreover, after being infected with BCG, mice overexpressing
MCP-1 in type-II alveolar epithelial cells demonstrated increased
pools of lung mononuclear phagocytes and significantly decreased
mycobacterial loads in the bronchoalveolar space together with the
rapid resolution of lung granuloma formation (57). Regarding IL-8,
bronchoalveolar fluids from tuberculosis patients showed a dramatic
uptick in the number of neutrophils in correlation with elevated
concentrations of the chemokine (58, 59). Some studies also
described the capacity of M. tuberculosis-induced IL-8 to act as a
chemoattractantofCD4+andCD8+Tcells inpulmonarygranuloma,
modulating the adaptive immune response (49, 60, 61).

Defensins are cationic peptides that participate in innate
immunity due to their microbicidal activities, mainly through
bacterial membrane permeabilization (62). Indeed, several studies
indicate that A549 cells express hbD-2 after infection by
mycobacteria, leading to a decrease in the intracellular bacillary
A B

C

FIGURE 5 | M. leprae induces the secretion of IL-8 in human alveolar epithelial cells via TLR-9/NF-kB signaling. Quantification of IL-8 levels in the culture
supernatant (A, C) and assessment of the relative levels of p65 subunit in the nuclear extracts (B) of A549 cells through ELISA. (A) Cells were pretreated with the
TLR-9 antagonist E6446 and stimulated with live or killed M. leprae at different bacterium:cell ratios for 24 hours. CpG-Hlp complex and LPS were used as positive
and negative controls, respectively. (B) Cells were pretreated with E6446 and stimulated with live or killed M. leprae at a bacterium:cell ratio of 50 for 30 minutes.
(C) Cells were stimulated with M. smegmatis wt or Dhlp preincubated or not with CpG at a bacterium:cell ratio of 10, or with CpG alone for 48 hours. LPS was used
as a positive control. (A, B) Unpaired t-test with differences considered statistically significant between them. (C) ANOVA test with differences considered statistically
significant between them after applying Bonferroni post-test. *p < 0.05; **p < 0.01; ***p < 0.001. Values represent the mean ± standard deviation of at least 3
independent experiments performed in duplicate.
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load due to bacterial killing (27–30). In an earlier study, we showed
thatM. leprae was able to stay alive for at least 10 days within A549
cells (12). However, in that work cells were infected with 10x lower
the bacterium:cell ratio needed to induce the expression of hbD-2,
according to our current data (bacterium:cell ratio of 100). Thus,
future studies are needed to confirm that hbD-2 produced by
epithelial cells in response to M. leprae infection can promote
bacterial killing.

In addition, significant hbD-2 levels have been detected in
bronchoalveolar lavage fluid from patients with M. avium-
intracellulare infection (63), corroborating the involvement of
such peptides in the host defense and local remodeling of the
respiratory tract in mycobacterial infection. Interestingly, one in
vitro study showed low hbD-2 production in alveolar macrophages
infected withM. tuberculosis, unlike the alveolar epithelial cells that
produced large amounts of these peptides under the same
conditions (27), inferring that epithelial cells, and not
macrophages, are the main sources of hbD-2 during a primary
mycobacterial lung infection. Defensins also exhibit
chemotactic properties in initiating and regulating the immune
response (64, 65). As to hbD-2 specifically, it is identified as capable
of primarily attracting T cells but dendritic and mast cells as well
(66–68). In a mouse model of pulmonary tuberculosis, b-defensin-2
immunostaining was detected in cells with dendritic morphology
located nearby mediastinal lymph nodes, indicating its contribution
to the establishment of a Th1 response, thus bridging the innate and
adaptive immune responses (69).

In a next step, the effect ofM. leprae stimulation of A549 cells on
the expression of MHC-II and the co-stimulatory molecule CD80
was examined. Our data indicate that M. leprae was able to induce
MHC-II and CD80 expression. These results suggest that, during
post-M. leprae infection, alveolar epithelial cells not only recruit T
cells as a consequence of producing pro-inflammatory mediators,
but also assist in T cell activation by presenting antigens.

For the purpose of evaluating the mechanism of M. leprae-
induced immune activation in alveolar epithelial cells, the
involvement of NF-kB transcription factor was ascertained.
The bacillus was found to be capable of inducing NF-kB
activation in A549 cells by promoting the translocation of the
p65 subunit to the nucleus. Moreover, cells treated with
wedelolactone or Bay11-7082, two NF-kB inhibitors, were
unable to produce IL-8 in response to M. leprae. Additionally,
A549 cells overexpressing a dominat-negative IkBa mutant
displayed lower levels of IL-8 in response to M. leprae.
Interesting, in contrast to the clear activation of NF-kB in
alveolar epithelial cells herein demonstrated, M. leprae has
been shown to be both a weaker stimulator and even an
inhibitor of this transcriptional factor in monocytes and
Schwann cells (70, 71).

No effect onMCP-1 production was observed when supernatant
MCP-1 was measured in A549 cells treated with wedelolactone,
suggesting that the regulation of this chemokine is governed by a
distinct mechanism. In fact, several studies have shown that
different transcriptional pathways, i.e., other than NF-kB, are
involved in MCP-1 production (72–74). In the context of lung
epithelial cells, the IL-1b-induced MCP-1 expression in murine
Frontiers in Immunology | www.frontiersin.org 10
alveolar type II epithelial cells required multiple transcriptional
factors in addition to NF-kB; namely, c-Jun N-terminal kinase
(JNK), CCAAT/enhancer-binding proteins (C/EBPb and C/EBPd)
and specificity protein 1 (Sp1) (75).

One of the pathways leading to NF-kB activation is the
recognition of PAMPs by TLRs. Of interest, TLR-9 is one of the
intracellular TLRs expressed by human alveolar epithelial cells (41)
that has been considered in the context of mycobacterial infection
due to its capacity to sense microbial DNA and mediate protective
responses against infection (19, 21). Meeting expectations, A549
cells secreted IL-8 in response to the CpG-Hlp complex, a known
mycobacterial TLR-9 ligand. Moreover, in agreement with previous
reports (17, 21), the combination of rHlp with CpG almost doubled
the levels of secreted IL-8 when compared to cells stimulated with
CpG alone. One possible explanation for the synergistic effect of Hlp
on CpG may be due to the ability of the protein to bind
simultaneously to components of the extracellular matrix (14, 15,
45, 76) and to DNA (42, 43). The binding of Hlp to extracellular
matrix components would promote the endocytosis of the CpG-Hlp
complex, facilitating its subsequent recognition by the TLR-9 in the
endosomal compartments. Moreover, histones are also able to
induce DNA curvature, an effect that appears to significantly
increase DNA binding by TLR-9 (77).

Based on this information, the next analysis centered on the
potential involvement of TLR-9 activation in theM. leprae-induced
immune activation in these cells. For this purpose, we employed
E6446, a very selective antagonist for TLR-9 used in several previous
reports (21, 78–82). The inclusion of TLR-4 and TLR-9 ligands as
negative and positive controls, respectively, in our assays reinforced
the specificity of E6446 towards TLR-9. A549 cells pre-treated with
E6446 completely blocked the secretion of M. leprae-induced IL-8,
elucidating that, perhaps, once internalized, bacterial DNA sensing
by TLR-9 constitutes an important innate immune pathway
becoming activated in infected respiratory epithelial cells.
Moreover, by blocking TLR-9, the translocation of p65 to the
nucleus and IL-8 production were inhibited, linking TLR-9
signaling with NF-kB activation and IL-8 induction in A549 cells
stimulated with M. leprae.

Studies in a murine model of experimental malaria have
reinforced the immunostimulatory properties of DNA-protein
complexes (83, 84). The DNA-histone complex proved to be the
main component in the plasmodium capable of activating
dendritic cells and inducing the production of inflammatory
mediators. The above-mentioned authors also demonstrated that
histones facilitate the internalization of the DNA molecule and
its subsequent recognition by TLR-9. These and several other
studies have strengthened the idea that (naked) DNA per se
might likely be an immunologically weak molecule, but its
association with such DNA-binding proteins as histones, could
transform it into a molecule with stronger immunostimulatory
properties (17, 21, 85).

Previous studies have found the presence of DNA on the surface
of M. tuberculosis (86, 87), possibly as a result of bacterial lysis or
active secretion, as has already been seen in M. avium (88, 89). A
prior study showed that M. avium cultivated in a “phagosome-
mimicking” model secreted a high number of DNA-containing
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membrane vesicles (89). These same authors were also able to
determine, by way of freeze-fracture transmission electron
microscopy, the presence of these vesicles inside the macrophages
as well as the presence of extracellular DNA in the matrix of M.
avium biofilms (88). It is well established that the Hlp protein is
present on the surface ofM. leprae (12, 16, 25). So, it is reasonable to
speculate that extracellular DNA anchored to Hlp constitute a
major TLR-9 ligand triggering this immune activation pathway
during mycobacterial infection. This hypothesis was reinforced
when a mutant M. smegmatis strain for the hlp gene was
employed. Pretreatment of the M. smegmatis wt strain with CpG
increased the secretion of IL-8 by A549 cells, which did not occur
with regard to the Dhlp strain. These assays made it possible to
conclude that Hlp promotes the binding of DNA to the bacterial
surface, leading to the subsequent activation of TLR-9 upon
bacterial internalization.

Figure 6 summarizes our current model of M. leprae-airway
epithelial cell interaction and the immune activation pathways
triggered upon infection. DNAmolecules, probably derived from
Frontiers in Immunology | www.frontiersin.org 11
the leakage of dead bacteria, bind to surface-exposed Hlp, allowing
for the deposition andaccumulationofDNA-Hlp complexes on the
surface of both viable and dead bacilli. According to our
Supplementary Data and previous findings (43), DNA binding
toHlp occurs via the prokaryoticDNA-bindingmotif located at the
N-terminal half of the protein. Hlp mediates the adhesion and
internalization of M. leprae to respiratory epithelial cells via its
(Hlp) capacity to bind extracellular matrix proteoglycans such as
heparan sulfate present on the cell surface.Once the bacilli reach the
endosomal compartment, the DNA-Hlp complexes are recognized
by theTLR-9 receptor, triggering anetworkof signals leading toNF-
kB activation and the production of IL-8. M. leprae infection also
inducesMCP-1 and antimicrobial peptide production aswell as the
expression of MHC-II and co-stimulatory molecules like CD80.
The signaling pathways triggered by M. leprae to induce these
activation markers were not investigated in the present study, but
bacterial recognition by other PRRsmight play a role and should be
explored in future studies. The M. leprae-induced immune
activation of airway epithelial cells will mediate the recruitment of
FIGURE 6 | Representative model of M. leprae-respiratory epithelial cell interaction with emphasis on the role of bacterial DNA-Hlp complex recognition in cellular
immune activation. DNA molecules, probably derived from the leakage of dead bacteria, bind to surface-exposed Hlp, allowing the deposition and accumulation of
DNA-Hlp complexes on the surface of viable and dead bacilli. Hlp mediates the adhesion and internalization of M. leprae to respiratory epithelial cells via its (Hlp)
capacity to bind extracellular matrix proteoglycans. In the endosome, the DNA-Hlp complex interacts with the TLR-9, leading to activation and nuclear translocation
of the NF-kB transcription factor with subsequent induction of IL-8. The hbD-2 is also induced, possibly via NF-kB (90–92) (dotted arrow). MCP-1 is also produced
in response to M. leprae, however, in a NF-kB-independent manner. M. leprae also induces the expression of MHC-II and co-stimulatory molecules like CD80. This
immune activation mediates the recruitment of leukocytes to the infection site, represented by dendritic cells (green), neutrophils (lilac), monocytes (blue) and T cells
(red), contributing to the generation of a protective adaptive immune response.
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leukocytes to the infection site, contributing to the generation of a
protective adaptive immune response.

Most individuals exposed to M. leprae are able to build a
protective Th1-based immune response against the infection and,
consequently, donot progress to active disease (6). Therefore, based
on the data herein demonstrated it is reasonable to speculated that
the ability ofM. leprae to immuneactivate respiratory epithelial cells
represents a very early event during infection that may be crucial to
the development of this protective response. Indeed, mucosal
vaccines are able to induce both local and systemic immunity
against infectious agents (93–95). Of interest, the addition (or co-
delivery) of potent adjuvants such as TLR-9 agonists has been
described as efficient in potentiating a mucosal vaccination against
mycobacterial infections (96).

In a scenario bereft of a leprosy vaccine, the findings described
above may shed some much-needed light on creating potentially
effective strategies toward achieving a viable vaccine in the near
term.Moreover, sinceHlp is a very conserved protein,we foresee its
potential use when combined with DNA, both as a good
immunogen as well as an adjuvant in immune interventions such
as in intranasal vaccination against mycobacteria.
DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material. Further inquiries can be
directed to the corresponding author.
ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by Pedro Ernesto University Hospital, the State
University of Rio de Janeiro (CEP 2306/HUPE) and the
Oswaldo Cruz Foundation (FIOCRUZ) Ethical Committee
(CEP 483/08). The patients/participants provided their written
informed consent to participate in this study.
Frontiers in Immunology | www.frontiersin.org 12
AUTHOR CONTRIBUTIONS

AD, CMS, COS, and MP conceived and designed the experiments.
AD, CMS, COS, NL, JS, AV, and PR performed the
experiments. AD, CMS, COS, AC, MM, UL, MB-P, and MP
analyzed the data. AD, CMS, and MP wrote the paper. All authors
contributed to the article and approved the submitted version.
FUNDING

This work was supported by grants awarded to MCVP by the
Conselho Nacional de Desenvolvimento Cientıfíco e Tecnológico
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