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Gut immune cells have been increasingly appreciated as important players in the central
nervous system (CNS) autoimmunity in animal models of multiple sclerosis (MS). Among
the gut immune cells, innate lymphoid cell type 3 (ILC3) is of special interest in MS
research, as they represent the innate cell counterpart of the major pathogenic cell
population in MS, i.e. T helper (Th)17 cells. Importantly, these cells have been shown to
stimulate regulatory T cells (Treg) and to counteract pathogenic Th17 cells in animal
models of autoimmune diseases. Besides, they are also well known for their ability to
stabilize the intestinal barrier and to shape the immune response to the gut microbiota.
Thus, proper maintenance of the intestinal barrier and the establishment of the regulatory
milieu in the gut performed by ILC3 may prevent activation of CNS antigen-specific Th17
cells by the molecular mimicry. Recent findings on the role of ILC3 in the gut-CNS axis and
their relevance for MS pathogenesis will be discussed in this paper. Possibilities of ILC3
functional modulation for the benefit of MS patients will be addressed, as well.

Keywords: ILC3 cells, multiple sclerosis, gut-associated lymphoid tissues (GALT), Treg - regulatory T cell, Th17
(T helper 17 cell), AhR (Aryl hydrocarbon Receptor), FFAR2 (GPR43), TLR2

INTRODUCTION

One of the major open questions about multiple sclerosis (MS) pathogenesis is how the
autoimmune response directed against the central nervous system (CNS) is initiated. It is not
only that we have not been able to identify preliminary antigens that the autoimmunity is directed
against, but also the place of the initial activation of the autoimmune response remains elusive. Gut
microbiota has been increasingly studied as the source of antigens that can activate CNS-specific
autoreactive T cells, while gut-associated lymphoid tissues (GALT) have been considered as the
potential site of their initial activation. MS pathogenesis essentials are presented in Box 1, while
details can be found in numerous review papers (1-4). In the following chapters, we will present
current knowledge on the role of gut microbiota and GALT in the etiopathogenesis of MS, with an
emphasis on the role of intestinal innate lymphoid cells type 3 (ILC3) in the process.
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BOX 1 | Multiple sclerosis (MS) essentials

MS is chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS).Typical neurological symptoms of MS comprise
diminished sensory and visual perception, motor dysfunction, fatigue, pain, and occasionally cognitive deficit. Most MS patients exhibit a relapsing-remitting
course of the disease, distinguished by alternations between acute attacks and remission phases. Also, MS may present clinically isolated syndrome or
progressive (primary and secondary) clinical course.

Autoimmune response against the CNS resulting in the CNS inflammatory infiltrates has a major contribution to MS pathogenesis.IFN-y-producing Th1 cells and
IL-17-producing Th17 cells, defined by the expression of T-bet and RORyt master regulators, respectively, enter the brain at semipermeable and damaged sites of
the BBB and initiate neuroinflammation. Neuroinflammation induces the opening of BBB and enables the second wave of immune cell entry into the CNS and the
formation of brain lesions. CD8" T cells, B cells, and macrophages (Mf) have the leading role in the CNS tissue destruction CD4™" T regulatory cells (Treg), defined by
the expression of CD25 and Foxp3 as a master transcription factor, operate at the opposite arm of neuroinflammation to reduce/recover damage.

The etiology of MS is multifactorial and involves interaction between intrinsic (genetic) and extrinsic (environmental) risk factors that influence either innate or
adaptive immunity. Despite the conclusive autoimmune trait of MS, the precise trigger for the CNS-directed autoimmune response is still unknown.Autoreactive T
cells in the blood of MS patients display specificity for multiple myelin protein-derived antigens such as myelin basic protein (MBP), proteolipid protein, and myelin
oligodendrocyte glycoprotein (MOG). However, none of these myelin protein-derived antigens is recognized as a dominant antigen in MS, while T cells of the same
specificity exist in the blood of healthy individuals. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is induced in susceptible

animals through immunization with the CNS antigens.

THE GUT IMMUNE SYSTEM IN THE
INTRICACY OF THE CNS AUTOIMMUNITY

Apart from the induction of immune responses against harmful
microorganisms and maintaining immune homeostasis in the
gut, the immune system of the gut intercedes between intestinal
microbiota/metabolites and autoimmune responses. Immune
cells are highly enriched in the GALT organized in the forms
of Peyer’s patches, isolated lymphoid follicles, and scattered
among the intestinal epithelial cells and in the lamina propria
across the gastrointestinal tract. Also, the immune system of the
gut encompasses gut-draining lymph nodes that have intensive
communication with the GALT. Recently disclosed changes in
immune cells composition and accumulation within different
GALT compartments in EAE animals (5-13) support the
concept that initiation and/or regulation of autoimmune
response to CNS antigens may occur in the gut.

The gut microenvironment participates in the shaping of
autoimmune responses to CNS antigens presumably by
modulating the activation/differentiation of autoreactive T cells
and guiding their trafficking to the CNS. Potentially
encephalitogenic T cells were shown to migrate into the gut,
where they were further activated towards pathogenic
population, or they were modulated to become regulatory cells
(7, 14, 15). Accordingly, enhanced Th17 induction in response to
segmented filamentous bacteria was described in the small
intestine of mice, in particular in the terminal ileum (16-18),
while excessive Th17 expansion in the small intestine of humans
was associated with MS activity (19). Also increased numbers of
Th1/Th17 cells and decreased numbers of Treg cells were found
in the gut lamina propria, Peyer’s patches, and mesenteric lymph
nodes of mice with experimental autoimmune encephalomyelitis
(EAE) before the appearance of clinical symptoms, as well as at
the disease peak (9). Increased intestinal permeability, alterations
in tight junction functioning, and modifications in intestinal
morphology occurred along with the changes in the T cells
composition in GALT, thus indicating that disruption of
intestinal homeostasis was dependent on the immune response

at the initiation of EAE (9). Even more, it has been suggested that
the very initiation of MS may occur in the GALT through the
process of molecular mimicry and/or as a consequence of the loss
of gut barrier integrity (20-22).

Conversely, GALT is involved in establishing tolerance to
orally administered (auto)antigens including peptides from the
nervous tissue. Increased apoptosis of autoreactive T cells in
myelin basic protein (MBP)-fed mice occurs in Peyer’s patches,
thus indicating that Peyer’s patches are the principal site for
oral tolerance induction in the MBP-specific model of EAE (5).
Furthermore, suppression of EAE induced by CD3-specific
antibody treatment was presumably reflected by conversion
of myelin oligodendrocyte glycoprotein (MOG)-specific Th17
cells into regulatory phenotype occurring in the small intestine
(7). It is assumed that autoreactive T cells experiencing
phenotypic adaptation in the GALT attain characteristics that
favor their migration to the brain (20). Trafficking of CNS-
specific autoreactive cells to the gut is mediated through 047-
MAdCAM-1 (mucosal addressin cell adhesion molecule 1)
interaction. Protection from MOG;s5_s5-induced EAE in
MAdCAM-1-deficient mice was accompanied by impaired
migration of MOGs;s.ss-activated lymphocytes to small
intestine lamina propria and Peyer’s patches (12). Infiltration
of colonic lamina propria with MOG-specific Th17 cells, also
dependent on 04f7-MAdCAM-1 pathway, in the preclinical
phase of EAE, has been demonstrated in both active and
adoptive transfer EAE models in mice (13). These findings
support the notion that recruitment of encephalitogenic T cells
to the GALT occurs before immigration into the CNS.
However, data are showing that IL-4, co-expressed in Th17
cells or used for treatment in EAE mice, redirected trafficking of
pro-inflammatory Th17 cells from the CNS and draining lymph
nodes to the mesenteric lymph nodes and ameliorated the
disease (10). This effect was achieved through IL-4 dependent
increase of retinoic acid (RA) production in dendritic cells
(DC) and further induced expression of gut-homing receptors
CCR9 and 04B7 on Th cells. Moreover, retaining the
autoreactive pro-inflammatory T cells within the intestine has
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been associated with the resistance to EAE induction in mice
(15). It seems that GALT controls CNS-directed autoimmune
responses by providing a microenvironment for the activation
and differentiation of both encephalitogenic Th cells and Tregs
(that may halt these autoreactive T cells). The relationship
between the gut and the CNS autoimmunity is shown in
Figure 1.

Different subpopulations of immune cells residing in GALT
that might contribute to CNS autoimmunity comprise
conventional lymphocytes (CD4" Th cells, Tregs, CD8" T
cytotoxic cells), antigen-presenting, and phagocytic cells (DC
and macrophages - Mf), and non-conventional lymphocytes,
i.e., ILC. Recent findings disclosed the crucial role of the TGF-
B-Smad7 regulatory pathway in the generation of CNS
autoreactive Th cells in the intestine as Smad7 inhibited
induction of Treg by TGF-f (23). Furthermore, decreased
TGEF-B signaling with a shift toward inflammatory T cell
subtypes was demonstrated in intestinal biopsies from MS
patients (23). However, it is acknowledged that TGF-B in
combination with pro-inflammatory cytokines promotes
Th17 differentiation. Intestinal DC expressing ovf38 were
shown to convert latent TGF-f to an active form and thus
favor the generation of Th17 and IL-17-mediated CNS
inflammation (24, 25). Besides, in EAE mice the frequency of
DC was inversely correlated with the frequency of CD39" Tregs
in GALT (26). Considering that DC in GALT present primarily
the target for manipulation of orally induced tolerance, it was
shown that in orally-tolerated EAE mice intestinal lamina
propria 0 T cells secrete XCL1 to promote migration of
tolerogenic DC to mesenteric lymph nodes where they induce
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Tregs (27). Gut-derived IgA-secreting plasma cells in the CNS
were recently shown to limit neuroinflammation via the
production of IL-10 (28). Conversely accumulation of IgA-
producing cells reactive with gut bacterial strains associated
with MS correlated with acute inflammation in MS (29).

The recently identified ILC primarily involved in regulating
intestinal immune responses have also been implicated in CNS
autoimmunity. Among different subpopulations of ILC, ILC3
have raised special attention due to the functional similarities
with the Th17 that are the major players in CNS inflammation.
Indeed, ILC3 share the signature transcription factor retinoid-
related orphan receptor yt (RORyt) with Th17 and produce the
same major cytokines as Th17 (30).

ILC3 AS THE CENTRAL REGULATORS OF
THE GUT IMMUNITY

Immature ILC develop in the bone marrow from common
lymphoid progenitor and they tend to migrate to mucosal
tissues, although some populate lymphoid tissues, including
the spleen and lymph nodes and non-lymphoid organs, such
as liver, brain and pancreas (31-34). Also, differentiated ILC3
were found in the bloodstream during a T-cell mediated
autoimmune inflammatory disease such as psoriasis (35). ILC3
diverge into at least two subsets that differ developmentally,
phenotypically and functionally. Lymphoid tissue inducer cells
(LTi)-like ILC3 are characterized by surface expression of CCR6,
while natural cytotoxicity receptor (NCR)" ILC3 express NKp46
in mice (36).

CNS

Gut
microbiota

Gut

FIGURE 1 | Role of the gut in the CNS autoimmunity. CNS-autoreactive Th1 and Th17 cells are activated in the lymph nodes (1). They migrate into the CNS where
they initiate inflammatory response imposing destruction of the CNS tissue (2). They also migrate into the gut (3), where they can be re-differentiated to Treg which
counteract the inflammation in the CNS (4). However, they can also be supported by the gut environment in their encephalitogenicity (5). Finally, it is proposed that
encephalitogenic Th cells might be initially activated in the gut by the process of molecular mimicry, as they cross-react with gut microbial antigens (6).
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Mature ILC3 develop in the lamina propria of the intestine
due to specific differentiation factors (retinoic acid - RA,
polyphenols and microbiota) (37). Once ILC3 populate tissues,
they usually do not migrate (38), thus they have to be replenished
through regular divisions. Gut ILC3 proliferation is stimulated
by cytokines, including IL-18, tumor necrosis factor-like
cytokine 1A, IL-1B, IL-23 and IL-2 (39, 40), short-chain free
fatty acids (SCFA) and vitamins A and D (41, 42). ILC3 are
critical for the generation of the organized lymphoid tissue in the
intestinal wall during development, and they regulate microbiota
content and the integrity of the intestinal barrier (38, 43).

ILC3 are present in different GALT compartments where they
closely interact with other immune cells, including Thl and
Th17 cells, as well as with the major regulatory population of T
cells — FoxP3" T cells, i.e. Treg (14). It is assumed that the healthy
balance between Th17 and Treg in the gut is the major
prerequisite for adequate functioning of the adaptive immune
system and prevention of autoimmune diseases. The ratio and
function of Treg and Thl7 in the gut are largely under the
influence of gut microbiota and food constituents (44). It has
been documented that ILC3 can efficiently control the effector
Thl and Th17 cells and shift T effector/Treg balance to the
regulatory side (45-47).

ILC3 can sense cues originating from the food or microbiota
as they express numerous receptors, such as retinoic acid
receptor (RAR) (48), vitamin D receptor (VDR) (49), aryl
hydrocarbon receptor (AhR) (43, 50), and free fatty acid
receptors (FFAR) (51). In response to environmental signals,
such as vitamins, indoles, SCFA, as well as to cytokines produced
by surrounding cells, ILC3 produce several cytokines, including
IL-17A/F, IL-22, GM-CSF and IL-2.

The main role of IL-17 produced by ILC3 is to attract
neutrophils to the intestinal tissue in response to bacterial and
fungal infections (52-54). ILC3-derived IL-17 is also important
for the induction of antimicrobial peptides and tight junction
proteins (55).

ILC3 react to IL-1f produced by gut microbiota-stimulated
antigen-presenting cells (DC/Mf) by secreting IL-2 which
potentiates Treg activity (47), and GM-CSF which
stimulates the release of IL-10 and RA from DC/Mf (56).
IL-10 and RA also stimulate Treg activity. Of specific interest
for the homeostasis in the gut are IL-2-producing ILC3 (47),
as they are essential for IL-2-mediated Treg cell maintenance
and, consequently, for oral tolerance to dietary antigen in the
small intestine. Further, OX40L-expressing ILC3 were shown
extremely important for Treg homeostasis in the intestine
(57). Also, ILC3 drive the differentiation of T cells towards
Treg as they present antigens within MHC class II molecules
to T cells, but without co-stimulatory signals (45). Further, gut
ILC3 present antigens to effector Th17/Th1 cells, yet without
adequate co-stimulation (58), thus causing their inactivation.
Even with OX40L expression, MHC class II" ILC3 were
shown to regulate effector T cells in acute colitis (59). Thus,
ILC3 act in two ways: directly on effector Th17/Th1 cells or
through potentiation of Treg that suppress the effector
cell activity.

ILC3 are an important source of IL-22, the key cytokine for
the stabilization of the intestinal barrier (57). IL-22 keeps
intestinal barrier integrity through stimulation of gut epithelial
cell turnover, induction of tight junction proteins production, as
well as by stimulation of anti-bacterial peptides and mucins
generation (60-63). IL-22 and lymphotoxin o produced by ILC3
have the dominant role in epithelial fucosylation involved in the
formation of an environmental niche for small intestine
commensal bacteria (64). Production of IL-22 by ILC3 is
stimulated by multiple biomolecules. IL-1f, IL-18 and IL-23
secreted by DC/Mf stimulate IL-22 production in ILC3 (39, 65-
68). ILC3 can recognize lipid antigens through CD1d and
consequently generate IL-22 (69). IL-22 production in ILC3
was also shown to be stimulated by a glial-derived
neurotrophic factor produced in enteric glial cells in response
to TLR ligands (70). Vitamins A and D are potent inducers of IL-
22 production by ILC3 (48, 49), as well as AhR ligands and SCFA
that act through AhR and FFAR, respectively (50, 71, 72). Figure
2 illustrates the immunoregulatory activity of gut ILC3 related to
CNS autoimmunity.

It has recently been convincingly demonstrated that ILC3 are
responsive to circadian regulation (73-75). Importantly, the
diurnal rhythm was found affected in EAE (76), while the loss
of molecular clock in myeloid cells was found associated with
exacerbation of EAE (77). Also, it was reported that IL-22
production in ILC3 and consequent regulation of intestinal
barrier function were under the control of vasoactive intestinal
peptide (VIP) released from the local enteric neurons (78, 79).
VIP release is induced by food consumption, while the
functionality of the barrier was inversely correlated with
increased growth of epithelial-associated segmented
filamentous bacteria. Thus, it is tempting to speculate that
disbalanced regulation of the molecular clock in ILC3
contributes to EAE pathogenesis.

Still, it has to be noted that several studies imply pro-
inflammatory and disease-promoting activity of ILC3. For
example, GM-CSF production by ILC3 was associated with
enhanced maturation and polarization of inflammatory
intestinal Mf and with the intestinal inflammatory response as
observed in colitis (80, 81). Also, MHC class II" ILC3 were
shown to co-stimulate effector T cells in chronic colitis (59). The
high salt diet was shown to potentiate IL-17 production in ILC3
and subsequent intestinal inflammation (82). Further, as a part of
the gut immune response to segmented filamentous bacteria,
ILC3 stimulated epithelial serum amyloid A protein production,
which in turn promoted Th17 cells (83).

UNTANGLING POTENCY OF GUT ILC3
MODULATION FOR MS THERAPY

As previously emphasized, ILC3 have a central role in controlling
the interaction between the gut microbiota and the host immune
system. MS patients were shown to have altered gut microbiota
composition, and the alterations were associated with MS
pathogenesis [reviewed in (84)]. Some studies directly showed
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FIGURE 2 | Regulatory effects of gut ILC3 on the CNS autoimmunity. Local antigen-presenting cells (DC/Mf) produce IL-1B under the influence of gut microbiota. IL-
1B stimulates ILC3 to produce GM-CSF, which potentiates tolerogenic properties of DC, IL-22 that stimulates intestinal barrier, and IL-2 that favours Treg. DC/Mf
also produce IL-10 and retinoic acid (RA) which stimulate Treg activity. ILC3 present antigens to effector Th1 and Th17 cells, but without adequate co-stimulation,
thus inhibiting their functions. Products of gut microbiota, such as polysaccharide A (PSA) and processed nutrients, such as short-chain free fatty acids (SCFA) and
indoles act on ILC3 through their respective receptors to potentiate their immunomodulatory actions. Consequently, encephalitogenic Th cells are inhibited in the gut,

thus ILC3 activity presumably leads to the amelioration of the CNS autoimmunity.

the influence of MS gut microbiota on CNS autoimmunity. In a
groundbreaking study performed by Wekerle’s group, RR mice
that develop spontaneous EAE were transferred with fecal
samples obtained from monozygotic twin pairs discordant for
MS (85). Germ-free RR mice did not develop EAE, but the
disease was initiated through their colonization with human gut
microbiota. Importantly, the markedly higher proportion of mice
developed EAE in response to MS twin-derived fecal samples
than to healthy twin-derived ones. Similar results were obtained
in another study, where the transfer of gut microbiota from MS
patients to germ-free C57BL/6 mice increased their susceptibility
for the induction of active EAE to a greater extent than the
transfer of gut microbiota from healthy subjects (86). These
studies imply that the dysbiotic gut microbiota of MS patients
can be associated with the disease pathogenesis. Indeed, reduced
diversity of gut microbiota in MS patients correlated with
increased abundance of CXCR3" T cells expressing the gut-
homing 04B7 integrin receptor in the peripheral blood (87).
Even more, MS gut microbiota might contain microorganisms
that are able to provoke or promote CNS autoimmunity. It was
reported that elevated levels of Akkermansia muciniphila-specific
IgG were present in the cerebrospinal fluid of MS patients (88).
Moreover, a CD4" T cell clone that was clonally expanded in MS

brain lesions was shown to recognize guanosine diphosphate-I-
fucose synthase, an enzyme expressed by gut microorganisms
(21). Accordingly, a recent EAE study has identified specific gut
microorganisms that are involved in the reactivation of MOG-
specific T cells (22). Namely, peptides originating from
Lactobacillus reuteri mimic MOG, while Erysipelotrichaceae has
been shown to act as an adjuvant to enhance the responses of
encephalitogenic Th17 cells. Also, gut microbiota composition
was shown to change during EAE and to vary between the
disease stages and between different clinical subtypes of the
disease (89-91). The contribution of gut dysbiosis to the CNS
autoimmunity is shown in Figure 3, while the possibility to alter
gut microbiota for the benefit of MS patients is discussed in
Box 2.

Thus, it is tempting to speculate that gut dysbiosis observed in
MS affects ILC3, as these cells are among the central knots of the
gut-CNS MS-related network. Accordingly, it seems reasonable
to potentiate the regulatory properties of intestinal ILC3 through
modulation of gut microbiota for the benefit of MS patients.
Modulation of gut microbiota by antibiotics, pro/prebiotics or
fecal microbiota transfer (FMT) is one of the ways to influence
ILC3, among the other gut immune cells that are responsive to
the changes in the gut microbiota composition and function.
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FIGURE 3 | The contribution of gut microbiota dysbiosis to MS pathogenesis. Elevated levels of Akkermansia muciniphila-specific IgG are present in the
cerebrospinal fluid of MS patients. CD4" T cell clone that is clonally expanded in MS brain lesions is shown to recognize GDP-I-fucose synthase, an enzyme

CNS

expressed by gut microorganisms. Peptides originating from Lactobacillus reuteri mimic myelin oligodendrocyte glycoprotein (MOG), while Erysipelotrichaceae can
act as an adjuvant to enhance activity of antigen-presenting cells (APC), and subsequent activation of encephalitogenic Th17 cells. Segmented filamentous bacteria
stimulate CNS autoimmunity by inducing Th17 cell differentiation. Dysbiosis of gut microbiota in MS patients correlates with increased abundance of CXCR3* T cells
expressing the gut-homing a4B7 integrin receptor in the peripheral blood. Gut dysbiosis might increase the abundance of GM-CSF-producing CD4™ T cells that are
among the major culprits in CNS autoimmunity. CNS-specific T cells originating in lymph nodes (LN) migrate to the gut where they can undergo re-differentiation into

potent encephalitogenic cells under the influence of gut microbiota dysbiosis.

Gut ILC3 gene expression profile was shown rather resistant
to broad-spectrum antibiotics, unlike ILC1 and ILC2 which had
profound changes in the transcriptome (111). Moreover, ILC1
and ILC2 transcriptional profiles were more similar to ILC3
transcriptional profile, under the influence of antibiotics. It will
be important to determine if minocycline or some other
antibiotic of choice for the treatment of MS, influences
regulatory gut ILC3 properties in EAE or other models of MS.
Also, dietary fibers could be investigated in conjunction with
ILC3 regulatory activity in MS. Yet, it is even more appealing to
administer SCFA or agonists of their receptors to potentiate

ILC3-mediated CNS autoimmunity amelioration, as discussed in
detail below. The effect of FMT on gut ILC3 has not been
investigated in MS animal models, and it surely
deserves attention.

Specific targeting of gut ILC3 for the benefit of MS patients
can be attempted through the application of compounds that
influence ILC3 directly or indirectly. Among various compounds
that can be used to target gut ILC3, polysaccharide A, AhR
agonists, and SCFA are discussed here. Capsular polysaccharide
A produced by Bacteroides fragilis was extensively studied in the
context of CNS autoimmunity. The studies revealed that
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BOX 2 | Gut microbiota alteration for MS therapy

Modulation of the gut microbiota that was shown effective in EAE, and investigated in MS trials can be achieved by the application of antibiotics, probiotics, and gut
microbiota transfer. Gut microbiota composition modulation by broad-spectrum antibiotics before EAE induction reduced the clinical severity of the disease (92-94), while
the therapeutic application was inefficient (95). Still, EAE aggravation as the consequence of broad antibiotic application was observed in rats (89). Minocycline has been
considered as a potential therapeutic for MS (96), and its effectiveness in the prevention of clinically isolated syndrome transition into definitive MS was evaluated in a
clinical study (97).

Various probiotics were shown safe and efficient in the prophylactic or therapeutic treatment of EAE (6, 98—101). Effects of probiotics were associated with reduced
Th1/Th17 presence and activity in lymph nodes draining the site of immunization, in the spleen, and in the blood (100, 101). Probiotics are widely used in humans and are
generally safe for prolonged use. However, their ability to modulate the composition of already established gut microbiota or even to re-establish well-balanced gut
microbiota after antibiotic-induced depletion is uncertain (102, 103). Maybe the ingestion of prebiotics, i.e. dietary fibers, that help homeostatic bacteria to overwhelm pro-
inflammatory ones is a better approach for the treatment of MS. Indeed, there is an ongoing clinical trial: “Prebiotic vs Probiotic in Multiple Sclerosis” (NCT04038541) that is
exploring this possibility. Dietary fibers are metabolized by gut bacteria to short-chain fatty acids (SCFA) that were shown to support gut ILC (51).

The efficiency of fecal microbiota transfer (FMT) has been demonstrated in EAE (104, 105). Some preliminary studies of FMT in a limited number of subjects suggest
that this approach can be beneficial in MS (106, 107). Although the results of the studies are encouraging, additional data obtained from large cohorts of patients are
needed to get insight into the safety and efficiency of FMT for the treatment of MS. Currently, there are two ongoing clinical trials on the application of FMT in MS (“Fecal
Microbiota Transplantation (FMT) of FMP30 in Relapsing-Remitting Multiple Sclerosis (MS-BIOME)”, NCT03594487; “Safety and Efficacy of Fecal Microbiota
Transplantation”, NCT04014413).

Numerous data obtained in EAE imply that gut microbiota modulation by antibiotics, probiotics, and by gut microbiota transfer is the feasible way for the prevention
and treatment of CNS autoimmunity (108). Still, it has been postulated that appropriate gut immune system development is established under the influence of gut
microbiota in the process of “weaning reaction” during the short window of opportunity period, i.e. days 14 to 28 postpartum in mice (109). This reaction is presumably
essential for the development of Treg in the gut and prevention of the future inflammatory pathologies in adult organisms. Also, it has been shown that adult gut microbiota
composition changes induced by antibiotics and probiotics are not long-lasting, as the gut microbiota tends to get back in the status of the equiliorium with the host
genetics (102, 103, 110). Thus, it is reasonable to question if the gut microbiota-directed intervention in adults will be effective in counteracting gut-related inflammatory

and autoimmune disorders.

polysaccharide A acted through TLR2 to stimulate Treg, either
directly or by the potentiation of tolerogenic DC functions (112,
113). TLR2 is expressed on gut ILC3 (114) and it will be
important to determine if polysaccharide A potentiates
regulatory effects of gut ILC3 in EAE.

ILC3 can sense diet-based compounds and changes in the gut
microbiota through AhR (115). AhR is highly expressed in ILC3
and is essential for the maintenance of their phenotype under
inflammatory conditions (116). For instance, kynurenine
produced in gut epithelial cells was shown to increase the
abundance of IL-22-producing ILC3 (117). The circulating
levels of AhR agonists in general and tryptophan metabolites,
in particular, are decreased in sera of MS patients (118). Several
research papers indicate the beneficial effects of various AhR
ligands in the treatment of EAE (118-120). Notably, EAE
enhanced by antibiotics-imposed gut microbiota dysbiosis in
mice was ameliorated by AhR ligands indole, indoxyl-3-sulfate,
indole-3-propionic acid and indole-3-aldehyde, or the bacterial
enzyme tryptophanase (118). Thus, the effects of AhR-based
interventions on gut ILC3 functional properties in EAE deserve
particular attention.

ILC3 express various SCFA receptors, but the highest
expression was shown for free fatty acid receptor 2 (FFAR2 or
GPR43), while the expression of FFAR3 (GPR41) was much
lower. Also, ILC3 have a higher expression of FFAR2 than other
ILC populations (51, 111). SCFA are important for ILC3
homeostasis in the gut, as it was demonstrated that dietary
fibers metabolized by gut microbiota to SCFA stimulated ILC3
proliferation in the small intestine via upregulating mTOR
activity (51, 121). Fecal SCFA levels are decreased in EAE
(122), as well as in MS patients (123-125). Accordingly, oral
application of dietary fibers or SCFA was shown beneficial in
EAE, as they promoted Treg and ameliorated the disease (126,
127). Interestingly, effects of propionate were superior to those of

acetate and butyrate (127), and it was supplementation of
propionic acid to multiple sclerosis patients that led to Treg/
Th17 balance shift towards the regulatory arm and the
improvement of the disease course (124). The effect on the
disease included reduced annual relapse rate, stabilization of
the disability, and decreased brain atrophy after three years of
propionic acid intake (124). It has been suggested that acetate
and propionate stimulate, while butyrate inhibits innate immune
cell activity (128). As FFAR2, in contrast to FFAR3, has a higher
affinity for binding acetate and propionate than butyrate (128), it
is reasonable to assume that specific activation of FFAR2 is the
proper way to stimulate ILC3. Indeed, the deficiency of FFAR2 in
ILC3 led to a decrease in their homeostatic proliferation and IL-
22 production (41). Further, acetate was shown to promote IL-
1B-imposed ILC3 production of IL-22 as a part of its beneficial
effects in Clostridium difficile infection (71), while butyrate
reduced abundance of NKp46" ILC3 in terminal ileal Peyer’s
patches, decreased GM-CSF expression in ILC3 and
consequently reduced Treg and enhanced antigen-specific T-
cell proliferation (129). Moreover, increased fecal butyrate levels
correlated with EAE aggravation in antibiotic-treated rats (90).
Therefore, it seems rational to insist on the application of the
selective FFAR2 agonists, such as the one used in the study of
Chun and colleagues. This selective FFAR2 agonist acted
preferentially on gut ILC3, increasing their abundance and
their IL-22 production (41). Thus, investigation of ILC3-
mediated effects of the FFAR2 agonist in EAE is warranted.

Proposed therapeutic interventions for the stimulation of
ILC3 immunoregulatory activity are outlined in Figure 4.

To conclude, a plethora of data indicates that ILC3 have a
central role in gut immune homeostasis, which seems to be
essential for the prevention of MS etiopathogenesis. Further, as
ILC3 express FFAR2 receptor almost exclusively, they can be
easily modulated with respective agonists without affecting other
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FIGURE 4 | Stimulation of gut ILC3 for the benefit of MS patients. The immunoregulatory activity of gut ILC3 could be achieved through modulation of gut
microbiota by antibiotics, prebiotics or probiotics, and fecal microbiota transfer (FMT). Also, it can be potentiated through agonists of TLR2, AhR, and FFAR2.
It is known that polysaccharide A (PSA) acts through TLR2 on Treg and DC to inhibit encephalitogenic Th17 cells. Also, it is established that ILC3 potentiate
tolerogenic DC properties and stimulate Treg functions. It remains to be determined if PSA acts on ILC3 through TLR2 and if it contributes to ILC3-imposed
immunoregulation in the gut. Indole derivates of food and gut microbiota and kynurenine produced by gut epithelial cells (EC) stimulate ILC3 through AhR to
generate IL-22. IL-22 has multiple beneficial effects on epithelial cells and the intestinal barrier. FFAR2 agonists promote the proliferation of IL-22-producing

ILC3 acting through FFAR2.

immune cells. Thus, the application of FFAR2 agonists is an
excellent therapeutic opportunity. A thorough investigation of
the role of ILC3 in the pathogenesis of MS, as well as of the
possibility to apply ILC3-directed therapy for the benefit of MS
patients is a necessity.
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