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Recombinant adeno-associated virus (rAAV) has attracted a significant research focus for
delivering genetic therapies to target cells. This non-enveloped virus has been trialed in
many clinical-stage therapeutic strategies but important obstacle in clinical translation is
the activation of both innate and adaptive immune response to the protein capsid, vector
genome and transgene product. In addition, the normal population has pre-existing
neutralizing antibodies against wild-type AAV, and cross-reactivity is observed between
different rAAV serotypes. While extent of response can be influenced by dosing,
administration route and target organ(s), these pose concerns over reduction or
complete loss of efficacy, options for re-administration, and other unwanted
immunological sequalae such as local tissue damage. To reduce said immunological
risks, patients are excluded if they harbor anti-AAV antibodies or have received gene
therapy previously. Studies have incorporated immunomodulating or suppressive
regimens to block cellular and humoral immune responses such as systemic
corticosteroids pre- and post-administration of Luxturna® and Zolgensma®, the two
rAAV products with licensed regulatory approval in Europe and the United States. In this
review, we will introduce the current pharmacological strategies to immunosuppress or
immunomodulate the host immune response to rAAV gene therapy.

Keywords: immunomodulation, immunosuppression, immune response, gene therapy, adeno associated
virus, pharmacotherapies
INTRODUCTION

Adeno-associated virus (AAV) is a 26nm, non-enveloped virus of Parvoviridae family. It is 4.7kb
single-stranded DNA genome containing 4 open reading frames (ORFs) (rep, cap, aap, and MAAP)
flanked by inverted terminal repeats (ITRs) (1, 2). In therapeutic gene delivery, the viral ORFs are
replaced by the desired transgene expression cassette and referred as recombinant AAV (rAAV). It
has emerged as a leading vector to deliver genetic therapies due to its ability to transduce diverse cell
types and safety profile.

A significant obstacle in clinical delivery of rAAV is host immune response triggered by rAAV
capsid, genome, and therapeutic protein produced (3). Although AAV infection is non-pathogenic
in humans, initial exposure induces humoral and cellular anti-capsid response that are reactive to
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rAAV due to capsid similarity (4, 5). Pre-existing neutralizing
antibody (NAb) can effectively block rAAV transduction even
at low levels (1:5) (6). Most rAAV clinical trials exclude
seropositive patients; given the high seroprevalence
(60% for AAV2), limiting patients suitable for rAAV therapy
(7, 8). Furthermore ex vivo studies have shown predominantly
pre-existing memory phenotype cytotoxic T lymphocytes (CTL),
following exposure to rAAV can undergo expansion and
potentially lead to elimination of transduced cells (9, 10).

After rAAV administration, capsid-derived epitopes can be
presented by professional antigen presenting cells (APC) via
major histocompatibility complex (MHC) class I pathway and
activate CTL (11). The activation of CTL can result in targeted
destruction of transduced cells, as observed in rAAV2
hemophilia B clinical trial (12). Despite initial stable
therapeutic factor IX (FIX) expression (>10% activity) for 4
weeks, FIX levels gradually declined to baseline (<1%). This
was associated with asymptomatic, self-limiting transaminitis,
and corresponding changes in capsid-specific CTL population
(5). In the subsequent study using AAV8, administration of
steroids was able to negate this response and maintain
therapeutic FIX levels albeit a 50-70% decline from peak levels
(13). Moreover, transgene protein product-specific CTL was
observed in human rAAV trials for Duchenne’s Muscular
Dystrophy (14) and a-1-antitrypsin (15). Regulatory T cells
(Treg) modulate immune tolerance towards transgene product
and capsid that are vital to durable expression of therapeutic
protein (16, 17). Although the full clinical significance of innate
response to rAAV is unclear (18), unmethylated CpG motifs in
rAAV vector genome interact with toll-like receptor (TLR) 9
present in plasmacytoid dendritic cells and Kupffer cells,
releasing type I interferons activating cellular and humoral
responses in mouse models (19, 20), and has been suggested as
the cause of loss of expression in a rAAV8 hemophilia B trial
(21). Furthermore, rAAV capsid-targeting TLR2, various DNA
sensors, and complement activation may also play a role (22).

Different pharmacotherapies have been used to modulate
immune responses in current in vivo rAAV studies. Here, with
a particular focus on licensed agents, we discuss the
pharmacology of each drug (Figure 1), and their applications
in enabling safe and long-term expression of rAAV gene
therapies (Table 1).
IMMUNOMODULATION TO FACILITATE
rAAV GENE THERAPY DELIVERY

Global Effects
Corticosteroids
Corticosteroids (CCS; methylprednisolone, prednisolone and
prodrug prednisone) bind to glucocorticoid receptors
modifying diverse downstream transcriptional signaling. This
includes annex I, MAPK phosphatase 1, and NF-kB resulting in
anti-inflammatory and immunosuppressive properties (63).
They have broad inhibitory effects on both innate and adaptive
immune cells by reducing pro-inflammatory cytokine and
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chemokines, T- and to a lesser extent, B-cells production (64).
CCS are used short-term in conjunction with systemically
delivered gene therapies to negate transaminitis and associated
CTL-induced injury transgene loss (30, 65), and reduce T-cell
infiltrates in muscular fibers in non-human primates (NHP)
(33). They are also adopted in approved gene therapies for
inherited retinal dystrophy (25) and spinal muscle atrophy
(SMA) (26).

Subsequently increasing doses of systemic rAAV have been
delivered in preclinical and clinical studies with significant
hepatic sequelae. High dose intravenous AAV9 (2×1014 vector
genomes (vg)/kg) in NHP resulted in marked transaminitis and
acute liver failure (66), posing concerns over dosage related
hepatotoxicity (67). Furthermore, clinical phase II trial for
X-linked myotubular myopathy delivered intravenous
rAAV8.AT132 (NCT03199469) 3×1014vg/kg in high dosage
group, with 16-weeks of prednisolone commencing 1 day prior
to dosing. Three patients with pre-existing intrahepatic
cholestasis (68) experienced severe hepatobiliary complications
culminating in death. The exact mechanisms of the hepatotoxicity
remain to be elucidated. These studies however build evidence
that short-course CCS alone is likely to be insufficient to inhibit
formation of capsid-reactive T cells (13) and rAAV-mediated
immune response with systemic high dosages. Therefore, the
addition of other immunosuppressive agents maybe beneficial. In
a AAVrh10-microRNA study delivering 4.2×1014 vg intrathecally
into two adult patients, the first developed meningoradiculitis
after intrathecal infusion despite corticosteroids (IV
methylprednisolone on day 0 and oral prednisone tapered over
4 weeks). In the second patient, the addition of rituximab and
rapamycin to the regimen resulted in a lower increase of NAb and
T-cell response (29) and these drugs are further discussed.

Rapamycin (Sirolimus)
Rapamycin is a macrolide immunosuppressant that binds to the
same intracellular target (immunophilin) as tacrolimus; however,
rapamycin/FKPB12 complex inhibits a crucial cell-cycle kinase
known as mammalian target of rapamycin (mTOR). Beneficial
downstream effects include Treg generation, suppressing CTL
and T helper (TH) activation and at higher doses, B-cell
proliferation and differentiation (69–71).

Rapamycin has beneficial effects on circumventing existing
antibodies and studied in current hemophilia gene therapy trials.
Hemophilia patients develop inhibitors (antibodies) to clotting
factor replacement and another cause for exclusion in gene
therapy trials. In a murine hemophilia A model, rapamycin
(4mg/kg three times a week) was given in addition to B-cell
depleting anti-CD20 antibodies to suppress TH and Treg response
suppressing inhibitor development (37). Intraperitoneal
prednisolone with rapamycin was shown to inhibit B-cell
activation in murine spleen and bone marrow, reducing pre-
existing anti-capsid immunoglobulin G (IgG) by up to 93% after
8 weeks (72). Additionally, co-administrating AAV vectors with
rapamycin encapsulated in synthetic vaccine particles (SVP
[Rapa]) enabled re-dosing of AAV8 at 4 × 1012vg/kg in mice
and NHP (39). SVP [Rapa] provided sufficient reduction of B
and T cell activation in an antigen-selective manner, inhibited
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CTL liver infiltration, and efficiently blocked memory T cell
response. Potential of intramuscular rAAV9 re-administration is
currently investigated for Pompe disease (NCT02240407) (73), by
attenuating T and B cell response with rapamycin and rituximab
respectively. Preliminary results were successful in preventing
formation of anti-capsid and anti-transgene antibodies (38),
with aims to enable rAAV re-administration and maintain
effectiveness in different underlying mutations.

Mycophenolate Mofetil
Inosine monophosphate dehydrogenase (IMPDH) is the rate-
limiting enzyme for guanosine nucleotide synthesis, and type II
IMPDH is upregulated in activated lymphocytes. Mycophenolate
mofetil (MMF), prodrug of mycophenolic acid, preferentially
inhibits type II IMPDH, suppressing T and B cells proliferation
(74). In mice MMF reduced rAAV transduction efficiency by
depleting guanosine triphosphate required for vector genome
second strand synthesis (75), but this was not observed in higher
Frontiers in Immunology | www.frontiersin.org 3
animals. No difference in AAV8-hFIX transgene expression was
observed when administered with tacrolimus in NHP (6),
highlighting the difficulties of recapitulating human immune
system in mouse models.

T-Cell Specific
Calcineurin Inhibitors
Ciclosporin and tacrolimus are immunosuppressants that inhibit
calcineurin, a key signaling phosphatase, by binding to their
respective immunophilins - cyclophilin and FKBP12 (76). A
major downstream effect is suppression of interleukin (IL)-2
transcription, thereby inhibiting T cells differentiation, survival,
and subsequent antibody production and CTL activities via
effector TH cells. Daily systemic administration of tacrolimus
(0.06mg/kg/day) has been shown to prolong rAAV8 and rAAV9
expression in NHP skeletal muscle, up to 42 weeks from 8 and 16
weeks respectively (47). No generalized toxicity was reported but
T-cell and macrophages infiltrations were observed.
FIGURE 1 | Mechanisms of action of approved pharmacotherapies for immunomodulation with rAAV gene therapy. Pre-existing NAb can inhibit receptor-mediated
endocytosis thus transduction of rAAV (A). TLR9 recognizes CpG motifs, and TLR2 on cell surface or endosomal membrane recognizes vector capsid, both of which
lead to release of pro-inflammatory cytokines (B). Recent evidence shows that ITRs facilitate bidirectional transcription to form dsRNA, which triggers cytosolic MDA5
and downstream type I interferon response (C). Upon endosomal escape, rAAV can be degraded by proteasome and loaded on MHC class I by the endoplasmic
reticulum (D). Recognition by memory CTL (E) leads to expansion and differentiation into CTL, and both can commence effector functions leading to loss of
transgene expression (F). On the other hand, rAAV can also transduce APC, for instance dendritic cells, and transgene protein product can be phagocytosed (G).
They are processed by proteasomes and endosomes respectively and the antigens can be presented on MHC class II molecules (H), leading to downstream
activation of TH and B-cells; among other actions, B cells would differentiate into plasma cells and produce antigen-specific antibodies (I). Created with BioRender.
com. APC, antigen presenting cells; ATO, arsenic trioxide; CCS, corticosteroids; Chemo, chemotherapeutics; CIs, calcineurin inhibitors; CTL, cytotoxic
T lymphocytes; dsRNA, double-stranded ribonucleic acid; HCQ, hydroxychloroquine; IFN, interferon; IL, interleukin; ITR, inverted terminal repeats; MHC, major
histocompatibility complex; MMF, mycophenolate mofetil; NAbs, neutralizing antibodies; NF-kB, nuclear factor kappa B; PIs, proteasome inhibitors; RAPA,
rapamycin; rATG, rabbit anti-thymocyte globulin; RTX, rituximab; TH, T helper cells; TNF, tumor necrosis factor; TLR, toll-like receptor.
April 2021 | Volume 12 | Article 658038
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TABLE 1 | Licensed pharmacotherapies used in preclinical and clinical studies as adjuvant to AAV gene therapies.

Drug Licensed indication(s) Significant adverse effects
in humans

Example AAV
serotype trialed

Type of study

Corticosteroids
(23, 24)

Anti-inflammatory and
immunosuppressive properties
are used in most areas of
medicine
- Autoimmune diseases e.g.
rheumatoid arthritis, systemic
lupus erythematous (SLE)
- Systemic and local
inflammation
- Acute exacerbation of asthma
and inflammatory bowel disease

Short term treatment: adrenal
suppression, hyperglycemia
Long term treatment:
osteoporotic fracture, insulin
resistance, Cushingoid features,
cataracts/glaucoma,
neuropsychiatric disturbances,
cardiovascular risks, muscle and
skin atrophy
In children: growth suppression,
Cushing’s syndrome,
medication-induced diabetes

AAV2 (25),
scAAV9 (26)

Approved

AAV2 (27),
AAV5 (28),
AAVrh10 (29),
AAV-Spark100 (30),
scAAV2/8 (13),
scAAV5 (31)

Clinical

AAV1 (32) Clinical as combination

AAVrh74 (33) Preclinical

Rapamycin (34, 35) Prophylaxis of organ rejection
after transplantation

Thrombocytopenia, dyslipidemia,
mucositis, impaired wound
healing, proteinuria

AAV1 (36),
AAV8 (37),
AAV9 (38),
AAVrh10 (29)

Clinical as combination

AAV8 (39) Preclinical

AAV2 (40), (41),
AAV9 (42)

Preclinical as
combination

Mycophenolate mofetil (43, 44) Prophylaxis of organ rejection
after transplantation

Gastrointestinal toxicity (requiring
dose reduction/discontinuation in
40-50% transplant patients),
myelosuppression, infection,
genotoxic

AAV8 (6),
AAV2 (40) (41)

Preclinical as
combination

Calcineurin inhibitors (45, 46) Prophylaxis of organ rejection
after transplantation

Narrow therapeutic index -
nephrotoxicity, neurotoxicity,
infection, gastrointestinal toxicity,
malignancy

AAV1 (32) Clinical as combination

AAV8, AAV9 (47) Preclinical

AAV8 (48) Preclinical as
combination

Rituximab (49) Rheumatoid arthritis, Non-
Hodgkin’s lymphoma

Infusion reaction including
cytokine release syndrome,
infection, febrile neutropenia,
myelosuppression, cardiotoxicity

AAV2 and 5 NAb (50) Ex vivo human serum

AAV1 (36),
AAV9 (38),
AAVrh10 (29)

Clinical as combination

AAV8, AAV6 (51);
AAV9 (42)

Preclinical as
combination

Imlifidase (52) Pre-transplant desensitization in
highly sensitized, crossmatch
positive renal transplant patients

Infection (pneumonia, sepsis),
infusion site reaction, hepatic
dysfunction, headache

AAV8, AAV-LK03 (53) Preclinical

Proteasome inhibitors (54, 55) Multiple myeloma Peripheral neuropathy,
myelosuppression (especially
thrombocytopenia),
cardiovascular events, herpes
reactivation

AAV2 (56),
AAV8 (57)

Preclinical

Arsenic trioxide (58) Acute promyelocytic leukemia Hyperleukocytosis,
gastrointestinal toxicity, skin
lesions, hepatic dysfunction

AAV8 (59) Preclinical

Hydroxychloroquine (60) Rheumatoid arthritis, SLE Gastrointestinal effects,
retinopathy, myopathy, QT
prolongation (at high dosage)

AAV2 (61) Preclinical

Rabbit anti-thymocyte globulin (62) Prophylaxis of graft-versus-host
disease or organ rejection after
transplantation

Infusion reaction including
cytokine release syndrome,
opportunistic infection/
reactivation

AAV2 (41) Preclinical as
combination
Frontiers in Immunology | www.frontier
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The first approved gene therapy in Europe, alipogene tiparvovec
(Glybera), incorporated 12-week immunosuppression regimen with
ciclosporin (3mg/kg/day) and MMF (2g/day) (32). In the initial
regimen, 9/14 subjects showed humoral and cellular response
against rAAV1 (77). Subsequent study (AMT-011-02) modified
the regimen to commence ciclosporin and MMF from day -3 with
additional methylprednisolone on day 0 resulting in transient
cellular responses without clinical sequalae (78).

Ciclosporin and tacrolimus were found to inhibit Treg
proliferation and activity in vitro (79), and similar effects were
observed in tacrolimus-treated allograft patients ex vivo (80); this
could be detrimental in inhibiting the development of peripheral
tolerance following rAAV administration. However, preclinical
delivery of ciclosporin and non-depleting CD4 receptor antibody
(NDCD4) have been shown to induce antigen-specific Treg,
enabl ing AAV intravenous re-administrat ion after
3 months (48).

B-Cell Specific
Rituximab
Rituximab (RTX) is a chimeric mouse/human monoclonal
antibody targeting CD20 present in pre‐B and mature B cells
except plasma cells. It depletes B cells by inducing apoptosis,
antibody dependent cell-mediated cytotoxicity and complement
dependent cytotoxicity, thereby limiting antibody production
and epitope presentation via MHC class II to TH cells (81).

A preclinical model for hemophilia B showed RTX with
ciclosporin dampened NAb response to human FIX and capsid
without affecting Treg (51). As ciclosporin inhibits TH cell, this
further improves B-cell inhibition profile. Variable responses
have been observed in RTX’s effect on reducing pre-existing
AAV NAb. A small group of patients with rheumatoid arthritis
were treated with combination of methotrexate and RTX,
lowering anti-AAV2 and anti-AAV5 NAb in a subset of
patients with variable magnitudes (50). For AAV2, 9/28
patients showed at least a half-log reduction, and inferred
individuals with NAb titer ≤1:1000 were more likely to
respond to RTX but the contribution of methotrexate is
unknown. Considering the supportive evidence from previous
AAVrh10-microRNA with RTX (29), further study in RTX
application is warranted.

IgG-Degrading Cysteine Proteinase
Imlifidase (Idefirix, Hansa Biopharma) is a IgG-degrading
cysteine protease derived from Streptococcus pyogenes (IdeS),
which specifically cleaves opsonizing IgG at the lower
hinge region of the heavy chains, resulting in a F(ab’)2 and a
non-functioning dimeric Fc fragment (82). It could potentially
overcome a limitation of RTX and cleave existing capsid-specific
IgG. Using a laboratory version of IdeS with rAAV8, significant
reductions in anti-AAV8 IgG and NAb levels, with enhanced
liver transduction and transgene expression and observed
in passively immunized murine models and naturally
immunized NHP (53). Notably, the study also explored rAAV
re-administration with IdeS pre-treatment in NHPs. In the first
study (n=1), no induction of anti-capsid IgG and NAb, along
with lower IgM and increased transgene level was observed for
Frontiers in Immunology | www.frontiersin.org 5
21 days after second rAAV8-hFIX administration. However, this
was not replicated in a larger cohort (n=5) immunized with
rAAV-LK03, that developed anti-capsid IgM and IgG. Further
studies are required as the IdeS dosing regimen differed between
studies, and two rAAV-LK03 vectors (expressing GAA and
hFVIII) were used in the latter study.

Other Pharmacological Agents
Proteasome Inhibitors
Proteasome inhibitors (PIs) are licensed for multiple myeloma.
Second-generation carfilzomib is irreversible and more
specifically inhibits chymotrypsin-like activity than bortezomib,
the reversible first-generation inhibitor, which also inhibits
lysosomal and calcium-activated cellular proteases (54, 83).
After endosomal escape, rAAV particles either enter the
nucleus for transgene expression, or become ubiquitylated then
degraded by proteasome (84). The latter pathway results in
unsuccessful transduction, and capsid-derived peptides are
presented to CTL by MHC class I molecules, provoking
elimination of transduced cells and loss of transgene
expression (85). In addition, these inhibitors may have
immunomodulatory role in suppressing dendritic cells function
and downstream T-cell stimulation (86).

PIs have been investigated in preclinical models for their
ability to increase rAAV availability and reduce CTL responses.
Bortezomib has been shown to dose-dependently decrease cell
surface MHC class I antigen presentation and inhibit CTL-
mediated lysis after rAAV administration in vitro (87).
Moreover, a single bortezomib dose given with rAAV8 dosing
enhanced transgene expression by >50% for one year (compared
to ~10%) in hemophilia A mice, and longer in-range clotting
time for at least 10 months in hemophilia A dogs (57). Both
bortezomib and carfilzomib enhance rAAV2 transduction
in vitro, but bortezomib is more efficacious than carfilzomib
in vivo when administered by retro-orbital injection with rAAV2
(56). Although no toxicity was found in the animal models,
peripheral neuropathy and myelosuppression are adverse effects
observed in humans (54). Emerging evidence showing variations
in PI effectiveness across cell types and AAV serotypes (88),
which warrants further study.

Chemotherapeutics
Second strand synthesis after capsid uncoating in nucleus is
long-recognized as the rate-limiting step of rAAV transduction
(89); an improvement in such efficacy could allow rAAV
administration at lower dose. As traditional chemotherapeutics
directly or indirectly induce DNA damage, thereby initiating
DNA damage response (DDR) to repair lesions (90), it has been
postulated that these repair mechanisms could increase
conversion of rAAV genome into dsDNA (91), or divert DDR
proteins that would otherwise impede dsDNA production (92).
Several chemotherapy agents were evaluated previously (91, 93)
and a high throughput screening study identified teniposide, a
type II topoisomerase inhibitor pharmacologically similar to
etoposide, as a potent transduction enhancer (94). Tail vein
injection of rAAV2-Luc with teniposide (at doses of 1×1011vg
and 20mg/kg respectively) resulted in bioluminescence 2-log
April 2021 | Volume 12 | Article 658038
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higher 48 hours post-administration without hepatotoxicity.
This difference reduced to ~1 log at 8 days post-administration
(study endpoint). Further study is required to determine whether
the effect is sustained, and evaluate potential long-term effects of
non-tissue-selective chemotherapy.

Agents Affecting Oxidative Stress
Oxidizing agents, such as arsenic trioxide (ATO) (59), and
antioxidants, such as manganese (III) tetrakis (4-benzoic acid)
porphyrin chloride (MnTBAP) (95), have been evaluated.
Intraperitoneal ATO 5mg/g/day from day -2 to 2 showed 3.9-
fold increase in luciferase assay 12 days after rAAV8 retro-orbital
injection, with dose-dependent increase of intracellular reactive
oxygen species that inhibit vector degradation pathways (59).
Intraperitoneal MnTBAP 80mg/kg/day from day 0-4 reversibly
downregulated CD4 on T cells, inhibiting T cell priming and
humoral responses to initial rAAV1 dosing, and allowing
re-administration of rAAV1 via a different route 28 days
later (95).

Anti-Malarials
Hydroxychloroquine is an anti-malarial that interferes with
TLRs and cyclic GMP-AMP synthase (cGAS), dampening
downstream pro-inflammatory cytokine and type I IFN
production (60). A study injected hydroxychloroquine
subretinally (18.75mM) with rAAV2, resulting in 5.9-fold
improvement in photoreceptor transgene expression (61).
However, endosomal acidification is essential for rAAV escape
(84), and hydroxychloroquine increases endosomal and
lysosomal pH (60), this effect may not be replicated or
consistent with systemic application.

Combination Therapy
Triple T-Cell Directed Therapy
This study highlights importance of pharmacotherapy choice.
rAAV2-hFIX (8×1012vg/kg) was delivered intrahepatically to
NHP alongside 2-drug regimen of MMF and rapamycin
compared to 3-drug adding Daclizumab (40). The addition of
daclizumab resulted in decreased CD4+CD25+FoxP3+ Treg and
consistent formation of inhibitory antibodies to hFIX; this was
not observed in the 2-drug group. Daclizumab is a humanized
monoclonal antibody targeting CD25 present on interleukin-2
receptor commonly found in activated T cells and
CD4+CD25+FoxP3+ (96). This indicates careful selection of
immunosuppressive agents is necessary as Treg play a critical
role in regulating immune response to rAAV products,
particularly observed in liver and muscle gene transfer (97).

Triple T-Cell Directed Therapy: Delayed rATG
Timing of T cell immunosuppressant regimen was evaluated
with liver-directed rAAV2-hFIX, at 7.5×1012vg/kg via hepatic
artery in NHP (41). Rabbit anti-thymocyte globulin (rATG), a
rabbit polyclonal IgG, causes T-cell and plasma cell depletion
and modulation of other immune effectors (98). Used with MMF
(25 mg/kg) and rapamycin (4mg/kg, then 2mg/kg), a 35-day
delay in rATG administration prevented formation of anti-
transgene humoral response compared to commencing
Frontiers in Immunology | www.frontiersin.org 6
immunosuppression on day 0 (41). Neither group had cellular
response to capsid or transgene, and 2 of 3 NHP in the delayed
rATG group did not develop anti-capsid antibodies. It is possible
by postponing rATG lowers the Th17/Treg ratio, allowing
peripheral tolerance to the transgene product (41).

B and T Cell-Directed Therapy
This intensive immunosuppressive therapy included T-cell-targeting
ATG and tacrolimus, B-cell targeting rituximab, with MMF and
methylprednisolone to deliver global immunosuppression (99). This
5-drug regimen with rAAV5-PBGD 1×1013vg/kg infusion resulted
in reduced T-cell response in NHP, but did not prevent NAb
emergence following regimen removal. This suggests that drug
selection, initiation and duration of suppression, and role of global
immunosuppression are important considerations.
DISCUSSION

AAV gene therapy has the potential to be durable and
transformative treatment for previously incurable, life-limiting
genetic diseases. However, human immune responses to the viral
vector, transgene, and protein product determine the therapeutic
efficacy and possibility of re-administration. Studies showed
cross-reactive anti-capsid NAb present at 15 years (100), CTL
and Treg infiltrates at injection site after 5 years (101); and in
NHP adverse effects related to high-dosage (42, 66). With the
increasing applications of systemic rAAV at higher dosages in
clinical trials, further understanding of innate and adaptive
immune responses to rAAV gene therapies is essential to safe
and efficacious treatment.

Multiple approaches are being developed to evade the host
immune response such as evaluating effects of empty capsids
(102), capsid engineering guided by antigenic footprints
(103), and plasmapheresis (104). The use of existing
licensed medications for their immunosuppression and
immunomodulation properties offers the advantages of
flexibility (by allowing variations of drug combinations, dose,
and duration of immunosuppressive course), accessibility, and
well-documented pharmacological and safety profiles. As
summarized above, a range of pharmacological agents have
been used in clinical and preclinical studies, and the timing of
immunomodulation, duration, and drug regimen itself have all
contributed to treatment efficacy. Corticosteroids are the most
commonly used agents to resolve transaminitis, however, its
relationship with resolution by corticosteroids and T-cell
response are not always clear as observed in a hemophilia A
trial (28, 105). Also, rAAV vectors and patients’ characteristics
must be thoroughly evaluated to optimize safe delivery of high-
dose systemic rAAV or re-dosing.

To better design immunomodulation regimens, thorough
considerations of the underlying immunological mechanisms
are essential. Peripheral tolerance mediated by Treg to
counteract CTL responses in hepatic AAV studies remains an
important area of development (106). Reports on Treg in liver
and their persistence in muscle fibers after intermuscular
April 2021 | Volume 12 | Article 658038

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Chu and Ng Adjuvant Pharmacotherapies for rAAV Administration
delivery (17) further emphasizes the need for Treg-sparing
therapies. Moreover, binding (non-neutralizing) antibodies
in mice seemed to have a different biodistribution profile than
NAb and higher efficacy in liver transduction (107). A proposed
late-phase innate response triggered by ITRs’ inherent promoter
activity that generates dsRNA that activates cytosolic MDA5
sensors and releases type I interferons as demonstrated in mice
xenografted with human hepatocytes (108), poses further questions
as to the ideal immunosuppression regimen. Lastly, the lack of fully
predictive animal models (3, 109), and possibility of alternative,
non-immune-mediated toxicity such as dorsal root ganglion toxicity
with AAV9 (110), continue to represent challenges in safety and
efficacy evaluation.

CRISPR-Cas9 is a promising therapeutic tool that allows
genetic target-specific cleavage and editing (111). The first
clinical trial is currently underway for Leber’s congenital
amaurosis 10 (NCT03872479), EDIT-101, consists of
Staphylococcus aureus Cas9 (SaCas9) and two guide RNA
packaged in AAV5 vector for subretinal redelivery. One
concern is that the prevalence of anti-SaCas9 antibodies and
T-cell in humans are reported to be 78% (111). Studies showed
pre-existing SaCas9 immunity in mice resulted in increased CTL
response leading to hepatocyte apoptosis and loss of transgene
(112). Although no adaptive immune response towards SaCas9
Frontiers in Immunology | www.frontiersin.org 7
was reported (113), the eye is a relatively immunoprivileged site,
these data will not necessarily predict immune response in
humans or systemic administration. By gaining a precise
understanding of the immune mechanisms, drug repurposing
(for instance JAK inhibitors for type I interferon signaling,
anti-interleukin-6 human monoclonal antibodies), alongside
with how and when to immunomodulate around rAAV
dosing and required duration, will help to fully maximize
gene therapy safety and efficacy.
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