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The hallmark of HIV/AIDS is a gradual depletion of CD4 T cells. Despite effective control by
antiretroviral therapy (ART), a significant subgroup of people living with HIV (PLHIV) fails to
achieve complete immune reconstitution, deemed as immune non-responders (INRs).
The mechanisms underlying incomplete CD4 T cell recovery in PLHIV remain unclear. In
this study, CD4 T cells from PLHIV were phenotyped and functionally characterized,
focusing on their mitochondrial functions. The results show that while total CD4 T cells are
diminished, cycling cells are expanded in PLHIV, especially in INRs. HIV-INR CD4 T cells
are more activated, displaying exhausted and senescent phenotypes with compromised
mitochondrial functions. Transcriptional profiling and flow cytometry analysis showed
remarkable repression of mitochondrial transcription factor A (mtTFA) in CD4 T cells from
PLHIV, leading to abnormal mitochondrial and T cell homeostasis. These results
demonstrate a sequential cellular paradigm of T cell over-activation, proliferation,
exhaustion, senescence, apoptosis, and depletion, which correlates with compromised
mitochondrial functions. Therefore, reconstituting the mtTFA pathway may provide an
adjunctive immunological approach to revitalizihg CD4 T cells in ART-treated PLHIV,
especially in INRs.

Keywords: HIV, immune non-responder, mitochondrial dysfunction, T cell exhaustion, senescence

INTRODUCTION

HIV/AIDS is characterized by a progressive depletion of CD4 T cells, leading to a gradual deficiency
in host immunity, along with increased susceptibility to opportunistic infections and, ultimately,
death (1). Disease progression from HIV to AIDS in untreated individuals often occurs over a
period of 8-10 years, with an inexorable, virus/immune-mediated CD4 T cell destruction. Current
antiretroviral therapy (ART) has markedly improved the outcome of this deadly disease by
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suppressing HIV replication, allowing for CD4 T cell restoration
to preserve T cell numbers above the threshold (200 cells/uL)
associated with immunodeficiency. However, ART does not
restore all CD4 T cell subsets during chronic immune
activation, thus leading to an aberrant T cell homeostasis. The
dynamics of T cell homeostasis appear to result from early direct
viral cytopathogenic effects, followed by an indirect effect from
persistent immune activation over time in ART-controlled
people living with HIV (PLHIV) (1, 2).

While ART can effectively control virus replication in the
majority of PLHIV, ART does not always fully restore CD4 T
cells. A substantial subgroup of PLHIV fails to recover their CD4
T cell numbers and/or functions to normal levels, and these
individuals are referred to as immune non-responders (INRs) (3,
4). Even with satisfactory recovery of CD4 T cell numbers, virus-
controlled subjects often exhibit both immunologic scarring and
low-grade inflammation, leading to an “inflammaging”
phenotype that is characterized by accelerated telomere loss,
reduced proliferative capacity, low IL-2/IFN-y production, and
poor vaccine responses (5, 6). This inflammaging process
exposes the immune system to unique challenges that induce T
cell exhaustion and senescence, a major driver of the increased
incidences of infections, cancers, cardiovascular, and
neurodegenerative diseases in ART-controlled PLHIV - similar
to the phenotypes often observed in the elderly (7-10).
Therefore, ART-controlled, virus-suppressed HIV infection
provides an excellent model for studying inflammaging in
humans, and it is fundamentally important to elucidate the
mechanisms underlying T cell exhaustion and senescence in
PLHIV, especially in INRs.

Despite a complete control of HIV replication by ART, INRs
demonstrate incomplete immune reconstitution and are at
increased risk of morbidity and mortality, unlike immune
responders (IRs) who have restored their CD4 T cell numbers
and functions (11). While the mechanisms underlying immune
failure in HIV-suppressed INRs remain elusive, several viral and
host factors may play a role in this pathophysiology. In
particular, ART-controlled HIV infection is characterized by
the presence of viral reservoirs that prevent the eradication of
HIV and possibly lead to incomplete immune reconstitution (12,
13). Also, INRs often have high levels of immune activation due
to persistent, low-grade inflammation that causes inflammaging.
Ultimately, HIV-INRs could result from a myriad of viral/host
factors that contribute to the failure to restore CD4 T cell subsets
and/or functionality. These factors may include viral proteins/
RNAs/miRNAs released from HIV reservoirs, CD4 T cell nadir,
age, duration of viral infection, frequent hepatitis C virus (HCV),
hepatitis B virus (HBV), cytomegalovirus (CMV), Epstein-Barr
virus (EBV), tuberculosis (TB), and other pathogen coinfections,
cell-secreted pro-inflammatory cytokines, endogenously
generated reactive oxygen species (ROS), HIV-enhanced gut
permeability or altered gut microbiota, ART regimens,
associated malignancies, personal stresses, and social or
environmental factors (14-18). Currently, consensus criteria
for defining HIV-INRs or HIV-IRs have yet to be established,
but INR subjects are often characterized by significant decreases

in circulating CD4 T cells (<350-500 cells/pL) (19, 20), increased
frequency of cycling CD4 T cells due to immune activation, and
CD4 T cells with poor responsiveness to IL-7 due to exhaustion
and senescence (21, 22).

Telomere loss and mitochondrial compromise are the two
most prominent features of cell aging or senescence. We have
previously reported that chronic viral (HIV, HCV) infection can
cause premature T cell aging, characterized by overexpression of
aging markers and shortened telomeres (23-31). Since
mitochondria are energy powerhouse organelles and their
functions are critical for cell activity and survival (32, 33), here
we analyzed CD4 T cell homeostasis, mitochondrial functions,
and regulators of mitochondrial biogenesis and oxidative
phosphorylation (OXPHOS) in HIV-INRs, HIV-IRs, and
healthy subjects (HS). Our results revealed a contraction of the
total CD4 T cell populations in HIV-INRs with a remarkable
expansion of their cycling CD4 subsets and dysregulation of
mitochondrial functions. Importantly, the expression of
mitochondrial transcription factor A (mtTFA) was repressed in
HIV-INRs, leading to compromised mitochondrial functions
and aberrant T cell homeostasis. Thus, reconstituting the
mtTFA pathway may provide an immunological approach for
rejuvenating CD4 T cells in ART-treated PLHIV, especially
in INRs.

METHODS

Subjects

The study subjects contained 3 populations: 120 PLHIV on ART
(tenofovir-based regimens, including an additional nucleoside
reverse transcriptase inhibitor (NRTI),non-nucleoside reverse
transcriptase inhibitor (NNRTI), and/or integrase inhibitor)
with undetectable viremia (HIV-RNA <20 copies/mL),
consisting of 57 HIV-IRs and 63 HIV-INRs; and 59 age-
matched HS (samples supplied by BioIVT, Gray, TN) who
were negative for HCV, HBV, and HIV infections. The
characteristics of study subjects are shown in Table 1.

Cell Isolation and Culture

Peripheral blood mononuclear cells (PBMCs) were isolated from
whole blood by Ficoll density centrifugation (GE Healthcare;
Piscataway, NJ). CD4" T cells were isolated from PBMCs using a
CD4 T Cell Isolation Kit (Miltenyi Biotec Inc; Auburn, CA) and
cultured in RPMI-1640 medium containing 10% fetal bovine
serum (FBS) (Atlanta Biologicals, Flowery Branch, GA), 100 IU/
ml penicillin, and 2mM L-glutamine (Thermo Scientific,
Logan, Utah).

TABLE 1 | Characteristics of the study subjects.

Subjects n Gender Median Age Median CD4 count
HS 59 41M/18F 45 (24-65) N/A

HIV-IR 57 51M/6F 50 (22-69) 741 (501-1690)
HIV-INR 63 47TM/16F 52 (21-71) 278 (3-491)
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Flow Cytometry

For T cell phenotype analysis, the following fluorescence-
conjugated antibodies were used: CD4-PE (Cat #300508),
CD45RA-PerCP (Cat# 304156), and CD71-A647 (Cat
#334118) or CD4-PerCP (Cat #300527), CD71-A647 (Cat
#334118) (all from BioLegend; San Diego, CA), and CD3-PE
(Cat #12-0038-42; Invitrogen; Carlsbad, CA). For intracellular
staining, cells were fixed and permeabilized with the Foxp3
Transcription Factor Staining Buffer Set (Cat #00-5523-00;
Invitrogen), followed by staining for mtTFA-A488 (Cat
#ab198308; Abcam; Cambridge, MA) for 45 min at room
temperature. For cell activation, exhaustion, senescence, and
apoptosis analysis, PBMCs were thawed and stained with CD4-
FITC (Cat #300506), CD71-A647 (Cat #334118), CD45RA-
PerCP (Cat #304156), PD1-PE (Cat #367404), CD57-PE (Cat
#322314) (all from BioLegend), or CD25-PE (Cat #12025942;
eBioscience; San Diego, CA) for 30 min. For apoptosis analysis,
the cells were washed twice with DPBS and stained with Annexin
V-PE (Cat #BDB556422; BD Biosciences; San Jose, CA) in 1X
binding buffer according to the manufacturer’s protocol. For cell
proliferation, approximately 5 x 10° PBMCs from HS, IRs, or
INRs were labeled with 5 puM of CFSE (Cat #423801; BioLegend)
and stimulated with Dynabeads (Cat #11132D; Gibco; Dublin,
Ireland) at a 1:1 ratio. After 5 days, the cells were harvested and
stained with CD4-PE, CD45RA-PerCP, and CD71-A647 for flow
cytometry analysis. The CFSE'®" cells were defined as undivided
CD4 T cells based on the unstimulated control. For
mitochondrial function analysis, the MitoTracker Green (MG;
Cat #M-7514) and MitoTracker Orange (MO; Cat #M-7511;
Invitrogen) probes were used according to the manufacturer’s
instructions. PBMCs were thawed and cultured with 100 nM of
MG or 500 nM of MO for 30 min at 37°C, then washed by DPBS
and stained with CD4-PE, CD45RA-PerCP, and CD71-A647.
Controls for these assays included unstained cells, isotype
control antibodies, and single positive staining, which were
used for gating and compensation. Samples were analyzed with
a BD AccuriC6 Plus flow cytometer and FlowJo V10 software.
The gating strategy is illustrated in Supplementary Figure 1.

ATP Luminescence

Purified CD4 T cells were stimulated for 3 days, harvested, and
plated into a 96-well plate. A standard curve was generated by
preparing 8000 nM of ATP (Cat #A7699; Sigma-Aldrich; Saint
Louis, MO) in complete RPMI culture medium and serial 1:1
dilution of ATP with medium. A 1:1 dilution of 100 ul CellTiter-
Glo Reagent (Cat #G7570; Promega; Madison, WI) was added to
all wells. Luminescence was measured by a Synergy H1 BioTek
plate reader.

Seahorse XFp Cell Mito Stress Test

Seahorse XFp Cell Mito Stress Tests (Cat# 103010-100; Seahorse,
Agilent Technologies) were completed according to the
manufacturer’s protocol using an XFp instrument. Briefly, CD4
T cells were purified from PBMCs, cultured in 10% FBS cRPMI
with 30 IU/ml IL-2 (Cat #589104; BioLegend), and stimulated by
1png/ml anti-CD3 (Cat # 300333) and 2 pg/ml anti-CD28

antibodies (Cat # 302943; BioLegend) for 3 days. One day
before the assay, seahorse mini-cartridges were hydrated
overnight in a non-CO, incubator. On the day of the assay,
seahorse mini plates were coated with 25 pl of 0.1 mg/ml poly-D-
lysine (Cat #A3890401; ThermoFisher Scientific) for 1 h.
Stimulated CD4 T cells were washed by DPBS and then plated
onto pre-coated plates (2 x 10°/well) with Seahorse XF RPMI-
1640 medium with 1.0 mM Glucose, 100 uM Pyruvate and 1.0
mM Glutamine. Data was analyzed using the Seahorse
Wave software.

Gene Microarray

Each group (HIV-INRs, HIV-IRs, and HS) consisted of isolated
CD4 T cells from six subjects. Approximately 1 x 10° cells from
each subject were combined to form a pool of 6 x 10° CD4 T cells
for each study group. The gene expression analysis was
performed by Arraystar Inc (Rockville, MD) and the heat map
was generated using an online heatmapper software following
the Average linkage clustering and Euclidean distance
measurement methods (34).

Mitochondrial DNA (mtDNA) Content and
8-Oxoguanine (8-o0xoG) Measurement
mtDNA and 8-0xoG analyses were performed as described
previously (24). Briefly, genomic DNA was purified from CD4
T cells stimulated with lug/ml anti-CD3 and anti-CD28 as
described above, and the DNA concentration was measured.
For mitochondrial DNA (mtDNA)/nuclear DNA (nuDNA), 25
ng of genomic DNA were used for PCR. For 8-0x0G
quantification, 100 ng of DNA were treated with 10 units of
Formamidopyrimidine glycosylase (Fpg, Cat# M0240L; New
England Biolabs; Ipswich, MA) at 37°C for 1 h. Following
digestion, 50 ng of template DNA were used for PCR.

Western Blotting

Western blot analysis was performed as described previously
(24). Primary antibodies included PGClow (Cat #2178), mtTFA
(Cat #8076), ERRa (Cat #13826), NRF-1 (Cat #46743), SOD1 (Cat
#4266), GPx1 (Cat #3206), PCK1 (Cat #12940), and G6PD (Cat
#12263) (all from Cell Signaling Technology; Danvers, MA),
PGC1B (ab176328), PPARa (ab191226), and ACADM
(ab110296) (all from Abcam). The protein bands were visualized
and analyzed by the Chemi Doc Imaging System (Bio-Rad) and
normalized to B-Actin (Cat# 12262; Cell Signaling Technology).

TFAM Knockdown

CD4 T cells from HS were stimulated with dynabeads (Cat
#11132D; Gibco) (at 2 cells: 1 bead ratio) for 2 days in 10%
FBS cRPMI with 30 IU/ml IL-2 (Cat #589104; BioLegend). The
TFAM crRNP was formed following a previously published
protocol (35) and used to transfect stimulated CD4 T cells
with Lonza P3 Primary Cell 4D X Kit L (Cat #V4XP-3024;
Lonza; Basel, Switzerland) and program EH115, following the
manufacturer’s instructions. The cells were harvested at day 3
after nucleofection for western blotting, seahorse, and mtDNA/
nuDNA analysis.
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TFAM Overexpression

Purified CD4 T cells from PLHIV were stimulated with
dynabeads (2 cells:1 bead ratio) for 3 days in 10% FBS cRPMI
with 30 TU/ml IL-2 (Cat #589104; BioLegend). The stimulated
CD4 T cells were transfected with 2.0 ug of pPCMV6-AC-GFP
(Cat #PS100010; OriGene; Rockville, MD) as a control or 2.0 g
of pCMV6-GFP-TFAM (Ca t#RG215488; OriGene) using a
Lonza Human T Cell Nucleofector Kit (Cat #VVPA-1002;
Lonza) and program T-20. Cells were collected at day 3 after
transfection for western blot and seahorse mito stress
test analysis.

Statistical Analysis

The data were analyzed using Prism 7 software and are presented
as mean = SEM. The outliers were identified by the ROUT
method (Q = 1.000%) and excluded from the analysis. T-tests
were used to compare means of two independent groups with
equal variances; Welch’s correction was utilized if unequal
variances were found. Comparisons between two groups with
skewed data were analyzed using the nonparametric Mann-
Whitney U test. The magnitude of correlation was
appropriately measured with Pearson’s correlation coefficient
(parametric approach) or Spearman’s correlation coefficient
(nonparametric approach) based on the property of the
dataset. The correlation analyses were performed for all three
groups (HS, HIV-IRs, and HIV-INRs), HS alone, and HIV
(combined HIV-IRs and HIV-INRs), and the correlation

coefficient (r) and p-value for the individual analyses are
shown in each plot.

RESULTS

Total CD4 T Cells Are Decreased While the
Cycling CD4 T Cell Subset Is Increased in
ART-Controlled PLHIV

CD4 T cell loss and/or dysfunction are the most prominent
features of HIV/AIDS. To uncover the mechanisms underlying
CD4 T cell homeostasis in PLHIV on ART, we analyzed the
frequencies of CD4 T cell subsets in HIV-suppressed PLHIV and
HS using flow cytometry. Figure 1A shows that the percentages
of total CD4" and CD4"CD45RA" cells were significantly
decreased in PBMCs from PLHIV. We then expanded our
analyses using CD71 as a marker for cycling T cells, since the
transferrin receptor CD71 has been identified as a surrogate for
ki67 - a marker for cell proliferation (4). Interestingly, we found
significantly higher frequencies of CD71" cycling cells among
total CD4 T cells, especially CD45RA™ CD4 T cells, in PLHIV
compared to HS (Figure 1B). We also compared the frequencies
of CD4 T cell subsets in HIV-INR and HIV-IR subgroups to HS.
INRs and IRs were classified as having CD4 T cell counts < 500
cells/uL and > 500 cells/UL, respectively, after ART with virologic
control (HIV RNA < 20 copies/mL) for at least one year. As
shown in Figure 1C, HIV-INRs displayed a significantly lower
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FIGURE 1 | CD4 T cell homeostasis in ART-controlled PLHIV and HS. (A, B) Flow cytometry analysis of frequencies (%) of CD4* T cell subsets within PBMCs or
CD71" T cells within CD4* T cells isolated from ART-controlled PLHIV and HS. (C) Percentages of CD4" T cells within PBMCs isolated from HIV-INRs, HIV-IRs, and
HS. (D) Percentages of CD4*CD45RA™ and CD4"CD45RA™ cell subsets within PBMCs from HIV-INRs, HIV-IRs, and HS. (E, F) Flow cytometry analysis of CD71
expression in CD4*, CD4*CD45RA*, and CD4"CD45RA" cell subsets from HIV-INRs, HIV-IRs, and HS. (G, H) Flow cytometry analysis of CD71 expression in CD4*,
CD4*CD45RA" and CD4"CD45RA™ cell subsets within PBMCs from HIV-INRs, HIV-IRs, and HS following in vitro TCR stimulation for 5 days.
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percentage (%) of CD4" T cells in PBMCs than HIV-IRs, who
also showed a significantly lower frequency of CD4" T cells than
HS. Notably, HIV-INRs exhibited significantly decreased
CD4"CD45RA™ and CD4"CD45RA" cell populations compared
to HIV-IRs and HS, whereas HIV-IRs only exhibited a
significantly lower frequency of CD4"CD45RA™ (but not
CD4"CD45RA™) cells compared to HS. The overall frequencies
of CD4"CD45RA™ cells were much lower than CD4"CD45RA”
cells within PBMC:s in all subjects (Figure 1D).

Counterintuitively, the total CD4 T cell population was
significantly contracted within PBMCs from HIV-INRs
and HIV-IRs (Figure 1C), while cycling CD71" cells were
remarkably expanded in CD4 T cells from HIV-INRs
versus IRs or HS (Figure 1E). We did not, however, observe
the same pattern in HIV-IRs vs. HS. Likewise, HIV-INRs
exhibited a significant increase in CD71" cycling cells in both
CD4"CD45RA™ and CD4"CD45RA" cell subsets compared
to HIV-IRs and HS, whereas HIV-IRs showed an increased
frequency of cycling cells only in the CD4"CD45RA"™ cell
subset with a significant decrease in cycling cells in
CD4"CD45RA" subset compared to HS (Figure 1F). HIV-
INRs also showed a decrease in the frequency of CD71-
noncycling cells (the major CD4 T cell population observed
under unstimulated conditions) in CD4"CD45RA* and
CD4"CD45RA™ subsets compared to HIV-IRs and HS.
However, the same alterations were not observed in HIV-IRs
and HS (data not shown). To further characterize the cycling
potential of CD4 T cells in different subjects, we stimulated the
PBMCs with anti-CD3/CD28 antibodies for 5 days and
examined CD71 expression. After TCR stimulation (Figure
1G), CD71" cells became the major population within CD4 T
cells, and HIV-INRs showed a relatively lower frequency of
cycling CD4 T cells compared to HIV-IRs and HS. These
results differed from the trend observed under the
unstimulated conditions (Figure 1E), which showed a
significant increase in the frequency of cycling CD4 T cells in
HIV-INRs. Correspondingly, the same trend of low CD71"
cycling T cells was observed in CD4"CD45RA™ and
CD4"CD45RA" cell subsets in response to in vitro TCR
stimulation (Figure 1H), suggesting a poor CD4 T cell
proliferative potential in HIV-INRs compared to HIV-IRs and
HS. Together, these results indicate that while total CD4 T cell
numbers are diminished within PBMCs in ART-treated PLHIV,
cycling cells within the CD4 subsets are expanded, especially in
INRs. These findings are in line with previous observations (2-4)
and support the notion of immune activation and excessive
turnover of CD4'CD71" or CD4"CD45RA" cell subsets in
ART-controlled PLHIV.

CD4 T Cells From HIV-INRs Exhibit More
Exhaustion and/or Senescence Despite
ART Control of Viral Replication

We have previously shown that HIV infection drives
inflammaging, during which chronic inflammation induces an
immune aged phenotype, even in PLHIV on ART with
undetectable viremia (23, 26). To extend this observation to

different CD4 T cell subsets from our HIV subgroups, we
analyzed the markers of cell activation, proliferation,
exhaustion, senescence, and apoptosis in CD4 T cells from
HIV-INRs, HIV-IRs, and HS. Supplementary Figures 2A-D
shows that, while not statistically significant, HIV-INRs
displayed a higher frequency of CD25 marker (also known as
IL-2 receptor o chain; an early activation marker for regulatory T
cell) in total CD4 T cells compared to HS and HIV-IRs, especially
in CD4"CD71" and CD4"CD45RA" cell subsets under the
unstimulated conditions, suggesting that these cells were
activated in vivo. Importantly, the frequency of CD25" cells
positively correlated with the frequency of PD-1" cells (an early T
cell activation and exhaustion marker), but negatively correlated
with the percentages of CD4 T cells in PBMCs (Supplementary
Figure S2E), suggesting that T cell activation is associated with
CD4 T cell exhaustion and depletion during HIV infection.

Overactivation of T cells may lead to cell exhaustion. Indeed,
PLHIV presented a significantly higher PD-1 expression in
total CD4 T cells as well as their subsets, including CD45RA",
CD45RA", CD71" cycling, CD71" non-cycling, CD71"CD45RA",
CD71"CD45RA", CD71'CD45RA", and CD71 CD45RA" cells
(Supplementary Figure S2F). PD-1 expression analysis in CD4 T
cells from different HIV subgroups showed that HIV-INRs
displayed an increased frequency of PD-1" cells within the total
CD4 population compared to HIV-IRs, who also exhibited a
significantly increased percentage of PD-1" cells compared to HS
(Figure 2A). The same patterns were also observed in
CD4"CD45RA" and CD4"CD45RA™ cells (Figure 2B), and
cycling and non-cycling CD4 T cells (Figure 2C), as well as their
subsets (Supplementary Figure S2G). Overall, PD-1 expression was
higher in CD4"CD45RA " and CD4"CD71" cell subsets compared to
CD4'CD45RA" and CD4"CD71" cell subsets in INRs, IRs, and HS
(Figures 2B-C). Importantly, the frequencies of PD-1" cells
negatively correlated with the frequencies of CD4 T cells in the
peripheral blood in all subjects (Figure 2D).

We also analyzed the percentage of cells expressing CD57
within CD4 T cell subsets and found that PLHIV exhibited a
significantly increased frequency of CD57" cells in total CD4 T
cells and their subsets (Supplementary Figure S3A). Also, HIV-
INRs displayed an increased frequency of CD57" cells in total
CD4 (Figure 2E), CD4"CD45RA" and CD4"CD45RA™ cell
subsets (Figure 2F), and cycling and non-cycling CD4 cells
(Figure 2G), as well as their CD4 T cell subsets compared to
HIV-IRs (Supplementary Figure 3B), which also exhibited an
increase in CD57" cells compared to HS. Additionally, the
frequencies of CD57" cells correlated positively with the
numbers of PD-1" cells (Supplementary Figure 3C) and
negatively with the percentages of CD4 T cells in PBMCs in all
subjects (Figure 2H). Given that senescent cells are unable to
undergo cell division, we were interested to measure the co-
expression of CD57 (a senescence marker) and CD71 (a cycling
marker) in CD4 T cells. We observed very low percentages of
CD71°CD57" cells in CD4 T cells from HS and IRs. However,
the same population showed a higher frequency in CD4 T cells
from INRs (Supplementary Figure 3D). Collectively, these
results indicate that CD4 T cells from PLHIV, especially INRs,
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are generally more activated, exhausted, and/or senescent,
despite successful control of viral replication by ART.

CD4 T Cells From HIV-INRs Are Prone to
Apoptosis and Have Poor Proliferative
Capacity Despite ART Treatment

We next sought to determine whether these exhausted and/or
senescent CD4 T cells from HIV-INRs are more apoptotic,
resulting in their depletion. As we previously reported (23, 26,
27) a significantly increased Annexin V positive (Av") cell
frequency was observed in total CD4 T cells, but not in most
of the CD4 cell subsets, from PLHIV compared to HS
(Supplementary Figure 3E). Additionally, HIV-INRs, but
not HIV-IRs, exhibited an increased frequency of Av" cells
in total CD4 T cells compared to HS (Figure 3A). The same
trend was observed in CD4"CD45RA" and CD4"CD45RA"
cell subsets (Figure 3B), cycling and non-cycling CD4
(Figure 3C), CD71"CD45RA" and CD71"CD45RA™ cell
subsets, and CD71 CD45RA™ and CD71 CD45RA" CD4 cell
subsets (Supplementary Figure S2E) compared to HS.
Moreover, HIV-INRs had significantly increased apoptosis in
total (Figure 3A), CD4"CD45RA" (Figure 3B), non-cycling
(Figure 3C), and CD71"CD45RA™ and CD71 CD45RA" CD4
T cell subsets (Supplementary Figure 3F) compared to HIV-IRs.
The increases in CD4 T cell apoptosis were also observed in
TCR-stimulated PBMCs from HIV-INRs compared to HIV-IRs
and HS (Figure 3D), and cell apoptosis positively correlated with

the PD-1 expression level (Supplementary Figure 3G). There
were no significant differences in cell apoptosis, however, in all
CD4 T cell subsets between HIV-IRs and HS under both
stimulated and unstimulated conditions. Importantly, the
percentage of Av' cells showed a significant negative
correlation with the frequency of CD4 T cells in PBMCs
(Figure 3E), indicating that CD4 T cell apoptosis is closely
associated with T cell depletion in PLHIV.

We also measured the capacity of CD4 T cell proliferation in
HIV-INRs, HIV-IRs, and HS using CFSE dilution assay and flow
cytometry. Figures 3F, G (representative overlaid histogram and
summary data) shows no proliferation of CD4 T cells without
TCR stimulation (grey). After 5 days of TCR stimulation, HIV-
IR CD4 T cells (orange) divided multiple times and proliferated
similarly (CD4"CD45RA" cells), or even better (CD4"CD45RA"
cells) compared to HS (green). However, HIV-INR CD4 T cells
(red) displayed a reduced division index compared to HIV-IRs,
while the proliferation index (Supplementary Figures 3H, I)
showed no difference between HS and INR, indicating that the
reduced proliferation of INRs was due to less cells entering cell
division. CD4"CD45RA" cells from HIV-INRs also exhibited
significantly poor proliferation compared to HS, but CD4"CD45RA
cells from HIV-INR showed only slightly lower proliferation compared
to HS. The overall proliferative capacity of CD4 T cells positively
correlated with the CD4 cell frequency in PBMCs, i.e., CD4 T cell count
and CD57 expression in CD4 T cells was closely associated with their
proliferative capacity (Figure 3H and Supplementary Figure 3]).
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Notably, CD4 T cell proliferation capacity, as determined by the CFSE
dilution (Figure 3G), aligned perfectly with the CD71 expression levels
in response to TCR stimulation (FigurelG, H). Also, the frequency of
CD71" cycling CD4 T cells was significantly increased from 10-20%
(Figure 1E) to 70-80% (Figure 1G) after 5 days of TCR stimulation,
and the majority of CD71" cycling cells proliferated well, but there were
no differences in the CFSE® CD4 T cell frequency amongst the three
groups examined (data not shown). Together, these results indicate that
HIV-INR CD4 T cells are over-activated, exhausted, and senescent,
have poor proliferative capacity, and are more prone to apoptosis, all of
which lead to CD4 T cell depletion.

Mitochondrial Functions Are Aberrantly
Dysregulated in CD4 T Cell Subsets in
Art-Controlled PLHIV

Since mitochondria critically affect cell viability and activities
(32, 33), we next examined the critical mitochondrial functions
in CD4 T cells from ART-controlled PLHIV by measuring MG
for mitochondrial mass, MO for mitochondrial oxidation,
mtDNA/nuDNA for mtDNA copy number, oxygen
consumption rate (OCR) for cellular respiration, extracellular
acidification rate (ECAR) for basal glycolysis, and mitochondrial
ATP production for energy power assessment.

MG selectively binds to the free thiol group of cysteine
residues enriched in mitochondrial proteins regardless of the
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FIGURE 3 | CD4 T cell apoptosis and proliferation in ART-controlled PLHIV and HS. (A-C) Flow cytometry analysis of Av in total CD4*, CD4"CD45RA",
CD4*CD45RA", CD4*CD71*, and CD4*CD71" cell subsets populations in HIV-INRs, HIV-IRs, and HS. (D) Flow cytometry analysis of Av in CD4™ T cells within
PBMCs from HIV-INRs, HIV-IRs, and HS following in vitro TCR stimulation for 5 days. (E) Spearman’s correlation between the frequencies of Av* cells and CD4* T
cells in HIV-INRs, HIV-IRs, and HS. (F) Representative histograms showing cell proliferation in CD4* T cells after in vitro TCR stimulation for 5 days. (G) Frequencies
of CFSE®™ proliferative cells in CD4*CD45RA* and CD4*CD45RA™ subsets within PBMCs from HIV-INRs, HIV-IRs, and HS after in vitro TCR stimulation for 5 days.
(H) Spearman’s correlation between the frequency of CFSE®Y proliferating cells and CD4* T cell percentage in HIV-INRs, HIV-IRs, and HS.

mitochondrial membrane potential, and it is commonly
used as a marker for mitochondrial density. To assess
mitochondrial mass, we measured MG in CD4 T cells from
PLHIV and HS by flow cytometry. Supplementary Figure 4A
shows that the median fluorescence intensity (MFI) of MG
staining was slightly lower in almost all CD4 T cell subsets
from HIV subjects, with a significant decrease only in
CD4"CD71"CD45RA" cell subsets from PLHIV compared to
HS. We also analyzed the geometric MFI (gMFI) of MG in
CD4 T cells and found a significant decrease in gMFI in
CD4"CD45RA", CD4"CD71 CD45RA", and CD4"CD71°
CD45RA" cell subsets (Supplementary Figure 4B). We further
analyzed MG MFI in CD4 T cells from HIV-INRs, HIV-IRs, and
HS, including total, CD4"CD45RA™ or CD4"CD45RA, cycling
or non-cycling, CD71"CD45RA", CD71"CD45RA", CD71
CD45RA", and CD71"CD45RA™ CD4 T cell subsets, and found
no significant differences among the subjects or cell subsets
(Supplementary Figures 4C-F).

MO stains mitochondria in live cells and accumulates in a
membrane potential-dependent manner. MO is oxidized and
therefore retained in actively respiring mitochondria, allowing
for the assessment of mitochondrial membrane potential and
oxidative phosphorylation. To assess mitochondrial oxidation,
we measured MO by flow cytometry in CD4 T cells isolated from
PLHIV and HS. Supplementary Figures 4G, H demonstrates
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that there were no significant differences in the MO MFI or gMFI
among all CD4 T cell subsets between PLHIV and HS. However,
the frequencies (%) of MO™ cells were increased in total CD4 T
cells, and especially in the CD45RA™ and the CD71" CD45RA’
CD4 T cell subsets from PLHIV compared to HS
(Supplementary Figure 4I). We then analyzed the frequency
of MO" cells in all subsets of CD4 T cells from HIV-INRs, HIV-
IRs, and HS. Figure 4A shows that HIV-INRs displayed
significantly higher frequencies of MO" cells than IRs and HS.
Additionally, there was a very close negative correlation between
the percentages (%) of the MO™ cells within CD4" T cells and the
frequencies of total CD4 T cells (Figure 4B), whereas the % of
MO" cells in cycling CD4 T cells positively correlated with the
frequency of CD71" cycling cells within CD4 T cells (Figure 4C).
Also, we observed the same trend of increased frequencies of
MO" cells and MFI in CD4"CD45RA", CD4"CD45RA’, cycling,
non-cycling CD4 T cells, as well as all other T cell subsets in INRs
compared to IRs and HS (Supplementary Figures 5A-G). Given
that MO is a reliable readout of mitochondrial oxidation, these
results indicate an aberrant mitochondrial OXPHOS and agree
with our previous report showing significant increases in ROS
production and apoptosis in CD4 T cells from PLHIV (23).
These findings are also consistent with the decreases in total CD4
T cells (especially CD4"CD45RA" cells) and the increases in
cycling cells observed in PLHIV (particularly in INRs)
(Figure 1), which usually occur with aberrant immune

activation and excessive turnover of CD4"CD45RA" cells
during latent HIV infection.

In addition to MG and MO, we measured mitochondrial
DNA content (mtDNA) and 8-0xoG (the most common
oxidative DNA lesion) accumulation in mtDNA by RT-qPCR.
As shown in Figure 4D, HIV-derived CD4 T cells exhibited
significantly reduced mtDNA copy numbers relative to nuDNA
contents, indicating compromised mtDNA replication and
recombination, or increased mtDNA degradation and
mitophagy during latent HIV infection.

Formamidopyrimidine glycosylase (Fpg) is an 8-oxoG DNA
glycosylase that functions as an N-glycosylase and an apurinic
(AP)-lyase. The N-glycosylase activity removes damaged purines
from dsDNA, producing an AP site. The AP-lyase activity
cleaves 3" and 5’ to the AP site, thus generating a one base
gap (36, 37). Therefore, the Fpg digestion of DNA can recognize
and remove the accumulated 8-oxoG bases, which can be
measured by PCR. To measure the most common oxidative
lesion 8-0x0G levels in mtDNA, genomic DNA was purified
from CD4 T cells from PLHIV and HS and then treated with
mock or Fpg for 1 hour to remove 8-0x0G residues and produce
a nick. Since mtDNA cleaved by Fpg cannot produce a PCR
product with the selected mtDNA primers, the relative
undamaged mtDNA was quantified and normalized to [B2-
microglobulin. As shown in Figure 4E, the percentage (%) of
mtDNA content after Fpg digestion was significantly reduced,
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FIGURE 4 | CD4 T cell mitochondrial functions in cART-controlled PLHIV and HS. (A) Frequency of MO* cells within CD4* T cells from HIV-INRs, HIV-IRs, and HS.
(B) Pearson’s correlation between the frequencies of MO™ cells and CD4* T cells in HIV-INRs, HIV-IRs, and HS. (C) Spearman’s correlation between the frequencies
of MO* cells in cycling CD4™ cells and cycling CD4* T cells in HIV-INRs, HIV-IRs, and HS. (D) Genomic DNA were purified from stimulated CD4 T cells, followed by
qPCR to determine mtDNA relative to nuDNA (normalized to HS). (E) Genomic DNA were purified from stimulated CD4 T cells, treated with Fpg, followed by
amplification of mtDNA by gPCR. (F, G) Representative OCR and summary data for non-mitochondrial, basal respiration, maximal respiration, spare capacity, proton
leak, and ATP production in stimulated CD4 T cells from HIV-INRs, HIV-IRs, and HS. (H) ATP production was measured by a CellTiter-Glo luminescent assay in
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indicating an 8-oxoG-based accumulation of oxidative mtDNA
damage during HIV infection.

We also investigated whether CD4 T cell depletion is related
to abnormal mitochondrial respiration in latent HIV infection
using Seahorse XFp Cell Mito Stress assays. Notably, there was
no difference in OCR measurements in unstimulated CD4 T cells
derived from PLHIV and HS (data not shown). Figure 4F shows
representative OCR at basal levels and after injections of
oligomycin, FCCP, and rotenone/antimycin A in stimulated
CD4 T cells. Compared to HS, CD4 T cells from PLHIV
exhibited significantly impaired basal and maximum
mitochondrial respiratory capacity and basal glycolysis in
response to anti-CD3/CD28 stimulation for 3 days (Figure 4G
and Supplementary Figure 5H). Moreover, the ATP production
rate was diminished in CD4 T cells from PLHIV in response to T
cell receptor (TCR) stimulation, indicating a poor mitochondrial
energy generation in CD4 T cells derived from PLHIV subjects
compared to HS (Figure 4G). These results clearly reveal an
impaired mitochondrial metabolic activity or poor fitness of CD4
T cells in response to TCR stimulation in vitro. Given the critical
role of mitochondria as the energy powerhouse for cellular
activities, we further measured CD4 T cell ATP production by
a luminescent assay. As shown in Figure 4H, after in vitro TCR

stimulation for 3 days, CD4 T cells from PLHIV displayed a
much lower capacity to generate ATP compared to those from
HS. These findings strongly suggest that PLHIV-CD4 T cells
have abnormal mitochondrial functions - as demonstrated by the
aberrant mitochondrial oxidation with oxidative stress, impaired
O, consumption, and decreased ATP generation - and thus are
prone to apoptotic death.

Gene Transcripts Regulating

Mitochondrial Biogenesis Are
Dysregulated in CD4 T Cells From PLHIV
To elucidate the mechanisms underlying the broad
mitochondrial dysfunctions during HIV infection, we profiled
the transcripts of genes that regulate mitochondrial biogenesis in
CD4 T cells derived from PLHIV and HS using gene array
analysis. Genes governing various categories of mitochondrial
functions with 2-fold up- or down-regulation are listed in Table
2. Notably, transcriptional profiling revealed remarkable
downregulation of signature genes controlling mitochondrial
biogenesis and metabolism in CD4 T cells derived from HIV-
INR and HIV-IR subjects compared to HS (Supplementary
Figure 6A). The most prominent perturbations centered on
the repression of those genes governing mitochondrial

TABLE 2 | Up- and down-regulated metabolic genes in CD4 T Cells with >2-Fold Changes.

Category Gene Fold Change

HS vs HIV-INR Glycolysis PFKFB1 2.3835104
Lactate production and transporters LDHALBA 2.0930030
SLC16A10 -2.0675935

Gluconeogenesis FBP1 2.0648015
PCK1 2.9234060

GYS2 -2.3809115

TKTL2 2.0310869

Glycerol/fatty acid/cholesterol synthesis ACACB 2.2841239
ACSM2B 2.0050154

ACSMS3 -2.1563877

ACSM4 2.5258243

Serine/glycine/one-carbon metabolism SDHAF1 2.2936909
Fatty acid oxidation ACADSB -2.0406065
SCP2 2.1914564

Nucleotide metabolism AMPD3 2.5768704
Mitochondrial NADH dehydrogenase complex NDUFB4 -2.9698385
Mitochondrial biogenesis TFAM -2.3275320
HS vs HIV-IR Glycolysis HK1 -2.0087068
Pentose phosphate pathway TKTLA 2.1214849
Glycerol/fatty acid/cholesterol synthesis ACSM2B 3.0881022
ACSM4 2.3388297

Glutamine transporters and glutaminolysis SLC1A5 2.7083647
Fatty acid oxidation EHHADH 2.0599924
SCP2 2.0483894

Nucleotide metabolism ADCY7 -2.58759083
AMPD3 2.2926244

CTPS1 2.0183968

HIV-IR vs HIV-INR Lactate production and transporters LDHALBA 2.7185942
Pentose phosphate pathway TKTL2 2.3787873
Glycerol/fatty acid/cholesterol synthesis ACACB 2.3868437
Fatty acid oxidation EHHADH -2.4903336
Nucleotide metabolism IMPDH2 2.0168894
Mitochondrial NADH dehydrogenase complex NDUFB4 -3.1626046
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biogenesis (TFAM), mitochondrial OXPHOS (OXAI1L,
NDUFB6, ETFB, LRPPRC, SDHB, COX5B, NDUFA9,
NDUFA2, MRPS12, PDHB, NDUFB4, VDAC1), oxidative
defense (GPX6, SODI1, GPX7), glycolysis (ALDOA, HKI1,
ADH5, PDHA1, ALDH3B1), gluconeogenesis (GYS2), fatty
acid and cholesterol synthesis (HMGS1, EHHADH, DGATI,
HADH, HACD3, HADHA, ACSM3, ADADSB, PPTI,
ACSBG1), B-oxidation (CPT1C, CPT2, ACADM), lactate
transportation (SLC16A10), and nucleotide metabolism
(ADCY7) during HIV infection. Several of these genes
are included in the PGC network, which is regulated by the
master mitochondrial regulator PGCla. Given the strong
enrichment and importance of the PGC network genes in
mitochondrial regulation, we focused our investigation on this
group of genes, which showed TFAM inhibition in PLHIV,
especially in INRs (Supplementary Figure 6B). Also,
immunoblotting revealed that the majority of the PGC
network genes were repressed during HIV infection, including
PGClo and its downstream signaling molecules ERRo,, NRF-1,
PPARa, and mtTFA in HIV CD4 T cells, especially in HIV-INR.
Superoxide dismutase 1 (SOD1), a major anti-oxidative enzyme
in humans, and phosphoenolpyruvate carboxykinase 1 (PCK1), a
major control point for the regulation of gluconeogenesis, were
also repressed in HIV-INRs, but the differences were not
statistically significant in total CD4 T cells (Supplementary
Figure 6C). Taken together, these results suggest that the
critical genes governing many aspects of mitochondrial

biogenesis and oxidative defense are dysregulated in CD4 T
cells during HIV infection.

Expression of mtTFA Is Remarkably
Suppressed in CD4 T Cells From PLHIV
Based on the repression of mtTFA - a downstream effector in
the PGClo network, which we have shown to be suppressed in
CD4 T cells from PLHIV (24), and a key transcription factor for
regulating mitochondrial genes involved in OXPHOS - we chose
to examine mtTFA expression levels in order to characterize the
mechanisms of compromised mitochondrial functions. We first
compared the mtTFA expression in CD4 T cells from PLHIV and
HS by flow cytometry. Notably, PLHIV showed a significantly
lower frequency of mtTFA™ cells in all CD4 T cell subsets,
including CD4" cells and CD4"CD45RA", CD4"CD45RA’,
CD4'CD71", CD4"CD71°, CD4"CD71"CD45RA", CD4"
CD71"CD45RA°, CD4"CD71 CD45RA", and CD4"CD71"
CD45RA" cell subsets compared to HS (Supplementary
Figure 7A). Also, the expression levels (MFI) of mtTFA were
significantly decreased in total CD4" cells and CD4+CD45RA",
CD4+CD45RA", and CD4'CD71" cell subsets (Supplementary
Figure 7B). We further compared the mtTFA expression in
different subsets of CD4 T cells from HIV-INRs, HIV-IRs, and
HS. Figure 5A shows that the frequencies of mtTFA" cells were
significantly lower within total CD4 T cells from HIV-INRs and
HIV-IRs compared to HS. A significant mtTFA inhibition was
also observed in CD4"CD45RA" and CD4"CD45RA" cell subsets
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(Figure 5B) and cycling and non-cycling CD4 T cell subsets
(Figure 5C) from HIV-INRs and HIV-IRs compared to HS. HIV-
INRs exhibited a remarkably lower frequency of mtTFA™
CD71"CD45RA" CD4 cell subset than HIV-IRs or HS, whereas
both HIV-INRs and HIV-IRs showed a dramatically lower
frequency of mtTFA" in CD71"CD45RA" cells as well as CD71°
CD45RA™ and CD71 CD45RA" cell subsets compared to HS
(Figure 5D). Importantly, while the frequency of mtTFA" cells
within cycling CD4 T cells positively correlated with the frequency
of total CD4" T cells, it negatively correlated with the frequency of
CD71" cycling cells within the CD4 T cell population in HIV-
INRs, HIV-IRs, and HS (Figures 5E, F). The mtTFA expression
was greater in cycling than in non-cycling CD4 T cells (19.56% vs.
11.95% in HS), consistent with its role in regulating mitochondrial
OXPHOS in these cells. We also compared the MFI of mtTFA
expression in all subsets of CD4 T cells among different groups
and found significant decreases in mtTFA levels in total CD4",
non-cycling (CD71" CD4"), and CD45RA"CD4" T cells in HIV-
INRs compared to HS. In addition, low levels of mtTFA were
detected in CD4" cells and CD4"CD71, CD4"CD45RA™,
CD4"CD45RA", and CD4'CD71 CD45RA" cell subsets from
HIV-IRs compared to HS (Supplementary Figures 7C-F).
Together, these results suggest that the expression of mtTFA is
significantly suppressed in most CD4 T cell subsets during HIV
infection. Given its function as a master regulator of

mitochondrial OXPHOS, mtTFA suppression may contribute to
the compromise of mitochondrial functions, and thus disrupt CD4
T cell survival during HIV infection.

mtTFA Controls Mitochondrial Functions
via Regulating mtDNA During

HIV Infection

mtTFA is a principal mitochondrial regulator that functions by
binding to mtDNA promoters responsible for regulating
transcription of the mitochondrial genome (38, 39). To further
elucidate the cause-effect relationship of mtTFA and its role in
mitochondrial functions, we employed a novel CRISPR/Cas9
approach to knockdown (KD) mtTFA in primary CD4 T cells
(35, 40). The synthesized mtTFA-crRNA/tracrRNA was
delivered into TCR-activated CD4 T cells (for 48 h) from HS
using a P3 Primary Cell 4D-Nucleofector X Kit. As shown in
Figure 6A, 72 h after transfection, TFAM-KD cells exhibited a
significant decrease in mtTFA protein levels as expected. Since
mtTFA controls respiratory electron transport, we measured
mitochondrial functions by Seahorse assay. As shown in
Figure 6B, we observed significantly diminished maximal
respiration and spare respiration in CD4 T cells after TFAM-
KD. Likewise, we measured mtDNA copy numbers 3 days after
TFAM-KD. As shown in Figure 6C, mtDNA relative to nuDNA
content was significantly decreased following TEAM-KD.
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FIGURE 6 | TFAM Knockdown and Overexpression in CD4 T cells from PLHIV and HS. (A) Western blot analysis of mtTFA and B-actin expression in HS CD4 T
cells with or without TFAM KD. (B) Representative OCR summary data for non-mitochondrial, basal respiration, maximal respiration, spare respiration capacity,
proton leak, and ATP production in HS CD4 T cells with or without TFAM KD. (C) Genomic DNA was isolated to determine levels of mtDNA relative to nuDNA by
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To determine if overexpression of mtTFA could rescue
mitochondrial functions, we ectopically expressed mtTFA in
CD4 T cells derived from PLHIV. We confirmed transfection
efficiency by fluorescence microscopy and flow cytometry
detection of GFP-positive cells (data not shown). We further
confirmed TFAM-OE by western blotting and examined
mitochondrial functions by Seahorse following TFAM-OE.
Western blotting clearly showed increases in mtTFA levels in
TFAM-OE cells (Figure 6D). Seahorse OCR assay revealed
rescued mitochondrial respiration, especially basal and
maximal respiration (Figure 6E). TFAM-OE also significantly
increased ATP production. Collectively, these results
demonstrate that mtTFA controls mitochondrial functions and
suggest that mtTFA repression plays a critical role in dampening
mitochondrial fitness, and thus CD4 T cell homeostasis during
HIV infection.

DISCUSSION

Aberrant CD4 T cell homeostasis is a major feature of HIV
infection, and despite the successful suppression of viral
replication by ART, a significant subgroup of PLHIV (INRs)
still exhibit a phenotype of incomplete immune reconstitution, as
evidenced by the failure to recover CD4 T cell numbers and/or
functionality (2-4). While this failure of immunologic recovery
despite potent virologic control has been well-recognized, the
underlying mechanisms leading PLHIV to become INRs remain
unclear. Here we employed CD4 T cells from HS and ART-
controlled, virus-suppressed PLHIV (INRs and IRs) to study the
role of mitochondrial dysfunctions in CD4 T cell homeostasis
during latent HIV infection. We demonstrate that CD4 T cell
homeostasis is disrupted in ART-controlled PLHIV and that
CD4 T cells exhibit characteristics of cellular activation,
exhaustion, senescence, apoptosis, and decreased proliferation
and mitochondrial fitness. Based on these findings and our
previous studies (23, 26, 27), we propose a model (Figure 6F)
to illustrate the mechanisms and outcomes of CD4 T cell
inflammaging during HIV latency.

In this study, we focused on PLHIV on ART because they are
the major patient population in the era of ART. In this setting,
how mtTFA suppression leads to compromise of the
mitochondrial and CD4 T cell functions remains unclear. Due
to ART control of HIV replication, and because only a very small
proportion (one in a million) of PBMCs harbor HIV provirus
(41), it is unlikely that HIV itself per se causes mtTFA
suppression to compromise mitochondrial and CD4 T cell
functions. We and others have shown that ART-controlled
PLHIV with no viral replication can still exhibit an immune
aging phenotype (7-10, 23, 26, 27). We thus believe that the
mitochondrial and CD4 T cell dysregulations observed in these
virus-controlled PLHIV are caused by either immunologic
scarring during early active viral infection or, more likely, by
low-grade inflammation during latent viral infection, or both.
The CD4 T cells in PLHIV on ART exhibit an immune
aging phenotype caused by a myriad of viral/host factors,

including HIV reservoirs that may secrete undetectable
viral components, pro-inflammatory mediators, increased
ROS levels, increased gut permeability and gut microbiota,
coinfection with other pathogens, ART regimens, associated
malignancies, and social-related stresses, all of which may
contribute to the failure to restore CD4 T cell homeostasis
and/or functionality. These factors can lead to persistent, low-
grade inflammation, thus driving CD4 T cell over-activation,
exhaustion, senescence, apoptosis, and decreased proliferative
potential and mitochondrial fitness, especially in INRs, as our
results suggested. Interestingly, a recent study demonstrated
differential regulation of susceptibility to HIV-1 infection
in CD4 T cells based on cell activation and metabolism.
Specifically, HIV-1 targets CD4 T cells with increased OXPHOS
and glycolysis in an in vitro infection system, likely due to
reduced metabolism that inhibits HIV-1 replication (42). While
our data suggest that HIV infection reduces cell metabolism
and fitness, it is possible that HIV preferentially infects target
cells based on their metabolic status during acute infection
but induces mitochondrial injuries during chronic/persistent
infection, as observed in our chronically infected patients. This
may be related to the differential regulation of CD4 T cell
apoptosis by HIV-encoded proteins under acute versus
chronic conditions, given the role of mitochondria in apoptosis
(43). Alternatively, HIV-1 may differentially regulate cellular
metabolism of target cells to propagate cellular infection and
establish viral latency in CD4 T cells (44, 45). Particularly, this
manuscript and our previous studies show that the functions of
mitochondria and the integrity of chromosomal telomeres are
significantly compromised during latent HIV infection - due to
inhibitions of mtTFA, topoisomerase I/IIo. (Top 1/20) (26, 27),
ataxia-telangiectasia mutated (ATM) (23), human telomerase
reverse transcriptase (hTERT), and telomeric repeat-binding
factor 2 (TRF2) (30), all of which closely correlated with CD4 T
cell apoptosis and depletion, especially in INRs. Importantly, this
inflammation-mediated mitochondrial compromise and
telomeric DNA damage during HIV latency promote
inflammaging and expose the immune system to unique
challenges that could induce CD4 T cell exhaustion and
senescence - a major driver of the increased incidences of
infections, cancers, cardiovascular, and neurodegenerative
diseases, similar to those observed in the elderly. This
premature immune aging predisposes PLHIV to an increased
risk of morbidity and mortality. Furthermore, key studies have
shown increased activation, exhaustion, and glycolysis in CD8 T
cells from PLHIV (46), suggesting that HIV infection not only
targets CD4 T cell metabolism but also CD8 T cells, thus further
contributing to HIV pathogenesis and immune suppression.
Mitochondria are considered the central hub of the immune
system and their functions are closely related to the dynamics
of cell activities (47, 48). A recent study uncovered a link
between impaired T regulatory cell (Treg) proliferation and
disease severity in multiple sclerosis (49). In the present
study, we observed compromised mitochondrial functions
via repression of the mtTFA pathway by which CD4 T
cell homeostasis was disrupted in PLHIV, especially in INRs.
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This finding is consistent with a recent study showing significant
repression of the PGCla network, including mtTFA, in mice
null for telomerase RNA component (TERC) or TERT genes, as
disruption of the PGC network resulted in compromised
mitochondrial biogenesis and functions in this model (50).
Thus, it is possible that increased telomeric DNA damage and
failure to repair in aging CD4 T cells in PLHIV (24) may
contribute to the deregulation of the PGC network and thus
mitochondrial function via the p53-PGC pathway (51, 52).
Indeed, our gene transcription profiling and western blot data
(Table 2 and Supplementary Figure S6) revealed dysregulation
of many target genes and key proteins in the PGC network,
which regulate metabolism in CD4 T cells from PLHIV,
especially in INRs. Some of these regulators are upstream of
mtTFA. These deregulated genes include COX5B (cytochrome ¢
oxidase subunit 5B); MRPS12 (mitochondrial ribosomal
protein S12); NDUFA2/NDUFB4/NDUFB6/NDUFA9 (all
located in mitochondrial NADH, ubiquinone dehydrogenase/
oxidoreductase complex of the mitochondrial respiratory chain);
VDACI1 (voltage dependent anion channel 1); and SDHB
(succinate dehydrogenase complex iron sulfur subunit B).
These genes also include PDHB (pyruvate dehydrogenase El
beta subunit); ETFB (electron transfer flavoprotein subunit
beta); OXA1L (a mitochondrial inner membrane protein);
and LRPPRC (leucine-rich PPR motif-containing protein). Of
note, mtTFA was significantly repressed in the exhausted
and senescent CD4 T cells from PLHIV (Figure 5 and
Supplementary Figure S6). The manipulation of mtTFA
revealed the link between mtTFA levels and mitochondrial
functions in CD4 T cells, as demonstrated by the changes in
Seahorse assay data and mtDNA contents in mtTFA-KD T cells
from HS and mtTFA-OE T cells from PLHIV, respectively
(Figure 6). Collectively, our findings uncovered the role of
mtTFA repression in the deregulation of mitochondrial
functions in CD4 T cells during HIV infection. Further studies
to elucidate the molecular mechanisms involved in mtTFA
dysregulation and its relationship with p53 and PGClo are
ongoing in our laboratory.

In summary, we have previously shown that people with
chronic viral infections exhibit an immune aging phenotype,
characterized by overexpression of aging markers and extremely
shortened telomeres (7-10, 23, 26, 27). In the current study,
we analyzed CD4 T cell homeostasis, mitochondrial functions,
and regulators of mitochondrial biogenesis and OXPHOS
in HIV-INRs, HIV-IRs, and HS. We demonstrated that while
HIV-INRs have contracted total CD4 T cell populations,
their cycling CD4 subsets are remarkably expanded and their
mitochondrial functions are dysregulated. Importantly,
expression of the master regulator of mitochondrial functions
(mtTFA) was remarkably repressed in CD4 T cells in HIV-INRSs,
leading to compromised mitochondrial functions and aberrant
CD4 T cell homeostasis. Thus, counteracting mtTFA repression
can restore CD4 T cell homeostasis and competency in ART-
treated PLHIV, especially in HIV-INRs, and thus may prevent
premature immune aging. This study uncovers a pivotal
molecular mechanism underlying CD4 T cell aging and

informs a new approach to alleviate aberrant inflammation
and avoid the consequences of immune aging associated with
HIV infection.
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