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The COVID-19 pathomechanism depends on (i) the pathogenicity of the virus, (ii) ability of
the immune system to respond to the cytopathic effect of the virus infection, (iii) co-
morbidities. Inflammatory cytokine production constitutes a hallmark of COVID-19 that is
facilitated by inability of adaptive immunity to control virus invasion. The effect of cytokine
release syndrome is deleterious, but the severity of it depends on other confounding
factors: age and comorbidities. In this study, we analyze the literature data on the post-
transplant course of allogeneic hematopoietic stem cell transplanted (alloHSCT) patients,
which is affected by generated inflammatory cytokines. The sequence of events boosting
cytokine production was analyzed in relation to clinical and laboratory data highlighting the
impact of cytokine generation on the post-transplant course. The collected data were
compared to those from studies on COVID-19 patients. The similarities are: (i) the
damage/pathogen-associated molecular pattern (DAMP/PAMP) stage is similar except
for the initiation hit being sterile in alloHSCT (toxic damage of conditioning regimen) and
viral in COVID-19; (ii) genetic host-derived factors play a role; (iii) adaptive immunity fails,
DAMP signal(s) increases, over-production of cytokines occurs; (iv) monocytes lacking
HLADR expression emerge, being suppressor cells hampering adaptive immunity;
(v) immune system homeostasis is broken, the patient’s status deteriorates to bed
dependency, leading to hypo-oxygenation and malnutrition, which in turn stimulates the
intracellular alert pathways with vigorous transcription of cytokine genes. All starts with the
interaction between DAMPs with appropriate receptors, which leads to the production of
pro-inflammatory cytokines, the inflammatory process spreads, tissue is damaged,
DAMPs are released and a vicious cycle occurs. Attempts to modify intracellular
signaling pathways in patients with post-alloHSCT graft vs host disease have already
been undertaken. The similarities documented in this study show that this approach may
also be used in COVID-19 patients for tuning signal transduction processes to interrupt
the cycle that powers the cytokine overproduction.
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INTRODUCTION

SARS-CoV-2 is a new virus, we do not know much about it, but
like other RNA genome viruses, it jumps between species, and
must adapt to each new environment, e.g. learning how to evade
the host immune system. Interaction between immunity and the
virus plays a special role. The affected organs in COVID-19
patients may come under friendly fire from unleashed
inflammatory cells (1), bringing the risk of fatality. If adaptive
immunity fails, the virus expands, pyroptosis is frequent,
proinflammatory cytokines are released from damaged
epithelial alveolar cells and macrophages, and in consequence
the inflammatory process spreads (2). The released cytokines
attract monocytes, which in inflammatory environment have
increased phagocytic activity. The level of monocyte activation is
reflected by a high serum ferritin level in severe COVID-19 cases
(3), and the organ damage spreads in a vicious cycle of events.
There are several examples in human pathology which document
the costs paid to eliminate an infective organism. To eliminate
the virus, the host’s own cells are frequently killed, and in
addition, the inflammatory process damages tissues in an
innocent bystander mode. In severe COVID-19, within the
pathological process, several organs are damaged, not
necessarily those directly invaded by the virus. The essence of
this pathology is a massive release of cytokines – the cytokine
storm – which is associated with life-threatening complications.

Cytokine release syndrome is seen in several pathologic
situations, but that in patients having acute graft vs host
disease after allogeneic hematopoietic cell transplantation
(alloHSCT) was so impressive that Ferrara and his colleagues
coined the name cytokine storm (4). Therefore, to learn more
about the manifestation and consequences of cytokine release
syndrome, we looked at this phenomenon from the perspective
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of an observer of alloHSCT patients. In this study, clinical
consequences and a laboratory description of the events after
alloHSCT are discussed in relation to the course of COVID-19
in which cytokine release syndrome is a risk factor of
poor prognosis.

In alloHSCT patients the primary proinflammatory event
triggers a chain of inflammatory sequelae. This is shown in this
paper in the context of corresponding information on COVID-
19 patients. The latter attempt was undertaken due to our belief
that the experience obtained looking after alloHSCT patients
may help, by analogy, in designing the treatment approach
in COVID-19 patients (Table 1). Unfortunately neither
Tocilizumab (46) nor Ruxolitinib (47, 48) was found to be
effective. Mesenchymal stem cells (MSC) use is still promising
but lacks approval. Several U.S. Food and Drug Administration
approved clinical trials on the use of MSC in COVID-19 patients
are ongoing (49).

Analyzing the cytokine overproduction in COVID-19 we are
aware of other factors which independently or in concert with
cytokine overproduction make infected people more vulnerable.
The recent data on the case fatality rate in COVID-19 patients in
China shows that 10.5% of people having cardiovascular disease,
6% suffering from hypertension and 7.6% form diabetes who
were diagnosed with COVID-19 died (50).

The common denominator of these diseases is the presence of
vascular pathology. Local and systemic inflammation which
characterizes COVID-19 activate and damage endothelium. It
is shown by elevated level of von Willebrand Factor (VWF) in
blood The inflammatory process damaging endothelium
facilitates microangiopathy (51). The mechanism of the latter
pathology resembles that seen in sepsis.

Microangiopathy may drive COVID‐19 progression in which
comorbidity adds to the risk of COVID-19 outcome.
TABLE 1 | The clinical findings and laboratory data registered in patients at risk of cytokine storm after alloHSCT and in those with severe COVID-19.

alloHSCT COVID-19 symptomatic cases

Proinflammatory environment Toxicity, engraftment syndrome, GvHD, recurrent infections (5, 6), Cytopathic effect on SARS-CoV-2 infected cells (7)
CD14+HLADR- Increased proportion in early post-transplant period affecting the

long term survival, and GvHD (Figure 1) (8–10)
Increased proportion in severe COVID-19 (11, 12)

IL-6 High level in post-transplant period (13, 14) High level in severe COVID-19 (15–17)
lymphocytopenia Frequent at the time of hematologic recovery (18) Present in 80% of cases (11, 12, 19)

-associated with cytokine fluctuations (5)
-risk factor of aGvHD (20) and aGvHD following DLI (21)

Immunogenetic profiling IFN gamma +874 A (13 CA repeats) allele
Is associated with EBV and CMV (22, 23) reactivation and GvHD
(24, 25)

Is associated with SARS caused by coronavirus (26)

IL-6 -174 G allele
risk factors for GvHD (14) Postulated to be associated with COVID-19 susceptibility (27)

CMV reactivation Frequent (28–30) Single case reports and the negative impact of chronic CMV
infection is suggested (31)

EBV reactivation Frequent (28) Frequent (32)
Immune dysregulation
syndromes

HLH in 4.3% of cases, with 85.5% mortality (33, 34) HLH and TMA are frequent in COVID-19 patients (16, 35–38)
TMA in 10 to 20% of cases (39) with 44% mortality (40)

Main target organ(s) when
cytokine storm develops

Multiorgan involvement as a result of plasma cascade dysregulation,
toxic internal organ damage and alloreactivity (41)

Acute respiratory distress syndrome (42)
Plasma cascade dysregulations (43)

Extended symptomatology Mostly due to alloreactivity and prolonged immunosuppression “long tail” COVID-19 with multiorgan symptomatology and different
mechanisms leading to patients disability (44, 45)
alloHSCT, allogeneic stem cells transplantation; GvHD, Graft versus Host Disease; DLI, Donor Lymphocyte Infusion; HLH, hemophagocytic lymphohistiocytosis; TMA, thrombotic
microangiopathy.
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Thus in the patients with comorbidities inflammatory
cytokines addressing already damaged tissues may operate at a
lower concentration level. Indeed the level of IL-6 in COVID-19
patients was reported to be lower than in other diseases
attributed to cytokine overproduction (52–56). The serum level
itself, however, cannot be used solely for validation the role of IL-
6 in the pathomechanism of COVID-19 as the deteriorating
effect of this inflammatory cytokine depends also on the
susceptibility of the targeted organ which is higher if
concomitant disease exists (57). It has been already
documented in a number of studies that the high level of IL-6
is a predictive factor of poor outcome of COVID-19 (53, 56). In a
recent study 1,484 patients with suspected or confirmed COVID-
19 were investigated with a conclusion that the levels of IL-6 and
TNF alpha in serum at presentation are predictive of COVID-19
survival and mortality, independently of demographics and
comorbidities (52).

Comorbidities especially those associated with the endothelial
cells damage depicted by elevation in serum of VWF factor
include cardiovascular diseases, hypertension and diabetes (58)
makes the vasculature more susceptible to thrombotic events
thus shaping the course of the disease. The primary event is the
same as in the patients lacking comorbidities i.e. overproduction
of inflammatory cytokines (59).

The similarities discussed above are due to the fact that the
cytokine storm outcome in severe COVID-19 and in alloHSCT
patients is very similar as in both situations disruption of
homeostasis of the immune system determines the pathology.
However, at the initiating stage the pro-inflammatory stimulation
is viral and sterile in COVID-19 and alloHSCT, respectively. For
SARS-CoV-2 viral lung damage is decisive for the fate of patients
butnot inalloHSCTpatients. It has been recently discussedwhether
in COVID-19 patients the impact of SARS-CoV-2 on
mitochondrial function plays a role by boosting the inflammatory
process. It is also postulated that mitochondrial damage may
contribute to the symptoms of “long COVID-19”. In the course
of COVID-19 mitochondria are exposed to damage, which may
result in a low energy potential of the affected cells and from
patients’ perspective in long term observed fatigue and a lack of
energy (44). This is also unique for COVID-19 patients (45).

Damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs) stimulate
membrane or cytosolic pattern recognition receptors (PRRs).
These receptors are present in a number of cells, among which
the most potent cytokine producers are macrophages and T cells
(60). PRRs sense products released from dying cells and some
structures of bacteria, fungi, as well as viral nucleic acids
including RNA (61). In response, a number of pro-
inflammatory cytokines are released, including G-CSF, IL-1,
TNFalpha, IL-33, IL-23, IL-17 (5, 62). In alloHSCT patients
receiving conditioning regimen (chemo-radiotherapy), pro-
inflammatory cytokines are generated in response to direct
cells damage (DAMP) as well as to microbiome (PAMP) being
released to circulation from the gut losing its integrity. Several
organs are damaged, apoptosis is frequent, and the inflammatory
process exacerbates it (62). The consequences of conditioning
Frontiers in Immunology | www.frontiersin.org 3
regimen toxicity in alloHSCT patients are similar to those
resulting from the cytopathic effect of SARS-CoV-2 and direct
recognition of viral RNA by cytosolic RIG-1 like receptors (RLR)
(63–65).

The peculiar feature of SARS-CoV2 is its ability to delay the
IFN beta response (66), which facilitates the virus invasion and
damage of targeted epithelial and endothelial cells. In
consequence, DAMPs are released, which in concert with virus
particles stimulate production of pro-inflammatory cytokines. In
addition, monocyte-macrophages engulf viruses, release
cytokines in response but also may serve as a virus reservoir
(67) for further virus surge, which keeps the cytokine release
ongoing. Among them TNF alpha plays a significant role due to
the activation of NF-kappaB signaling pathways (pro-
inflammatory) and facilitation of apoptosis and other forms of
cell death (68). TNF alpha together with IFN gamma abolishes
germinal center formation in the lymph nodes (68). In this
situation the B cell response is restricted to germline-encoded
low affinity antibodies and lacks cooperation with germinal
center T follicular helper cells, which secure antibody
production of high affinity, offering long term protection
(69) (Figure 3).

IFN gamma and TNF alpha drive macrophages of an
abundant inflammatory phenotype to the lung in severe
COVID-19-cases (75). As a result the tissue affected by SARS
CoV2 is susceptible to inflammatory cell death, which includes
apoptosis (SARS-CoV-2 encoded accessory protein ORF3a can
induce apoptosis) (76) as well as pyroptosis and necroptosis.
There are forms of inflammatory cell death which reflect the
inability of the cells to eliminate the pathogen. It is a suicidal
action which triggers the inflammatory response and activates
the immune system (77). Mechanistically, the JAK/STAT1/IRF1
axis is involved, leading to caspase-8/FADD-mediated
PANoptosis (78) (Figure 3).

Inhibition of both IFN gamma and TNF alpha was effective in
reduction of inflammatory cell death in experimental models of
sepsis, hemophagocytic lymphohistiocytosis (HLH), and
cytokine shock. This shows that TNF alpha and IFN gamma
exert their vicious effect in several situations associated with
immune system dysregulation (78) which may also happen in
alloHSCT patients.

The engraftment process is shortly preceded by the
generation of stress cytokines, especially IL-6, which activate
transplanted progenitor cells to settle in the bone niches to start
regeneration of hematopoiesis. If there is massive production of
cytokines, engraftment syndrome develops, being clinically
severe (79), with fever, skin rash, and weight gain (80).

Acute graft-versus-host disease (aGvHD), which results from
alloreactivity of transplanted lymphocytes directed against host
body tissues, constitutes the third consecutive phase in the post-
transplant course in which cytokines are generated in a great
amount. The level of cytokine release at aGvHD is as high as it
was during the preceding phases when cytokines were generated
in response to conditioning regimen toxicity.

Early post-transplant toxicity increases the risk of aGvHD
and if the alloreactivity is clinically manifested the production of
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pro-inflammatory cytokines, being already high at the
engraftment syndrome phase, is accelerated. A cytokine storm
is fully manifested. Chronic production of pro-inflammatory
cytokines dysregulates the cytokine network, which instead of
returning to homeostatic balance goes into immunopathology.
Chronic production of pro-inflammatory cytokines advances
along the natural history of alloHSCT patients (4), reaching in
10% to 20% of cases the stage in which homeostasis is totally
broken, resulting in manifestation of life-threatening
complications [i.e. hemophagocytic lymphohistiocytosis (HLH)
and thrombotic microangiopathy (TMA)] (39). In COVID-19
patients pro-inflammatory cytokine production spikes if
adaptive immunity fails in virus eradication (2). These patients
also come to the stage when homeostasis is broken, being at high
risk of TMA and HLH (81).
LYMPHOCYTES AND MONOCYTES IN
THE PRO-INFLAMMATORY
ENVIRONMENT

Lymphocytes are low in numbers in COVID-19 and in the course
after alloHSCT. Low counts of lymphocytes (11) and functionally
impaired monocytes (8) make the patients susceptible to
infection/reactivation of infective microorganisms. Effective T
cell activation in response to a given pathogen needs the presence
of a large number of lymphocytes to have a chance in finding cell
having CDR3 able to align with the presented epitope (82). If it
happens T cells may activate B cells having compatible
membrane bound immunoglobulins named B cell receptor.
and CD8+ cells which expanding constitute a population of
cytotoxic cells. Low numbers of CD8+ and B cells seen in
COVID-19 cases are indicative of outcome (83) and in
alloHSCT patients lymphocytes are usually low and B cells
reconstitute rather late after alloHSCT (18, 84).

Prolonged post-transplant lymphocyte recovery is associated
with poor survival (85). The pace of the recovery depends on the
number of CD34+ cells infused (86) and the early recovery of
T cells associates with overall and event free survival (87).
Therefore , the immune system of rec ipients af ter
transplantation depends on the immune competence of the
donors as well as richness in stem cells of the inoculum used.
A high number of CD34+ cells in the transplant material is
associated with a high number of naïve cells 4 weeks after
transplant, especially in patients not experiencing EBV or
HHV6 reactivation (88). The repertoire of TCR alpha/beta
lymphocytes in the post-alloHSCT patients is restricted if they
received a transplant from adults with T cell depletion, but it may
appear quite well if cord blood is transplanted (89, 90). However,
the latter association may be simply due to younger age of the
recipients who in cord blood transplantation they are usually
small. The diversity of lymphocytes in young individuals is much
greater than in older ones due to the constant supply of recent
thymic emigrants. Naïve cells pool increases what makes
recognition of strange antigens possible. These observations
Frontiers in Immunology | www.frontiersin.org 4
help in understanding different post-transplant medical history
in adults and children. In COVID-19 children cases
lymphopenia is rather rare specific B memory cells and
neutralizing antibodies in the blood are present (91).

From 6 months to 3 years after alloHSCT TCR repertoire
diversity becomes close to that seen in normals if patients were
transplanted from adults (89, 90). Including a high
representation of the immunodominant clones which cover a
great part of the homeostatic space (92). The immune response
concentrate frequently in older individuals on a restricted
number of epitopes, likely neglecting others. In the HSCT
recipients in contrast with normal individuals, the number of
clones which had already been annotated to viral infections is
greater and they cover more space. Within identified
immunodominant clones in 27 situations, CDR3 sequences
found had already been annotated to public or viral epitopes
(93) among which CMV plays a main role TCR annotated to
CMV consume much of the homeostatic space covering cells
with TCR specificity so far not exploited (94).

The above data show that the patients with dysregulated
immunity have their epitope recognition potential focused on the
response toward repeatable infections and may utilize TCR
gamma delta cells in immunosuppressive conditions.

Monocytes appear in the blood early after alloHSCT. They are
in the front line of microbial defense, alerting the immune
system by releasing cytokines. The cells engulf infectious
particles, break them down, and bring them to the cell
membrane, which makes the presentation to T lymphocytes
possible (95), initiating the adaptive immune response. If it
fails or is not good enough, the local inflammatory process
accelerates, attracting more monocytes, which migrate to the
site of inflammation from the periphery according to the CCL2-
CCR2 axis (96). If T cells respond well in the priming process, the
specific clone(s) expand, the affected organ is cleared, and the
fight is successful. There are, however, several obstacles on
the way: (i) monocytes if low in number or lack CCR2 are not
recruited well, which increases the affected organ pathology as is
seen in the mouse model of influenza in which a lack of CCR2 on
monocytes increases the organ pathology (97); (ii) monocytes are
present but lymphocytes fail, not recognizing the epitopes
presented by antigen presenting cells due to the low number or
poor repertoire of T cells, and (iii) the appropriate cells are
present but the immune response is paralyzed by monocytic-
myeloid derived suppressor cells. These possibilities may affect
the outcome of viral infection, as seen in COVID-19 patients but
also valid in alloHSCT patients. Viral reactivation(s) is common
and if it happens facilitates the aGvHD process (98). In aGvHD,
monocytes that colonize the skin present skin or foreign
antigens, which might also be of virus origin, to allogeneic T
cells. In intestine GvHD, both alloreactivity and Cytomegalovirus
(CMV) infection accelerate each other (99). Monocytes sense
through Toll-like receptors a wide array of damage-associated
patterns from dying cell debris through viral RNA to bacterial
LPS (100). Once being activated by sensing the primary sterile
signal, they may be further boosted by concomitant infections or
vice versa. The described pathomechanism is understandable,
June 2021 | Volume 12 | Article 658896

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Lange et al. Cytokine Overproduction and Immune System Dysregulation
but it is very difficult to manage as the only way to break the
spiral of pro-inflammatory monocyte activity is the effective
action of the adaptive immunity response, which is poor in
inflammatory conditions and the situation usually affects people
who are immunosuppressed because of the actual clinical
situation (transplantation) or due to the characteristic of a
primary disease (viral, autoimmune) (101).

Monocytic-Myeloid Derived Suppressor
Cells (M-MDSC)
As a response to pro-inflammatory situation, CD14+ cells
lacking HLADR on the membrane appear in the blood.
Downregulation of HLADR on the membrane of monocytes is
driven by IL-6 and G-CSF, which act in concert with other pro-
inflammatory cytokines (9, 102, 103). A lack of HLADR antigen
on the monocyte membrane makes the cells suppressive with the
aim to control the damaging inflammatory process (9).
CD14+HLADR- cells represent monocytic myeloid-derived
suppressor cells (M-MDSCs). These cells suppress the response
to infection but being non-specific may hamper immune
surveillance of cancer (104) and exert a negative impact on the
immune response. M-MDSCs are weak in phagocytosis but
efficient in immunosuppression, exerted by generation of
reactive oxygen species, nitric oxide (105). The frequency of
CD14+HLADR- (M-MDSCs) is increased in the peripheral
blood after alloHSCT, especially in patients with GvHD (9)
and bacterial infections (106, 107). CD14+HLADR- cells were
primarily found in septic cases and their suppressor activity may
lead to immune paralysis (107). Sepsis, one of the major
complications of the patients after alloHSCT, seen also in those
with COVID-19, is clinically apparent when infection is not
under control and a destructive immune response leads to
overwhelming pro-inflammatory activity (1). Indeed, in
COVID-19 patients the number of CD14+ cells lacking
HLADR is increased and remains so through the course of the
disease (12, 108). It was also reported that an increase in the
proportion of CD14+ which lack HLADR positivity is associated
with the progression in the course of COVID-19 (12).

Therefore, attempting a comparison between alloHSCT
patients and those with COVID-19, evaluation of CD14+
HLADR- cells in both these situations was of great importance.
We recently analyzed the impact of CD14+HLADR- cells on
survival of patients transplanted in our institution. The higher
values of these cells determined on the post-transplant day 30 have
a negative impact on survival and the patients they died succumb
more frequently of infections than of other causes including
GvHD and relapse, survived shorter and had still higher values
of CD14+HLADR- cells than those which also died but were from
the low CD14+HLADR- group (8). Therefore, CD14+HLADR-
cells measurements on the post-transplant day 30 depict the cases
they experienced overproduction of inflammatory cytokines what
encumbers further history of the disease.

Our and others studies (8, 109) provide a compelling evidence
that an increase of CD14+HLADR- suppressor cells-in blood put
patients in danger of life threatening infections. In that situation,
microbial invasion is not prevented by the specific immune
Frontiers in Immunology | www.frontiersin.org 5
response instead of an overwhelming inflammation takes place,
resulting in dysregulation of immunity (Figures 1, 2). This is a
crucial element aggravating the risk of death, especially when the
primary response is triggered by tissue injury due to toxicity, as it
is in alloHSCT patients, or by the cytopathic effect of a virus
exerted long before the immune system is ready to respond, as is
seen in an unknown pathogen infection such as COVID-19 for
example. In a situation when toxicity but not microbial invasion
triggers the immune response with inflammation at first as seen
early after alloHSCT, CD14+HLADR- cells appear and their
suppressor activity may facilitate microbes including viruses to
sneak through the immune system barrier. If M-MDSCs
(CD14+HLADR-) are too active, they may suppress the
immune response to the microbes, affecting patients with
aGvHD (107). For that reason Herpesvirus reactivation is
frequent in patients after alloHSCT and also in those suffering
from COVID-19 due to the presence of a pro-inflammatory
environment (31) with the consequences discussed above.
CD14+HLADR- cells associated immunosuppression
developed to counter-balance pro-inflammatory status
facilitates microbial complications to appear. The CMV
reactivation period starts about the time of the engraftment
syndrome characterized by stress-cytokine production. The
proportion of patients with CMV reactivation remains high up
to 6 months after transplant and then declines (Figure 1). The
Epstein-Barr virus (EBV) prevalence curve is similar to that of
CMV early after alloHSCT but EBV is even more frequently seen
(likely due to CMV infection prophylactic measures) by the end
of the first year of post-transplant observation. More than 60% of
patients experienced reactivation of at least one of herpesvirus
reactivation in the 6-month post-transplant period (28, 29, 115).

The Impact of Chronic CMV Infection on
Blood Lymphocyte Subpopulations
Chronic CMV infections blows up the immune system, directing
the response toward the virus at the expense of the response to
other microbial challenges (116). This is also seen at the level of
the peripheral blood lymphocyte profile.

Herpes virus reactivation depends on the immune system
competence of the transplant donor. Reactivation of CMV
repeatably stimulates the immune system to engage in CMV
immunity while neglecting responsiveness against other antigens
(29). This also has an impact on the balance between different
lymphocyte subsets. The T lymphocyte profile shifts in chronic
CMV infection from CD28+CD57- T cells toward highly antigen
experienced CD8+ CD57+ cells (117). The latter cells occupy a
substantial proportion of lymphocytes, leaving less homeostatic
space for naïve cells and central memory cells, which are able to
confront new antigenic stimulation (118). It is, however,
individually dependent. HLA-A* 0101 individuals T cells
response against CMV pp50 characterizes with a broader
spectratype than that seen when CMVpp65 is targeted (91).

TCR gamma/delta cells may increase in proportion in several
infections. Predominant increase of one out of two main subsets,
having either a Vdelta 1 or Vdelta 2 chain, suggest the presence
of a defined microbe behind the stimulation (119). Vdelta 2- cells
June 2021 | Volume 12 | Article 658896
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are usually associated with CMV reactivation (111, 120).
Whereas in CMV negative patients both subsets Vdelta 1 and
Vdelta 2 accumulate at the similar level (121). Vdelta 1+ cells
recognize stress-related antigens and also those characteristic for
some pathogens including mycobacteria, influenza viruses, and
EBV (122). Therefore, the results of detailed profiling of
TCRgamma/delta indicate which pathogen may be involved
(119, 122). In COVID-19 patients, gamma/delta T cells are low
at the onset but increase in survivors during the later course of
the disease. It is thought that they may be directly or indirectly
(as antigen presenting cells) involved in the immunity against
SARS-CoV-2 (123). The positive role of TCR gamma/delta cells
is also seen in alloHSCT patients who enjoy better survival,
having an elevated level of TCR gamma/delta cells and a lower
Frontiers in Immunology | www.frontiersin.org 6
incidence of bacterial and virus infections [reviewed by
Handgretinger et al. (124)]. These data suggest that TCR
gamma/delta cells are effective in patients with dysregulated
immunity in which the adaptive immunity response is lowered
due to the higher proportions of M-MDSCs in the blood.
However, there are also some data pointing on the suppressive
effect of M-MDSCs on TCR gamma/delta T cells (125).

Granulocytes play a significant role in innate immunity
response to pro-inflammatory cytokines (Figure 3). They
produced reactive oxygen species contributing to tissue damage
(126) as well as they affect plasma cascades increasing the risk of
immunothrombotic clots formation (43). Similarly to the
suppressive potential of monocytic-MDSC also granulocytic
MDSC may play a role (127). They are released to the periphery
A

B

C

FIGURE 1 | Post-alloHSCT chain of events affecting immune system competence. (A) Post-alloHSCT toxicity induces a pro-inflammatory environment with an
increase in blood monocytic-marrow derived suppressor cells (CD14+HLADR-) (8), (B) Herpes viruses reactivate (CMV reactivation events in post-transplant period)
(28, 29), in the peripheral blood lymphocytes CD8+CD57+ cells increase (110) – T cell repertoire skewed to highly differentiated T cells effective against chronic
infection epitopes but neglecting new challenges, (C) TCR gamma/delta cells reprogrammed by CMV reactivation appear frequently in the blood (prevalence of
deltaV2 negative cells) (111), immunodominant clones expand (93).
June 2021 | Volume 12 | Article 658896
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in the course of emergency myelopoiesis driven by the
proinflammatory environment and are dysfunctional, and may
decrease T cell immune response (128).

Individual genetic variation in the immune system, especially
gene expression variability, may affect the course of several
diseases including COVID-19. The immune response is very
much controlled by the genetic factors and one of the first
impressive observation made in man was on the higher
susceptibility to immunopathology in carriers of ancestral HLA
A1-B8-DR3 haplotype (129). This is claimed to be due to the
presence of linkage disequilibrium with some genes within the
genome including the polymorphic feature of TNF alpha gene.
Frontiers in Immunology | www.frontiersin.org 7
This genome is associated with the presence of antinuclear
antibodies under the environmental stress (130). This shows
that the genetic features of inflammatory gens may influence the
outcome DAMPs in COVID-19 and alloHSCT patients. While
analyzing the risk of an overwhelming inflammatory response,
the SNP polymorphism in the IL-6 gene is of interest. The IL-6 G
allele situated at the promotor –174 position (rs1800795) is
associated with higher IL-6 generation as opposed to the
presence of the IL-6 C allele in the same position (131, 132).

Among alloHSCT receiving patients, those with high pre-
transplant levels of IL-6 have higher frequency of transplant-
related mortality as compared to their counterparts (13).
A

B

D

C

FIGURE 2 | The photos illustrate (own documentation): (A) damage of the marrow which induces IL-6 and release of other stress cytokines whose level is modified
by SNP polymorphic features (14, 24, 25, 112, 113), (B) skin biopsy with CD8+ cell epithelium colonization in aGvHD case (114), (C) EBV reactivation documented
on 104th day after transplant (23), (D) macrophages in a patient with hemophagocytic syndrome, the skin biopsy documenting early endothelial cell damage in the
patient developing overt thrombotic microangiopathy at a later time.
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This observation is supported by the genetic data showing that
IL-6 G allele carriers have higher levels of IL-6 in the blood
during the post-transplant period and if transplanted from a
donor homozygous for the IL-6 G allele are at a high risk of
severe aGvHD (14, 112, 113). When viral infections are
considered, good IL-6 producers may benefit at the front line
of infection (e.g. in the common cold) but not when the disease
goes wrong, high IL-6 individuals are more susceptible to acute
respiratory distress syndrome.

High levels of IL-6 or its read-out protein CRP in serum
should alert the medical staff that the course of COVID-19 can
take a turn for the worse (15). Immunogenetic profiling,
performed in advance, may help in risk assessment of the
course of the disease, which may be valid for alloHSCT as well
as COVID-19 patients.

Interferon (IFN) gamma is the other master cytokine of the
immune system, and its generation is modified by SNP profiles.
Individuals homozygous for micro-satellite polymorphism of 12
CA repeats starting at position +875 (or having a T nucleotide
at polymorphic position +874 - rs2430561) have a higher
generation potential of IFN gamma in PBMC stimulated by
mitogens than those having more than 12 CA repeats (or
being +874 A) (133). Likely due to HSCT patients homozygous
for 13 CA repeats being poor producers of this cytokine under
stimulation, they are more susceptible to CMV and EBV
reactivation (22, 23) and finally to GvHD. Notably, the low
IFN gamma producers having the SNP IFN gamma +874 A allele
were found – in a study carried out during the 2002–2003 SARS-
Frontiers in Immunology | www.frontiersin.org 8
CoV-2 epidemic outbreak – to be associated with susceptibility
to SARS in a dose-dependent manner (26).

The data above suggest that the immunogenetic profiling of
IL-6 and IFN gamma genes may be of use in weaving out the
individuals at higher risk of cytokine storm while having
COVID-19.

The grave experience of the global COVID-19 pandemic has
focused attention on immunotherapy, which earned
considerable publicity by proving effective in some cancer
treatment approaches. The use of check-point inhibitors relies
on the blockage of naturally occurring regulatory mechanisms
releasing CD8+ cells from negative feedback control.
Unfortunately, this approach, omitting pro-entropic rules, may
result in auto-aggression. The constant uncontrolled activation
of T cells results in over-production of cytokines with target
organ injury and CMV reactivation. A similar scenario is seen in
patients receiving CAR T cells in which cytokine storm plays a
negative role with severe consequences (134). Cytokine storm is
also a risk factor of fatal COVID-19. Therefore, in several clinical
situations, cytokine storm as an effect of immune system
dysregulation should be considered as a main threat and
addressed in research to save lives. In gearing up cytotoxic
mechanisms we should also know how to revert them. In this
review, we have gone over the events occurring after alloHSCT.
This approach was aimed at raising alloreactivity against cancer
cells. Unfortunately, cytokine storm can make the procedure
difficult for patients and, in a proportion, fatal. Tuning of the
immune response is needed to have the target cell eliminated but
FIGURE 3 | A cascade of events after SARS-CoV-2 infection starts with a few days time lag in which the virus replicates using a set of open frame genes in airway
epithelial cells (70). Then pneumocytes are invaded and huge amount of DAMPS are released (71). After that innate immunity receptors recognize viral RNA and
proinflammatory cytokines are produced using the NFkappaB signaling pathway. Pyroptosis is seen and proinflammatory cytokines build up an inflammatory
response (72). Then macrophages, monocytes and polymorphonuclear leukocyte are recruited and activated in the inflammatory environment and the next wave of
cytokines surges. In severe COVID-19 cases as a result of emergency myelopoiesis dysfunctional mature neutrophils and HLADRlow monocytes appear in the blood
(73). In this complex situation the endothelial cell infection outcome contributes additionally to the inflammatory response. Endothelial damage leading to thrombolytic
microangiopathy causes hypoxemia and malnutrition (43). The mTOR pathway is activated, which ends up with NFkappaB and massive cytokine release (74).
Created in Biorender.com.
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not at the expense of organ injury. Immunosuppression and
steroids used in alloHSCT cases should be rather individually
adapted in relation to the actual competence of the immune
system. In alloHSCT patients the level of CD14+HLADR- cells if
increased may alert the medical staff that competence of the
immune system reaches a dangerous state (8, 109)

The optimal option is to measure the immune response at all
stages of treatment. To do so, we have to (i) implement
immunogenetic profiling to stratify the patients at risk (IL-6,
IFN gamma genotyping), (ii) follow the phosphorylation of the
master kinases of the signaling pathways to understand the
balance between signaling pathways important for keeping
cells in homeostatic order (135), (iii) detect the methylation
pattern of STAT3 and 5, which are associated with the potential
of Treg cell and Th17+ cell generation. For that, next-generation
sequencing (NGS) will be used, providing the tool for genetic
work. Being under the pressure of pandemic threat, we all have to
use our intellectual and laboratory potential to manipulate the
immune system cautiously, based on the known facts. This will
require international cooperation.
CONCLUSION

Individuals confronted with prolonged stimulation of the immune
system develop a mechanism to respond to the stressful situation
and to keep the response under control (136). The innate immune
response stays up-front to gain time needed for the adaptive
immunity to develop. In several situations, adaptive immunity is
not efficient enough due to host-derived or environmental factors.
Inflammation overwhelms and the cytokine storm is full blown,
presenting with fever, body fluid retention, malnutrition, and
endothelial cell damage, facilitating disseminated intravascular
coagulation. These symptoms manifest in the impairment of
body homeostasis with poor blood oxygenation and
malnutrition. Both are sensed, causing a switch in the cellular
signaling pathways favoring the AKT/mTOR signaling at the
expense of others (137, 138). The mTOR pathway, activated by
pattern receptor ligation and sensing via HIF-1 poor tissue
oxygenation, takes over other pathways, tilting the balance
inside cells from steady state toward alert mechanisms (139).
There is a parallel between HSCT recipients and COVID-19
patients in the pathological events mediated by the cytokine
storm, suggesting that therapeutic approaches, developed in the
context of HSCT, may prove beneficial in COVID-19.

The first cause in the COVID-19 pathomechanism is the viral
cytopathic hit inducing the response of the immune system to the
pathogen and damage-associated molecular patterns. The
cytokine response to the stimuli determine the following steps.
Toll-like receptor signaling by PAMP results in production of
IFN I (IFN type I). This cytokine facilitates the priming of adaptive
immunity cells (140). It is known that severe COVID-19 patients
are poor in mounting an IFN I (INF type I and II and III response
as assessed at the transcriptional level (141–143). This
characteristic hampers the adaptive immunity potential, whose
activity is facilitated by IFN(s). If the adaptive immunity is slow,
Frontiers in Immunology | www.frontiersin.org 9
PAMP and DAMP(s) release occurs (due to the cytopathic effect
of the virus), activating the inflammatory response, which may be
ameliorated by the adaptive immunity response eliminating
the pathogen. Among the stress cytokines responding to
DAMP(s) IL-6 plays a prominent role in the pathogenesis of
overwhelming cytokine production in both severe COVID-19
and advanced aGvHD cases – the cytokine storm which
causes the dysregulation of the immune system and deepens
immunosuppression (52, 141, 144, 145). Keeping in mind the
different mechanism leading to the overwhelming cytokine
production, the outcome of that is similar in severely manifested
alloHSCT (especially in those with high grade aGvHD) and severe
COVID-19 (poor relay between innate and adaptive immunity).
The level of serum IL-6 is high in both severe COVID-19 cases and
in alloHSCT patients having high grade aGvHD, being predictive
of an ominous outcome (14, 52–57, 141). The common clinical
outcome results from dysregulation of immunity.

The pathomechanism of complications after alloHSCT and
those of severe COVID-19 depend on the competence of the
immune system which deteriorates with age (146) and underlying
diseases (144). In both situations everything starts with the
generation of stress cytokines, which may lead to the cytokine
overproduction. This is the subject of the present study. Purposely
we illustrated the laboratory findings with clinical pictures, which
may help the health care providers in timely recognition of cytokine
overproduction, which if present must be controlled effectively.

Bearing in mind the dissimilarities between these two clinical
situations the message we wish to convey to readers is that the
pathologic abnormalities when a cytokine storm erupts in
response to the cell damage, viral or sterile, overwhelms the
immune system with DAMPs and PAMPs, with the cytokine
milieu being similar in both situations.
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