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Aberrant T-cell function is implicated in the pathogenesis of myelodysplastic syndrome (MDS).
Monitoring the T-cell receptor (TCR) repertoire can provide insights into T-cell adaptive
immunity. Previous studies found skewed TCR repertoires in MDS compared to healthy
patients; however these studies that leverage mRNA-based spectratyping have limitations.
Furthermore, evaluating the TCR repertoire in context of hypomethylating agents (HMAs)
treatment can provide insights into the dynamics of T-cell mediated responses in MDS. We
conducted immunosequencing of the CDR3 regions of TCRb chains in bone marrows of 11
MDS patients prior to treatment (n=11 bone marrows prior to treatment), and in at least 2
timepoints for each patient following treatment (n=26 bone marrow aspirates post-treatment)
with (HMA), alongside analyzing bone marrows from 4 healthy donors as controls. TCR
repertoires in MDS patients were more clonal and less diverse than healthy donors. However,
unlike previous reports, we did not observe significant skewness in CDR3 length or
spectratyping. The global metrics of TCR profiling including richness, clonality, overlaps
were not significantly changed in responders or non-responders following treatment with
HMAs. However, we found an emergence of novel clonotypes in MDS patients who
responded to treatment, while non-responders had a higher frequency of contracted
clonotypes following treatment. By applying GLIPH2 for antigen prediction, we found rare
TCR specificity clusters shared by TCR clonotypes from different patients at pre- or following
treatment. Our data show clear differences in TCR repertoires of MDS compared with healthy
patients and that novel TCR clonotype emergence in response to HMA therapy was
correlated with response. This suggests that response to HMA therapy may be partially
driven by T-cell mediated immunity and that the immune-based therapies, which target the
adaptive immune system, may play a significant role in select patients with MDS.
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INTRODUCTION

Myelodysplastic syndrome (MDS) is a clonal hematologic
disorder characterized by dysplastic hematopoiesis and
increased risk of transformation into acute myeloid leukemia
(AML) (1). Hypomethylating agents (HMA), such as azacitidine
and decitabine, are the mainstay of MDS treatment leading to
decreased transfusion requirements and improved quality of life
(1, 2). Several studies have implicated T-cell dysfunction with
MDS, consistent with the finding that several MDS patients
respond to immunosuppressive treatments (3–5). For instance,
T-cell dysregulation (6, 7), T-cell inhibition of hematopoietic
precursors (8), and auto-immune T-cell activity may lead to
selection of dysplastic clones in MDS (6). Moreover, 10% of MDS
patients have autoimmune clinical manifestations including
vasculitis, dermatitis and nephritis (9). Evaluating T-cell
dynamics in response to HMA treatment in MDS is warranted
to evaluate whether clinical responses are mediated via T-
cell modulation.

T-cell receptor (TCR) repertoire analysis serves as a surrogate
to investigate the immune-based responses to treatment and
offers a snapshot of T-cell diversity and versatility (10–12). TCRs
are highly polymorphic surface receptors that recognize
antigenic peptides presented in major histocompatibility
complex (MHC) (13). TCR diversity is generated through
somatic recombination of variable (V), diversity (D), and
joining (J) gene segments along with pseudorandom insertions
and deletions of nucleic acids at the joining regions (14). This
process has the potential to create over 1015 TCR clonotypes with
estimates of unique T cells in a humans ranging from 106 - 1011

(15). By deep sequencing of TCR repertoires, one can obtain a
view into the antigenic exposure of an individual (16).
Expansions and contractions of T cell clonotypes can be
tracked using this method whereby activated and expanding T
cells against specific cognate antigens lead to skewed
TCR repertoires.

Previous studies have reported a skewed TCR repertoire in
MDS patients. Using spectratyping which leverages
complementary determining region 3 (CDR3) length (17–19),
the skewness of TCR repertoire in MDS improved following
treatment with azacitidine (20). However, while the length of the
CDR3 distribution is one parameter of T-cell diversity, most of
the variability lies in the CDR3 sequence that is encoded within
the V(D)J region, represented by b sequences, which comes in
contact with an antigenic peptide (21, 22). Further, previous
studies leveraged mRNA-based complimentary DNA sequencing
which is biased due to different mRNA content per cell and is
affected by RNA input (23). Therefore, deep sequencing of the
genomic CDR3 beta-region would allow a more accurate
representation of the TCR diversity (23).

To investigate T-cell dynamics in the setting of HMA therapy,
we applied TCR b-region sequencing in 11 MDS patients before
(n=11 bone marrows) and after (n=26 bone marrows) treatment
with HMA. We also leveraged a public dataset to compare the
MDS TCR diversity to healthy donors (n=4), and applied
GLIPH2 pipeline (24, 25) to evaluate homologous clonotypes
that could recognize the same antigen.
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MATERIALS AND METHODS

Patient Population and Outcomes
A total of 11 patients with MDS who received azacitidine or
decitabine and had bone marrow samples before and after
treatment with hypomethylating agents on protocols at
University of Texas M D Anderson Cancer Center were
included in this study. TCR immunosequencing data from 4
healthy controls was downloaded from Adaptive website (ref)
and were included as controls. MDS patients with complete
response (CR) attained <5%myeloblasts with normal maturation
of all cell lines with recovery of peripheral counts (hemoglobin
>11 g/dL; ANC>1000/mm3 without myeloid growth factor
support; platelets >=100,000/mm3 without thrombopoietic
support). Hematologic improvement (HI) response was based
on increase in hemoglobin of >=1.5 g/dL without transfusions.
Patients with no response did not meet the criteria for CR or HI.
CR/HI were considered as responders, while no response
patients were considered as non-responders. All patients were
treated on an IRB-approved protocol and consented for the
research study. Additionally, 4 healthy bone marrow sample (age
18-35 years) TCR data was downloaded from immuneACCESS
at https://clients.adaptivebiotech.com/pub/bone-marrow-
healthy-adults-control.

Library Preparation for TCR
Immunosequencing
Genomic DNA was extracted from whole bone marrows. Quality
assessment of samples was done with Agilent TapeStation
genomic DNA screentapes, Thermo Scientific NanoDrop
OneC and Quant-iT™ PicoGreen™ dsDNA Assay kit.
Adaptive’s hsTCRB kit was used to detect rearranged TCRB
gene sequences in the genomic DNA. Libraries were made using
multiplex PCR primers, which targeted the complementary
determining region 3 (CDR3) of human TCRb gene following
rearrangement of the variable (V), diversity (D) and joining (J)
gene segments.

First PCR
A survey resolution was done and used 2 replicates per sample
during the first step PCR and a total of 400 ng of DNA or 200 ng
per replicate for the first PCR set up. Using QIAGEN Multiplex
PCR Kit, 31 cycles of the first PCR amplified highly variable
CDR3 region, using V- and J-gene specific primers. Universal
adapters at the end of the V- and J-gene specific primers served
as a target for the addition of unique DNA barcodes in the
second PCR. The amplicons were then purified using a bead-
based system to remove residual primers and unamplified targets
and were run on an agarose gel to determine that the correct
products were amplified.

Second PCR
The barcodes that were selected in the sample manifest and
Illumina adapters were added to each PCR replicate during the 8
cycle second PCR. The libraries were then purified using a bead-
based system similar to the first PCR to remove residual primers
and unamplified targets. Another agarose gel check was
April 2021 | Volume 12 | Article 659625
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performed to determine that the barcodes and Illumina adapters
were added during the second PCR. Equal volume of sequencing
ready libraries were then pooled and ran on Agilent D1000
screen tapes to determine the size and the size adjusted
concentration. The libraries were quantified prior to
sequencing using the Applied Biosystems QuantStudio 6 and
KAPA Biosystems library quantification kit.

Miseq Sequencing
Based on the qPCR results, approximately 15 pM of the pooled
libraries were loaded onto the Miseq Sequencing System for a
single end read which includes a 156 cycle Read 1 and a 15 cycle
Index 1 read run.

Post Sequencing
Raw sequences output from the Miseq was transferred to
Adaptive’s immunoSEQ Data Assistant, where the data was
processed to report the normalized and annotated TCRB
repertoire profile for each sample. The data was then posted to
the immunoSEQ Analyzer account for evaluation of
immunosequencing data. Data was downloaded and then
analyzed using in R statistical software.

TCR Analysis and Clonotype Comparison
The clonotype landscape was analyzed using the immunArch R
package version 0.6.5 (http://doi.org/10.5281/zenodo.3367200)
and Adaptive BioAnalyzer. Downsampling was utilized to define
repertoire richness, whereby repertoires were downsampled to
the number of clones that the smallest repertoire has. For data
where there are two groups, the Wilcoxon rank sum test was
performed to test for a difference in mean rank values between
two groups. In case there are more than two groups, the Kruskal-
Wallis test was performed to tests whether samples from
different groups originated from the same distribution.
Adjustment for multiple comparisons p-values per analysis was
done using the Holm-Bonferroni correction method. To
compare the number of contracted/expanded/novel clonotypes
occurred in responders with that in non-responders, Fisher’s
exact test was implemented by using the count of one clonotype
before treatment, total count of all clonotypes before treatment,
count of clonotype after treatment and total count of clonotypes
after treatment. Expanded clonotypes had significantly larger
frequency compared to prior treatment, while novel clonotypes
were only detected after treatment with frequency of 0 prior to
treatment. Contracted clonotypes had significantly lower
frequency after treatment. P-values ≤ 0.05 were considered
statistically significant. All statistical analyses were performed
using R software.

GLIPH (Grouping of Lymphocyte
Interactions by Paratope Hotspots)
Analysis
To identify T-cell specificity groups, GLIPH2 (24, 25) was used
to cluster CDR3 b-chain sequences. Briefly, we ran the analysis
for unique CDR3 sequences from only significantly changed
clonotypes and 780 of them meet analysis criteria. Parameters
Frontiers in Immunology | www.frontiersin.org 3
were set as: simulation_depth=1000, kmer_min_depth=3.
Clonotypes with missing or short (n<5) beta- CDR3 sequence
were excluded from the clustering analysis. The output of
GLIPH2 analyses was visualized with the iGraph package in R
software. Clonotypes that belong to same cluster were connected
by edges and clonotypes that have no shared clones were shown
as single nodes.
RESULTS

Patient Cohort
We conducted immunosequencing of the CDR3 regions of
TCRb chains of bone marrow genomic DNA from 11 (9/11
male; 2/11 female) MDS patients prior to (n=11) and following
(n=26) treatment with the hypomethylating agents azacitidine
(8/11) or decitabine (3/11) at different treatment timepoints.
Clinical and demographic data is summarized in Table 1. Briefly,
the average age was 72.2 ± 6.3 years. The most common
cytogenetic profile was diploid in 8/11 (73%) patients. The
most common mutation was TET2 in 5/11 (45%) of patients.
A total of 6/11 (54%) patients were responders (CR or HI) and 5/
11 (46%) patients were non-responders. We also analyzed the
immunosequencing of the CDR3 regions of TCRb from 4
publicly available healthy bone marrows from healthy adult
donors (age 18-35 years).

Bone Marrows From MDS Patients Are
Less Diverse but More Clonal Compared
to Healthy Bone Marrows
To assess the diversity of clonotypes in the bone marrows of
MDS patients prior to treatment compared to healthy donor
bone marrows, we measured the repertoire richness. Healthy
bone marrows had significantly higher number of clonotypes
compared to MDS patients (2569 ± 77 vs 1719 ± 397 clonotypes,
p = 0.0002) (Figure 1A). Further, we performed rarefaction
analysis that assesses the repertoire richness via extrapolation
from sampling results and found more unique clonotypes per
clone sample size in the healthy bone marrows compared to
MDS (Figure 1B). We next evaluated the CDR3 length and
found no significant skewing in the amino acid length
distributions between healthy and MDS patients (Figure 1C).
However, more clonotypes were found in healthy donors
compared to MDS patients at all CDR3 lengths and
significantly more at lengths of 14, 15 and 19 amino acids
(Figure 1C) consistent with higher richness in healthy bone
marrows. These findings indicate that the TCR repertoire of
MDS patients is significantly less diverse than healthy donors,
although these findings may be hampered by the healthy donors
being younger than MDS patients.

To evaluate clonality, we utilized the Simpson clonality index,
which is less affected by differences in sample size. We found that
MDS patients had significantly higher clonality compared to
healthy donors (0.12 ± 0.07 vs 0.02 ± 0.002, respectively,
p=0.002) (Figure 1D). We next evaluated the relative
abundance by measuring the proportion of clonotypes with
April 2021 | Volume 12 | Article 659625
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specific frequencies in the homeostatic space ranging from rare
clonotypes (<1x10-5) to hyper-expanded (>0.01) (Figures 1E, F).
The majority of the healthy repertoire was occupied by small
clonotype groups, whereas the repertoire of MDS patients was
primarily occupied by medium, hyperexpanded then large
clonotype groups (p<0.05 for all) (Figures 1E, F). These
findings support that MDS patients have highly clonal
repertoires that are dominated by medium, large, and
hyperexpanded clonotypes, while the diversity of their
clonotypes is significantly less compared to healthy bone marrows.

Treatment With HMA Does Not Alter
Global Repertoires in MDS
Similar to the analysis comparing newly diagnosed MDS to
healthy donor bone marrows, we evaluated the global
repertoire architecture in MDS prior to and following
treatment with HMA (azacitidine or decitabine). All 11 MDS
patients (6 responders and 5 non-responders) had baseline bone
marrows as well as 2 to 3 bone marrows at different post-
treatment timepoints allowing us to assess longitudinal
changes in TCR repertoires. Following treatment, there were
no significant differences in the diversity metrics of TCR
repertoires based on richness (Figure 2A) nor rarefaction
estimated diversity (Figure 2B) across all patients and within
response groups. We also did not identify any skewing based on
either CDR3 length (Supplementary Figures 1A–C) or
spectratyping (Supplementary Figure 2) following treatment.
We did not detect differences in overall clonality following
treatment and within response groups (Figure 2C). The
relative abundance of clonotypes at different timepoints was
mostly unchanged (Figures 2D, E). However, some patients
Frontiers in Immunology | www.frontiersin.org 4
had higher abundance of smaller clonotypes following treatment
(patients C, F and L), while others had higher abundance of their
large or hyperexpanded clonotypes following treatment (patients
H and I).

Morisita Index Demonstrates Stable TCR
Repertoire Profiles Following Treatments
To quantitate the similarity and overlap between TCR
repertoires at different timepoints, we utilized the Morisita
overlap index (ranges from 0 to 1) which measures the
similarity (index closer to 1) of TCR clonotypes while
accounting for the abundance of T-cell rearrangements (12).
Except for patients F and G (both responders with hematologic
improvement), the Morisita overlap index was consistently >0.8
suggesting a high degree of TCR similarity between samples of
the same patient (Figure 3A). Relative to pre-treatment, there
were no significant differences in the Morisita overlap index of
post-treatment samples between responders and non-responders
to HMA treatment (Figure 3B). These results suggest that
treatment with HMA does not change the global TCR
repertoire structure in MDS.

Assessment of Individual Clonotype
Frequencies Reveals Dynamic Changes in
Responders and Non-Responders to HMA
Treatment
Aggregate TCR repertoire analysis can mask individual
clonotype dynamics that can drive important and clinically
relevant immune activity against MDS. We therefore
conducted clonotype tracking across the top 10 clonotypes at
TABLE 1 | Clinical and demographic characteristics.

Characteristic Overall, N = 11 CR/HI, N = 6 No Response, N = 5 p-value1 q-value2

Gender, n/N (%) >0.9 >0.9
Female 2/11 (18%) 1/6 (17%) 1/5 (20%)
Male 9/11 (82%) 5/6 (83%) 4/5 (80%)
Age, Mean+/-SD 72.2+/-6.3 70.7+/-6.7 74.0+/-6.0 0.3 >0.9
Hemoglobin (g/dL), Mean+/-SD 9.2+/-1.5 9.5+/-1.9 8.8+/-0.5 0.7 >0.9
Platelets (K/uL), Mean+/-SD 137.6+/-152.7 134.3+/-151.3 141.6+/-172.1 >0.9 >0.9
ANC (K.uL), Mean+/-SD 4.0+/-3.9 4.9+/-5.1 3.0+/-1.9 >0.9 >0.9
BM Blast (%), Mean+/-SD 4.3+/-3.3 3.0+/-1.8 5.8+/-4.1 0.2 >0.9
Cytogenetics, n/N (%) 0.7 >0.9
8+ 2/11 (18%) 1/6 (17%) 1/5 (20%)
Diploid 8/11 (73%) 5/6 (83%) 3/5 (60%)
Miscellaneous 1/11 (9.1%) 0/6 (0%) 1/5 (20%)
ASXL1, n/N (%) 4/11 (36%) 3/6 (50%) 1/5 (20%) 0.5 >0.9
TET2, n/N (%) 5/11 (45%) 3/6 (50%) 2/5 (40%) >0.9 >0.9
RUNX1, n/N (%) 4/11 (36%) 2/6 (33%) 2/5 (40%) >0.9 >0.9
IPSS, n/N (%) 0.5 >0.9
Low 4/11 (36%) 3/6 (50%) 1/5 (20%)
INT-1 6/11 (55%) 3/6 (50%) 3/5 (60%)
High 1/11 (9.1%) 0/6 (0%) 1/5 (20%)
HMA, n/N (%) >0.9 >0.9
Azacitidine 8/11 (73%) 4/6 (67%) 4/5 (80%)
Decitabine 3/11 (27%) 2/6 (33%) 1/5 (20%)
April 2021
 | Volume 12 | Articl
1Statistical tests performed: Fisher’s exact test; Wilcoxon rank-sum test.

2False discovery rate correction for multiple testing.
ANC, Absolute Neutrophil Count; BM, Bone marrow; IPSS, International Prognostic Scoring System; HMA, Hypomethylating agent.
e 659625

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Abbas et al. TCR Repertoire in MDS
pre-treatment (Supplementary Figures 3A–K) and at any of the
treatment timepoints (Supplementary Figures 4A–K). There
was no specific pattern for changes that occurred by response
groups. For instance, some of the responders had expansions of
their top 10 clonotypes, while other patients had contraction of
their top 10 clonotypes. However, this approach is biased as it
evaluates only 10 clonotypes, which constitute <0.1% of all the
detected clonotypes. We therefore measured the frequencies of
each clonotype at pre-treatment versus post treatment to
evaluate the dynamic changes in individual clonotypes. We
identified 939 significantly changed clonotypes as novel (295/
939; 31%), expanded (317/939; 34%) or contracted (327/939;
35%) (Figure 4A). 72% of contracted clonotypes were not
detected at post-treatment, while the novel (not detected at
pre-treatment) and expanded clonotypes were plotted
separately and contained similar number of clones (317 and
295, respectively). When evaluating each clonotype by response
group (Figure 4B), there was significantly higher abundance of
contracted clonotypes in non-responders compared to
responders (76%, p-value < 2.2e-16), while significantly more
novel clonotypes emerged in responders (74%, p-value = 1.5e-
10) (Figure 4C). These findings suggest that HMA can induce
Frontiers in Immunology | www.frontiersin.org 5
changes in individual clonotypes and lead to emergence of new
clonotypes in responders, while non-responders had a contracted
clonotype repertoire following treatment.

Since different clonotypes can recognize the same antigen, we
leveraged GLIPH2 which predicts clusters of similar TCR
sequences that may recognize the same antigen (24, 25).
Among the 168,753 unique clonotypes found in all 11 patients
that contained TCRb chain sequence information, there were
2933/168,753 (1.7%) clonotypes that have been previously
reported to recognize viral epitopes based on VDJDB. Of the
939 clonotypes that were significantly changed following
treatment, 783 clonotypes (780 unique clonotypes) met the
quality assessment based on CDR3 sequence length for
GLIPH2 analysis (see methods for details). 20/783 (2.6%)
clonotypes were found in the VDJDB recognizing viral
antigens suggesting that reported viral clonotypes were largely
unchanged with HMA treatment. The majority (756/780; 97%)
of significantly changed unique clonotypes harbored unique
antigen specificity and only 24/780 (3%) clonotypes formed 12
paired-clusters, suggesting shared antigen specificity (Figures
5A, B). The dispersion of clonotype suggests that there was no
convergence for the antigen specificity of TCR repertoire.
A B

E F

C D

FIGURE 1 | Diversity TCR metrics in healthy and pre-treatment MDS bone marrows. (A) Richness and (B) rarefaction analysis between healthy and pre-treatment
MDS bone marrows for estimation of diversity. (C) Distribution of CDR3 lengths in healthy and pre-treatment MDS bone marrows. (D) Simpson clonality index as
measurement of degree of clonality. (E) Relative abundance of the different clonotype groups based on the frequency of clonotype. (F) Barplot representation of the
relative abundance measurements in (E). *p < 0.05.
April 2021 | Volume 12 | Article 659625
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However, among the 12 clusters, there were 4 clusters that were
detected in both response groups (Figure 5B). None of these
clusters contained viral-related clonotypes. Clonotypes of
clusters 2 and 4 were contracted in non-responders, but
expanded, or emerged, in responders. Interestingly, none of the
clonotypes in the 4 clusters were detected in the public TCR
database VDJDB (26), which could be attributed to a potentially
novel antigen recognition on MDS cells and associated with
dynamic changes following HMA treatment, although our
analysis cannot confirm this notion.
DISCUSSION

T-cell dysregulation is implicated in the pathogenesis of MDS
(3–5). HMAs, which constitute the mainstay treatment of MDS,
have an immunomodulatory role that alter T-cell functions (27,
Frontiers in Immunology | www.frontiersin.org 6
28). Analysis of the diversity of TCR repertoire can provide
valuable information about the underlying T-cell dynamics in
response to HMA treatment in MDS.

Compared to healthy bone marrows, MDS patients had less
diverse TCR repertoires but higher degree of clonality, suggesting
T cell expansion in response to MDS specific antigens. However,
unlike previous studies (20, 29, 30), we did not identify
significant skewness in CDR3 length of TCRs from MDS
patients compared to healthy donors or following HMA
treatment. Of note, healthy bone marrow donors were not age-
matched to MDS patients and could have impacted the
comparison between healthy and MDS bone marrows. Also,
previous studies synthesized complimentary DNA from mRNA,
compared to our genomic DNA based analysis. The number of
mRNA copies per cell is variable, and mRNA is less stable than
genomic DNA, which could contribute to the differences (31),
although a transcribed TCR may reflect a functional repertoire
A B

C

E

D

FIGURE 2 | Diversity TCR metrics in MDS patients prior to and following treatment with hypomethylating agents. (A) Richness and (B) rarefaction analysis in all
patients and by response groups. (C) Simpson clonality index as measurement of degree of clonality. (D) Relative abundance of the different clonotype groups
based on the frequency of clonotype. (E) Barplot representation of the relative abundance measurements in (D).
April 2021 | Volume 12 | Article 659625
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that is being generated. These factors can lead to bias with respect
to the representation of the repertoires as some TCRs can
artificially appear more dominant than others (23). Further,
antigen-experienced TCR clonotypes may have shorter CDR3
lengths (32). Therefore, our genomic DNA based TCR b chain
repertoire profiling can better illustrate the true immune
repertoire of MDS. Further, we performed bulk bone marrow
analysis rather than on sorted T-cell subsets. Since the TCR
repertoire is an aggregate analysis of all T cells, and different T-
cell subsets could share same clonotype based on antigen
recognition, global analysis provides a more representative
characterization of the TCR repertoire in MDS.

While global TCR repertoire analysis did not reveal differences
between responders and non-responders to HMA, our individual
clonotype analysis revealed an interesting pattern of novel
clonotype expansions in responders and clonotype contraction in
non-responders, following HMA treatment. The novel clonotypes
Frontiers in Immunology | www.frontiersin.org 7
could represent recruitment of T cells from peripheral tissues or
response from bone marrow residing T cells that were below level
of sequencing detection prior to treatment. Since pretreatment
clonotype profiles were similar in MDS patients, the differential
clonotype dynamics is most likely attributed to HMA treatment.
However, whether this change is mediated through direct effect of
HMAs on T cells or that changes in MDS dynamics in the bone
marrow in response to HMA treatment drive T-cell repertoire
changes remains to be deciphered. However, our findings provide
evidence that responses to HMA treatment in MDS may be
mediated via T-cell activity.

We also leveraged GLIPH2 analysis that allow identification
of clonotype clusters that may recognize the same antigen but
have different sequences (24, 25). Our findings revealed that
most of the clonotypes are unique, suggesting scarcity of overlap
in antigen recognition among clonotypes. However, we identified
4 clonotype clusters with similar antigen recognition profiles but
A

B

FIGURE 3 | Repertoire overlap. (A) Heatmap of the Morisita repertoire overlap across all patient samples. (B) Morisita overlap index of MDS bone marrows prior to
and following HMA treatment.
April 2021 | Volume 12 | Article 659625
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A B C

FIGURE 4 | Clonotype frequency assessment. (A) Scatterplots of clonotypes change of pre- versus post-treatment and by (B) response groups. (C) Number of
novel, expanded and contracted clonotypes by response group. ***p < 0.001.
A

B

FIGURE 5 | Clustering of significantly changed clonotypes that share similar antigen specificity based on GLIPH2. (A) TCR antigen specificity clusters for 780
significantly changed TCR clonotypes. Left panel, dynamic changes of each clonotype after treatment. Right Panel, Clinical outcome of each TCR clonotype. (B) Four
identified TCR clusters with corresponding clinical outcomes.
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which follow opposite dynamics following treatment between
responders and non-responders. These clonotypes were not
previously reported in the public database of clonotypes,
suggesting that our analysis approach could reveal clonotypes
that may play a role in recognizing MDS-specific antigens and
requires further experimental validation.

While only 11 patients were analyzed, we used genomic DNA
TCR immunosequencing in a homogeneously treated cohort of
MDS patients at multiple timepoints following treatment to
provide a dynamic profile of the TCR repertoire in MDS. Our
findings suggest that T-cell mediated immunity plays a role in
response to HMA therapy in MDS patients. Additional studies
are required to determine if and how such patients are likely
benefit from immunotherapy.
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