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Mutations in the TREX1 3’ ! 5’ exonuclease are associated with a spectrum of
autoimmune disease phenotypes in humans and mice. Failure to degrade DNA
activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN)
response that ultimately drives immune system activation. TREX1 and the cGAS-STING
DNA-sensing pathway have also been implicated in the tumor microenvironment, where
TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-
STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be
activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1
exonuclease inhibition as a novel immunotherapeutic strategy. We present data
demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss
theory surrounding the best strategy for TREX1 inhibition. Potential complications of
TREX1 inhibition as a therapeutic strategy are also discussed.
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A BRIEF HISTORY OF TREX1

Three-prime Repair EXonuclease 1 (TREX1) is a nonprocessive 3’ ! 5’ exonuclease (1).
Biochemical investigations of TREX1 established similar degradation activities using ss- and
dsDNA substrates, with some preference for dsDNA with 3’-mismatches and 3’-overhangs.
TREX1 activity using RNA and RNA-DNA duplexes is approximately 1000-fold less than with
DNA, implicating DNA as the endogenous polynucleotide substrate (1–5). TREX1 is a 314 amino
acid polypeptide composed of an N-terminal catalytic domain (1-242) containing the exonuclease
activity (2), and a C-terminal region (243-314) (6) that facilitates localization of the enzyme to the
perinuclear space in cells (7). The TREX1 C-terminal region has also been proposed to interact with
the oligosaccharyltransferase (OST) complex (8, 9), and TREX1 has been proposed to function in
the SET complex (10). TREX1 is a stable homodimer (Figure 1) with the protomers connected by
an extended b-sheet core and a highly stable network of hydrogen bonds and hydrophobic
interactions, such that the homodimer does not measurably dissociate after initial formation
(11). The obligate dimeric structure of TREX1 is unique among exonucleases, and highly relevant to
TREX1 catalytic activity. We have demonstrated that residues from one TREX1 protomer
communicate across the dimer interface and contribute to catalysis in the opposing protomer,
illustrating the requirement of TREX1’s dimeric structure for full exonuclease activity (12). These
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studies further suggest a potential mechanism for inter-protomer
regulation and/or coordinated catalysis.

TREX1 is a member of the DEDD family of 3’ ! 5’, whose
members are defined by a conserved Asp-Glu-Asp-Asp motif
that facilitates catalytic activity (13–15) (Figure 2). Members of
the DEDD nuclease family frequently have a role in DNA
replication and/or repair (1, 3, 17), prompting early
investigations in this area for TREX1. However, mice lacking
TREX1 do not develop a hyper-mutator phenotype, but instead
develop an aggressive autoimmune phenotype characterized by
Frontiers in Immunology | www.frontiersin.org 2
inflammatory myocarditis (18). More than sixty TREX1
mutations have now been identified [reviewed in ref (19)] that
exhibit dominant and recessive genetics and occur as inherited or
de novo mutations, dependent upon the specific mutant allele.
TREX1 disease alleles include missense mutations, insertions,
duplications, and frame shifts that locate to positions throughout
the 314-amino acid-coding gene. There is a causal relationship
between TREX1 genetic variants and multiple mechanisms of
TREX1 enzyme dysfunction that have now been linked to a
spectrum of autoimmune diseases in humans (19). There is also
some correlation between the positions of TREX1 mutations and
the observed clinical phenotype. Most of the TREX1 mutations
affecting the catalytic domain are recessive and are largely
associated with Aicardi-Goutières Syndrome (AGS) or Familial
Chilblains Lupus (FCL) (19). The dominant TREX1 mutations
produce enzyme that competitively inhibits wild-type enzyme
activity on bulky dsDNA substrates (11, 20–22). TREX1
mutations that cause Retinal Vasculopathy with Cerebral
Leukodystrophy (RVCL) exhibit dominant inheritance and are
exclusively frame-shift mutations in the C-terminal tail region of
the enzyme (8, 19, 23). Additional frame-shift mutations in the
C-terminal region result in recessive AGS (19). All together the
TREX1 mutations indicate a complex relationship between
TREX1 structure, function, genetics, and clinical disease.

A hallmark of TREX1 mutation is chronic type-I interferon
(IFN) signaling. TREX1 deficient mice are completely rescued
from mortality and pathology by introducing IFN receptor
(IFNAR) deficiency, demonstrating that TREX1 disease
pathology is driven by IFN signaling (24). Similar genetic
studies have also demonstrated stimulator of interferon genes
(STING) (25), interferon regulatory factor 3 (IRF3) (24), and
cyclic GMP-AMP synthase (cGAS) (26–28) as critical
components of the pathological mechanism, establishing the
cGAS-STING DNA-sensing pathway ’s role in TREX1
deficiency disease. In the cGAS-STING pathway, binding of
dsDNA to cGAS causes synthesis of a 2’-3’-cyclic GMP-AMP
(cGAMP) (29), which in turn binds to and activates the
endoplasmic reticulum-associated protein STING (30, 31).
Upon activation, STING traffics to the Golgi apparatus where
it recruits Tank Binding Kinase 1 (TBK1) to phosphorylate it
(32). Phosphorylated STING recruits IRF3 for phosphorylation
by TBK1, and activated IRF3 then dimerizes and translocates to
the nucleus to promote expression of IFN (33). After its
expression, binding of IFN to IFNAR induces immune
activation by promoting the proliferation and maintenance of
natural killer (NK) and memory CD8+ T cells, stimulating
dendritic cells (DC), and more broadly by increasing the
expression of interferon-stimulated genes (ISGs) (34). The
cGAS-STING pathway has been proposed to act as a broad
sensing pathway for many sources of DNA (33). Collectively,
studies to date support a model where deficiency in TREX1
exonuclease activity leads to accumulation of TREX1 DNA
substrate(s), which then stimulate the cGAS-STING pathway
and promote pathology via subsequent type-I IFN signaling.

TREX1 exonuclease dysfunction and subsequent cGAS-
STING signaling raises questions about the source of immune
FIGURE 1 | Crystal Structure of the Dimeric Exonuclease mTREX1(1-242).
Structure includes only the TREX1 catalytic domain (1-242). Protomers are
distinguished by green and cyan, ssDNA by blue sticks, and calcium ions by
magenta coloring. Crystal structure was visualized in PyMOL using the PDB
structure 2OA8 from ref (6).
FIGURE 2 | TREX1 is a Member of the DEDD Family of Exonucleases.
Structure includes only the TREX1 catalytic domain (1-242). Protomers are
distinguished by green and cyan cartoons, and D18-E20-D130-D200 motif
residues are shown as red sticks with black labels. Crystal structure was
visualized in PyMOL using the PDB structure 3MXJ from ref (16).
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activating DNA. Multiple sources of DNA have been proposed as
potential sources of TREX1 substrate in vivo, including ssDNA
replication intermediates (35), retroelements (24), and
enucleated erythroblast DNA (36). Our lab (37) and others
(38) have demonstrated that TREX1 inactivity in bone
marrow-derived cells drives any discernable pathology, but
other cells can contribute to IFN signaling. Ultimately, the
question of TREX1 biological substrate(s) remains an area of
active investigation. We have recently published a review of
TREX1 (39), which we recommend for further details.

TREX1 & cGAS-STING in the Tumor
Microenvironment
TREX1 and the cGAS-STING pathway have been implicated in
the tumor microenvironment [reviewed in refs (39–45)]. TREX1
activity has been negatively correlated with outcomes in multiple
cancers (46–48). In addition, treatment of cancerous cells in vitro
with UV-light or various genotoxic anti-cancer drugs is
associated with TREX1 upregulation, and siRNA knockdown
of TREX1 enhances cancer cell death following these treatments
(49). A dose-dependent effect of DNA-damaging agents on
TREX1 expression has been demonstrated, and showed that
TREX1 degrades damaged DNA from drug-treated tumor cells
(50). Finally, multiple studies have shown that the dose-
dependent efficacy of radiotherapy is at least partially
attributable to TREX1 activity (51–53).

IFN-dependent antitumor immunity following radiotherapy
is STING-dependent, as demonstrated by its ablation in STING-
deficient mice (54, 55). Additionally, cGAS-deficiency in DCs
has been reported to be sufficient to abrogate antitumor
immunity in vitro (54). However, there are additional studies
that indicate IFN-production in vitro is unaffected by cGAS-
knockout in DCs, but is attenuated by cGAS-knockout in tumor
cells, by STING-knockout in DCs, or by connexin 43-knockout
in tumor cells (56). These data led to the proposal that cGAS-
mediated DNA-sensing is tumor-intrinsic, and that cGAMP,
produced in tumor cells, is transferred via gap junctions to host
DCs activating STING and initiating IFN-dependent antitumor
immunity (56–59). Yet, additional work indicates that tumor-
intrinsic and tumor-extrinsic STING participate in driving
antitumor immunity (60). Thus, while current studies support
cGAS-STING function in antitumor immunity following
radiotherapy and/or chemotherapy, the precise nature of cGAS
and STING’s roles in tumor and immune-cell function
remain unresolved.

TREX1 is the gatekeeper enzyme of the cGAS-STING
pathway, and tumor-derived DNA generated spontaneously or
induced by radiotherapy or chemotherapy can be degraded by
TREX1. DNA that is not degraded by tumor-intrinsic TREX1
can stimulate the cGAS-STING pathway to generate an IFN-
response and drive immune cell recruitment to facilitate tumor
regression. The initial cGAS-stimulation resulting from
undegraded DNA could be tumor-intrinsic or immune cell-
intrinsic with the resulting cGAMP signaling molecule
transferred to neighboring cells. How tumor-derived DNA
locates to the cytosol of immune cells remains unclear. Direct
Frontiers in Immunology | www.frontiersin.org 3
immune cell phagocytosis of tumor cells or exosome shuttling of
tumor-derived DNA are possible, and the abundance of tumor-
derived DNA correlates with tumor-intrinsic TREX1 expression
(61). Thus, it is possible that cGAS-STING stimulation
contributes to antitumor immunity in both tumor and host
immune cells indicating that TREX1, cGAS, and STING are
candidate targets to modulate antitumor immunity. Regardless,
studies to date have demonstrated that TREX1, cGAS, and
STING can be targeted to modulate antitumor immunity.
cGAS AND STING AS THERAPEUTIC
TARGETS

TREX1 dysfunction activates the cGAS-STING DNA-sensing
pathway resulting in autoimmunity. Thus, preventing cGAS-
STING activation could provide therapeutic benefit to treat
TREX1-mediated autoimmune disease. Inhibition of cGAS
(62–65) and STING (66) using small molecules and anti-sense
oligonucleotides have been shown to ameliorate pathology in
mouse models of autoimmunity, and to limit brain injury
following ischemic stroke (67). These studies support cGAS
and STING as candidate targets for inhibi t ion in
autoimmune disease.

Conversely, stimulation of the cGAS-STING pathway is a
novel approach to immune activation in cancer immune-
therapy. Small-molecule STING agonists have been used to
activate the cGAS-STING pathway and promote antitumor
immunity (68–76). Additional work indicates STING agonists
are effective in combinatorial therapies for infection (77). STING
agonists are currently in clinical trials (78–80). DMXAA is a
potent STING agonist that initially appeared promising in pre-
clinical studies (70, 81, 82), but failed in human trials due to
critical amino acid differences between the mouse and human
STING proteins (83). These STING agonists indicate the
potential in immunotherapy for cGAS-STING pathway
activation. Since TREX1 exonuclease inactivity is known to
stimulate cGAS-STING signaling, we propose TREX1
inhibition as an anticancer immunotherapeutic strategy.
TREX1 INHIBITION AS AN
IMMUNOTHERAPEUTIC STRATEGY

The molecular and cellular properties of TREX1 indicate it has
distinct advantages as a molecular target for immune activation.
Studies indicating TREX1 expression is induced by genotoxic
stress and that TREX1 exonuclease activity protects cancer cells
from anticancer drugs and radiation suggest TREX1 inhibition
would promote anti-cancer effects (40, 49, 51–53, 84). This
concept is supported by studies showing that cells deficient in
TREX1 activity show reduced recovery from treatment to DNA
damaging agents (49, 84). Thus, inhibition of TREX1 in
combination with chemotherapy may increase efficacy.
Additionally, TREX1 functions to degrade DNA in dying cells
(10, 50) and inhibition of TREX1 in tumor cells should potentiate
April 2021 | Volume 12 | Article 660184
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the innate immune anti-tumor effect as these cells die during
treatment. Thus, small molecules that inhibit TREX1 acting
upstream of STING in the pathway could produce the added
benefit to amplify the signal producing a more robust IFN-signal
relative to the current, direct STING receptor-small molecule
agonists. Furthermore, enzyme inhibitors are generally more
easily developed and refined than activating molecules. Currently,
STING agonists have demonstrated relat ively poor
pharmacokinetics and biodistribution, restricting their dosing
routes primarily to intratumoral injection (70, 72, 80, 81, 85). By
contrast, our work has identified several TREX1 inhibitors with
good solubility and oral drug-like (86, 87) physicochemical
properties (ex. compound discussed in Figure 6). Consequently,
TREX1-targeted therapeutics have the potential to be administered
through more convenient oral dosing routes and promote more
robust, systemic antitumor immunity than their STING-
targeted counterparts.

There are limited published data directly testing the effect of
TREX1 ablation on antitumor immunity. In one study, human T
lymphocytes derived fromaTREX1 compoundheterozygote (c.262
ins AG het + c.290 g>a R97H het) with exonuclease-deficient
enzyme exhibited an increased capacity to inhibit neuroblastoma
cell growth in vitro (88), indicating the immunotherapeutic
potential of TREX1 inhibition. It’s important to consider that
acute TREX1 inactivation in wild-type organisms might not elicit
the same biological response in TREX1 mutants with chronic
TREX1 inactivity. However, another study using microRNA-
based TREX1-knockdown successfully demonstrated tumor
regression in vivo (89), and in two additional studies it was shown
that microRNA-based TREX1-knockdown generates an IFN
signature in uninfected wild-type cells [see control data in refs
(90, 91)]. Interpretationof thesedata is complicatedby the complete
loss of TREX1, including the TREX1 C-terminal region not
Frontiers in Immunology | www.frontiersin.org 4
required for exonuclease activity. However, we also observe that
WT mice still produce IFN signatures when they receive bone-
marrow transplants from mice with catalytically-inactive enzyme
(TREX1D18Nmice), though toa lesserdegree thanseen in thedonors
(37). These bone marrow transplants do not perfectly represent an
acute induction of TREX1 dysfunction in the recipients, since the
donor cells still developed in an environment of chronic TREX1
deficiency. Sti l l , together these studies support the
immunotherapeutic potential of acute TREX1 inhibition.

The Perrino lab used allelic replacement to introduce the
TREX1 D18N missense mutation into mice and showed that the
TREX1 D18N mutation exhibits dysfunctional dsDNA-
degrading activity resulting in immune activation in these mice
(92). We tested the anti-cancer therapeutic potential of
abolishing TREX1 exonuclease activity using the genetically
precise TREX1D18N mice (D18N mice), that express the mouse
TREX1 D18N allele from its endogenous promoter that controls
the level of expression in the appropriate genomic context. In this
mouse model, the TREX1D18N enzyme maintains structure,
localization, and presumably protein-protein interactions
making it an excellent model of specific inhibition of TREX1
exonuclease activity (7, 16, 92). The specific D18N mutation
locates to the TREX1 active site in a way that TREX1 inhibitors
might also bind and inhibit TREX1 DNA degradation, making
the D18N mouse an appropriate model for TREX1 inhibition.
We measured tumor resistance in the exonuclease deficient
D18N mice by challenging WT and D18N mice with H31m1,
a syngeneic, chemically induced sarcoma. When 5x106 H31m1
cells were implanted subcutaneously in TREX1 WT mice, the
tumor grew until one axis extended past 20 mm and mice were
euthanized. In WT mice median survival was 13 days (Figure
3A). In sharp contrast, the inactivity of TREX1 exonuclease in
the TREX1 D18N mice resulted in a dramatically reduced tumor
A B

FIGURE 3 | TREX1D18N Mice Display T-cell Dependent Antitumor Immunity. (A, B) 5x106 H31m1 tumor cells were injected subcutaneously into WT and D18N mice,
and survival (A) and tumor volume (B) tracked daily (see Methods). Mice were treated with aCD4, aCD8, or the respective isotype-control antibodies to test the
effects of T-cell depletion (see Methods). Isotype controls are presented together. Tumor volumes are average and standard deviation. Background of mice and
tumor cells was 129S1/SvImJ, and each group represents 8-16 mice across 2-4 independent experiments. Data originally submitted for ASBMB 2020 conference
(93). Graphs generated with Prism 7.0 (GraphPad).
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volume that was always ~10-fold less than WT and an equally
dramatic increase in median survival that was extended from 13
to 78 days in long-term survival studies, with ~40% of animals
cured of their tumor for at least 120 days (Figure 3B).

Further studies were done to identify the mechanisms that
control tumor growth. Mice were pretreated with antibody
specific for murine CD4 (to eliminate helper T cells) or CD8
(to eliminate cytolytic T cells) or with the isotype controls in a
depletion analysis. Isotype-treated TREX1 D18N mice had
significantly reduced tumor growth and longer median survival
of 78 days sharply contrasting the TREX1 WT mice treated with
control antibodies that had rapid tumor growth and a median
survival time of only 13 days (Figure 3A). We have also
examined the immune response in the spleen, contralateral
lymph node (CLN), draining brachial and axillary lymph
nodes (TDLN), and tumor infiltrating lymphocytes (TIL) using
multidimensional flow cytometry for multiple cell types in the
Frontiers in Immunology | www.frontiersin.org 5
adaptive immune response in order to determine how the anti-
tumor response is altered in TREX1 D18N mice. Figure 4A
shows an example of T cells staining in the spleens of WT mice.
Similar numbers of activated CD4+CD44high T cells were
observed in the TIL (Figure 4B), TDLN (Figure 4B), CLN
(Figure 4B), whereas the spleens of TREX1 D18N animals had
increased effector/memory CD4+ T (Figure 4B). When CD8+ T
cells similar trends were also observed (Figure 4C). The most
dramatic difference observed is in the fold induction in PD-1
levels on activated CD8+CD44high T cells in the tumor
(compared to CD8CD44low T cells in the spleen). Here we
observed that WT CD8+ T cell had a 40-fold induction of PD-
1 levels (as measured by Mean Fluorescent Intensity (MFI))
whereas in TREX1 D18N mice levels were only increased ~20-
fold, consistent with lower T cell exhaustion (Figure 4C). Taken
together these results argue that the increased long-term survival
observed after tumor challenge in TREX1D18Nmice is potentially
A

B

C

FIGURE 4 | Similar T-Cell Number but Decreased PD-1 Expression in TREX1D18N Mice During Tumor Progression. (A–C) WT or D18N mice were challenged with
5x106 H31m1 cells, cells were isolated from the indicated tissue on Day 8, and (A) activated/memory CD4+ and CD8a+CD44high T-cells were measured by flow
cytometry (see Methods). Numbers of indicated (B) CD4+ or (C) CD8+ T cells were determined. ‘SPL’ = spleen, ‘CLN’ = contralateral lymph nodes, ‘TDLN’ = tumor
draining lymph node, and ‘TIL’ = tumor infiltrating lymphocytes. (C) PD-1 M.F.I. on activated/memory CD8+CD44high T-cells in the tumor were determined, and the
fold change compared to naïve T-cells in the spleen was calculated (see Methods). Individual mice (6-9 total, 3 independent experiments) are plotted, with averages
represented by horizontal bars. *p-value < 0.05 via two-tailed independent Student’s t-test. All graphs prepared in Prism 9.0 (GraphPad).
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due to altered function of CD4+ and CD8+ T cells. These studies
support enhanced tumor immunity in the D18Nmice, and TREX1
inhibition as a viable anticancer immunotherapeutic strategy.
METHODS OF TREX1 INHIBITION

Newly developed therapeutics are typically one of three general
categories: RNA-based drugs (RBDs), biologics (BLGs), or small
molecules (SMs). The advantages and disadvantages of these
various molecules as therapeutics have been previously reviewed
(94).RBDs are a variety of specifically designedRNAmolecules that
modulate the activity of a protein target by interfering with its
translation (95, 96). It is possible that an RBD strategy targeting
TREX1 and resulting in complete ablation of TREX1 protein could
generate a successful immune activation anti-cancer effect. Indeed,
it has been demonstrated that microRNA targeting of TREX1
expression successfully promotes tumor regression in vivo by
modulating the tumor microenvironment (89). However, we, and
others, have demonstrated that it is elimination of TREX1
exonuclease activity specifically that leads to cGAS-STING
pathway activation (92, 97). The complete removal of TREX1
protein using RBD could potentially impact, unnecessarily,
additional TREX1 functions that are independent of the cGAS-
STING pathway (8, 9). In fact, mutations that completely abolish
TREX1 protein generally producemuchmore severe phenotypes in
mice and humans than those specifically affecting the exonuclease
activity (18, 19, 92). BLGs are a diverse category of mostly
proteinaceous biologic macromolecules capable of target-binding
(94, 98). Currently, there are noBLG inhibitors of TREX1 reported.
However, several antibodies for TREX1 are commercially available
(99), though not as neutralizing/inhibiting molecules. SMs are
organic molecules with molecular weights typically in the 100-
1000 Daltons range (86). SMs modulate the activity of a protein
targetvia adirect and limitedbinding interaction, anapproachmost
compatiblewithattenuationofa specific activity formultifunctional
targets. Also, SMs have been quite successful as cancer
immunotherapeutics (100), prompting our choice for designing
TREX1 inhibitors (93).
DEVELOPING SMALL MOLECULE TREX1
INHIBITORS

A high-throughput screening (HTS) strategy is critical to
identifying candidate small molecule TREX1 inhibitors. We have
reported methodology to successfully purify large quantities of
recombinant TREX1 enzyme (101) to facilitate a scalable
biochemical assay. Since the desired therapeutic effect from
TREX1 inhibition is cGAS stimulation (26, 27, 97, 102) and
because cGAS has specificity for dsDNA (103), TREX1
exonuclease activity on dsDNA is the appropriate biochemical
metric for an inhibitor’s potential. We have described a
fluorescence-based exonuclease assay to measure TREX1’s
degradation of dsDNA (101) that is scalable to a 384-well
microplate HTS assay. Importantly, this assay utilizes substrate
Frontiers in Immunology | www.frontiersin.org 6
concentrations at or below the TREX1 dsDNA Km of ~15 nM2,
allowing the assay to readily detect small molecules with a broad
range of inhibition kinetics (104). In addition, our own work has
shown that TREX1 activity is not impacted by concentrations of up
to 0.01% Triton X-100, which could be included in a HTS to limit
false-positives from promiscuous aggregation-based inhibitors
(105–107). Thus, our TREX1 biochemical studies have positioned
us well to undertake a HTS endeavor.

Optimal TREX1 drugs developed from initial inhibitor
molecules should minimize off-target effects and exhibit a high
level of specificity for the target. Counter-screening candidate
TREX1 inhibitors against enzymes of varying relatedness (104)
provides context for the inhibitors’ relative affinities for the target.
Cross-activity on a highly unrelated enzyme might suggest
significant promiscuity by the candidate molecule, while
inactivity against an enzyme likely indicates a level of specificity
proportional to the enzyme’s relatedness to the target. Three-prime
Repair Exonuclease 2 (TREX2) is structurally (6, 108) and
biochemically (2) related to TREX1, making it the ideal choice for
counter-screens to identify highly specific TREX1 inhibitors.
Indeed, the similarities between TREX1 and TREX2 raise
concerns about the potential for off-target effects in vivo, since
TREX2 dysfunction has been linked to skin carcinogenesis in mice
(109). However, TREX2 mutant mice exhibit a conditional
phenotype requiring genotoxic stress (109, 110), suggesting that
some level of TREX2 cross-activity by a TREX1 inhibitor might be
tolerable for therapeutic applications. Despite the remarkable
structural similarities, TREX1 and TREX2 contain multiple
different structural elements and specific residues that could be
exploited as TREX1-inhibitor contacts to achieve specificity
(Figure 5). In addition, the potential for species specificity of small
molecules, as evidenced by the STING agonist DMXAA’s ability to
activate murine but not human protein (83), indicate biochemical
analysis of human andmouse TREX1 to be a valuable approach.Our
work using human andmouse TREX1 andTREX2 has already led to
the identification of a class of small molecules with exceptional
specificity for the hTREX1 enzyme (Figure 6).

The development of candidate inhibitors identified from initial
screening into effective therapeutics requires iterative chemical
modification and testing to improve potency and specificity. This
process benefits significantly from ‘rational’ design of the chemical
modifications, which relies heavily on structural information about
the target-inhibitor interactions. In this capacity, TREX1 is well
suited for rational drug design. We have published a detailed
protocol for generating large quantities of high purity TREX1
enzyme (101) and multiple structures of the mTREX1 enzyme
solved by x-ray diffraction (6, 11, 16, 92), including apoenzyme and
co-crystallizations with TREX1 substrates and product. These
structures demonstrate the capacity for mTREX1 to be co-
crystallized with a variety of molecules and can also be used in
computational approaches to model the binding mechanisms of
candidate inhibitors (111, 112).Our previously publishedmTREX1
apoenzyme indicates an active-site readily accessible via solvent
channels in the crystal (Figure 7), suggesting TREX1-inhibitor co-
structures couldbedeterminedby soaking compounds into existing
apoenzyme crystals. We have also solved several structures of the
April 2021 | Volume 12 | Article 660184
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A B

C

FIGURE 6 | Small Molecule Inhibitor with High Specificity for hTREX1. (A–C) Standard time-course reactions were prepared in 150 mL volumes containing vehicle or
indicated concentrations of inhibitor, and hTREX1 (A), mTREX1 (B), or hTREX2 (C). Reactions were incubated 1-hr at room temperature, and 20 mL samples of each
reaction taken at time-points of 0, 5, 10, 20, 30, 45, & 60 minutes and quenched in 20 mL of 15X SYBR Green. Fluorescence was measured, and fluorescence vs
time plots were normalized to maximal initial fluorescence and background fluorescence (see Methods). Plots were fit with nonlinear regression. Plots were generated
in Prism (GraphPad) and combined in PowerPoint.
A B

FIGURE 5 | Structural Comparison of TREX1 and TREX2. Graphic (A) shows structural alignment of mTREX1(1-242) and hTREX2 in cyan and green, respectively,
and graphic (B) is the same alignment with discrepant residues colored red. Alignment and graphics were generated in PyMOL using the PDB structures 3MXJ and
1Y97 from refs (16, 108).
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hTREX2 enzyme (108, 113). Thus, crystallographic studies with the
TREX2 enzyme present an alternative strategy to deduce target
interactions in TREX1 inhibitors exhibiting cross reactivity.
Altogether, our structural studies lay the groundwork for rational
design modifications that contact residues discrepant between the
two enzymes.
SUMMARY

The 3’! 5’ exonuclease TREX1 acts in vivo to degrade DNA and
prevent aberrant nucleic acid sensing. In the absence of TREX1
exonuclease activity, substrate accumulation stimulates the DNA-
sensing pathway cGAS-STING, which drives IFN-signaling and
autoimmunity. TREX1 and cGAS-STING have been proposed to
function in the tumormicroenvironment, where TREX1 is believed
to degrade tumor-derivedDNA that would otherwise stimulate the
cGAS-STING pathway and elicit antitumor immunity. Thus, we
propose TREX1 as a novel immunotherapeutic target, and provide
data demonstrating significant antitumor immunity in TREX1-
deficient mice. We propose small molecules as a viable strategy for
TREX1 inhibition in the context of past work with other
targeting strategies.
MATERIALS AND METHODS

Expression and Purification of TREX
Enzymes
Detailedprotocols forhT1,mT1, andhT2enzymepurificationhave
been published (101) and summarized here. For homodimers,
pLM303x constructs encoding the recombinant TREX enzyme
Frontiers in Immunology | www.frontiersin.org 8
fused to an N-terminal maltose-binding protein (MBP) are
transformed into Rosetta II cells, and the MBP-linker-TREX
fusion protein is overexpressed. Cells were pelleted, subjected to
pressure-lysis, and the supernatants subjected to amylose column
chromatography. Eluent was treated with protease to cleave the
fusion protein linker and purified by phosphor-cellulose column
chromatography to obtain pure TREX enzyme.

Fluorescence-Based Exonuclease Assay
Our detailed protocol for this assay is published (101). Reaction
mixture was prepared containing variable concentrations of a
dsDNA substrate, 5 mM MgCl2, 2 mM DTT, 20 mM Tris base
(pH 7.5). Compounds were added at various concentrations as
DMSO solutions to the reaction mixture prior to enzyme
addition, and final DMSO-vehicle concentration is 2.5% in all
exonuclease experiments. Enzyme was diluted to 10X the final
reaction concentration via serial dilutions into 1 mg/mL BSA,
and then diluted 10-fold into the reaction to initiate resulting in
the appropriate TREX enzyme and BSA at 100 µg/mL. Reactions
were at room-temperature for 1hr. Samples (20 µL) were
removed at varied time points and quenched in a 384-well
black microplate containing 20 µL of 15X SYBR Green
solution. Fluorescence of quenched samples was measured
using a PolarStar Omega microplate reader (BMG LabTech) at
excitation/emission of 497/520.

The DNA substrate was generated by linearizing the ~10-kb
pMYC plasmid with the SacI (NEB) restriction enzyme per
vendor specifications and included in assays at a concentration
of 5 ng/µL. Enzyme concentrations were 15 nM for mT1, 75 nM
for hT2, and 15 nM for hT1. Time-course reactions were from
20 µL samples taken at 0, 5, 10, 20, 30, 45, & 60-minute time
points. Initial reaction volumes were 150 µL, compound
A B

FIGURE 7 | Active Sites are Accessible by Solvent Channel in TREX1 Apoenzyme Crystals. Structural representation of crystal lattice for mTREX1(1-242)
apoenzyme crystal. Functional unit of interest is colored cyan with DEDD active site residues for one protomer shown as red sticks; other functional units are colored
green. Graphic (A) is a slice through the crystal lattice where the active site is visibly facing the solvent channel, and graphic (B) looks through the solvent channel
into the crystal lattice. Alignment and graphic were generated in PyMOL using the PDB structure 3MXJ from ref (16).
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concentrations were as indicated in the figure, and vehicle
control reactions were always included.

Tumor Challenge
Nine week 129 S6/SvEvTac D18N mutant and WT mice were
generated as previously described (92). At 10 to 12 weeks, 5 × 106

H31m1 tumor cells were subcutaneously (s.c) injected in 200 µl
PBS into the shaved right flanks of recipient mice. Tumor size
was measured by a digital caliper every day and presented as the
cube of its diameters. Studies included 6-9 mice/group across 3
independent experiments. H31m1 cells were obtained from
Robert Schreiber (Washington University). All studies were
approved by the Institutional Animal Care and Use Committee
(IACUC) of the Wake Forest University School of Medicine.

Antibody Depletion Experiments
To determine which cells were essential for enhanced clearance
in D18N mice, we depleted CD4+ or CD8+ T cells by
administering 1500 µg of antibody (BioXCell) for 3 days prior
to and during tumor challenge (-2, 0, + 2, i.p.). This resulted in
99% selective depletion as assessed by flow cytometry on PBMCs
isolated at day 10. Clones 53-6.7 and GK1.5 were used for CD8a+

and CD4+ T cells, respectively.

Cell Isolation
The spleen was removed from mice after cervical dislocation.
Following mechanical disruption of splenocytes on a wire mesh
screen, red blood cells were removed by osmotic lysis in ACK
buffer (NH4Cl, KHCO3, and EDTA). Splenocytes were then
resuspended in complete media containing RPMI 1640
supplemented with 10% fetal calf serum (FCS, HyClone),
L-glutamine (HyClone), penicillin-streptomycin (Cellgro),
non-essential amino acids (GIBCO), and 2-mercaptoethanol
(GIBCO). For CD8+ T cell purification, splenocytes were
resuspended in PBS supplemented with FCS and EDTA. CD8+

T cells from splenocytes were then negatively selected by
magnetic bead using CD8+ T-Cell Purification Kit (Miltenyi
Biotec) according to the manufacturer’s instructions.

In tumor studies, the contralateral and draining lymph nodes
(brachial and axillary) were isolated. Tumor tissues were
dissociated by mechanical disruption and incubated with
enzymes in Tumor Dissociation Kit (Miltenyi Biotec) at 37°C
for 30 mins. TILs were then washed with RPMI 1640
supplemented with 1% fetal calf serum, and resuspended in
complete media. Tumor analyses used whole tumors of
approximately equivalent volume that were taken at 8-days
post challenge. Cell numbers in Figure 4 were determined by
flow cytometry by gating on either CD8 or CD4, then CD44 (as
shown in Figure 4A) and the PD-1 mean was calculated for
CD8+CD44high T-cells.

Surface and Intracellular Staining
In this study, the following antibodies were used: rat anti-mouse
CD8a-phycoerythrin (PE), rat anti-mouse CD8a-peridinin
chlorophyll protein (PerCP), rat anti-mouse CD8a-V500, rat
anti-mouse CD90.1 (Thy1.1)-allophycocyanin (APC), rat anti-
Frontiers in Immunology | www.frontiersin.org 9
mouse CD90.1- fluorescein isothiocyanate (FITC), rat anti-
mouse CD90.1-eFluor450, rat anti-mouse CD90.2 (Thy1.2)-
V500, rat anti-mouse CD4-APC, rat anti-mouse CD4-V500,
rat anti-mouse CD44-PerCP, rat anti-mouse CD44-eFluor450,
rat anti-mouse CD44-APC-eFluor780, rat anti-mouse CD127-
FITC, rat anti-mouse KLRG1-PE, rat anti-mouse CD27-PE-
Cyanine7, rat anti-mouse CD62L-APC-eFluor780, rat anti-
mouse CD69-PE-Cyanine7, rat anti-mouse PD-1-FITC, rat
anti-mouse LAG-3- PerCp-eFluor710, rat anti-mouse BTLA-
PE, rat anti-mouse IFN-g-FITC, rat anti-mouse TNF-a-PE-
Cyanine7, rat anti-mouse IL-2-APC, rat anti-mouse CCL3
(MIP-1a)-PE. KLRG1 antibody was purchased from Abcam.
CD8-V500, CD8-PerCp, IFN-g-FITC, TNF-a-PE-Cyanine7 and
IL-2-APC were purchased from BD Pharmingen. All other
antibodies were purchased from eBioscience. Surface staining
was performed by incubation of Abs at a 1:100 dilution in
fluorescence-activated cell sorter (FACS) buffer for 30 min on
ice. KLRG1 staining was performed at a 1:25 dilution. Tetramer
staining was performed at a 1:200 dilution. BTLA staining was
performed at a 1:333 dilution. To measure intracellular cytokine
levels, cells were incubated with 50 ng/ml phorbol 12-myristate
13-acetate (PMA) and 500 ng/ml ionomycin (ION) for 5 h at
37°C, and then treated with the BD Biosciences Cytofix/
Cytoperm kit according to the manufacturer’s instructions.
Intracellular transcription factor stain was performed by using
eBioscience Mouse Regulatory T Cell Staining Kit according to
the manufacturer’s instructions. After staining, samples were
fixed in 1% formaldehyde (Polysciences, lnc., Warrington,
PA) and acquired on a BD FACS Canto instrument. Manual
gating was performed on FlowJo software (TreeStar, San
Francisco, CA).
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