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Sphingosine-1-phosphate (S1P) is a phospholipid that regulates pleiotropic biological
activities and exerts extracellular functions by binding to five specific G-protein-coupled
receptors, S1P receptors (S1PR) 1–5. When activated by S1P, S1PR promote the
proliferation and invasion of tumor cells by inducing the formation of new blood vessels.
We developed and assessed a new monoclonal antibody imaging probe 99mTc-HYNIC-
S1PR1mAb, to explore the feasibility of targeting the S1PR1 in vitro and in vivo. S1PR1mAb
was prepared and followed by technetium-99m labeling with succinimidyl 6-
hydraziniumnicotinate hydrochloride. Cell uptake and blocking studies were performed to
investigate the binding specificity of 99mTc-HYNIC-S1PR1mAb in vitro. 99mTc-HYNIC-
S1P1mAb was also tested in vivo in mice xenografted with SK-HEP-1 (high-expression of
S1PR1) and MCF-7 (low-expression of S1PR1) using single-photon emission-computed
tomography (SPECT). Ex vivo gamma counting of tissues from tumor-bearing mice was
used to evaluate 99mTc-HYNIC-S1PR1mAb biodistribution. The biodistribution study results
showed significantly higher uptake in SK-HEP-1 tumors than in MCF-7 tumors (P < 0.001).
Reduced uptake of 99mTc-HYNIC-S1PR1mAb in SK-HEP-1 was observed in tumor-bearing
nude mice pretreated with fingolimod, which binds competitively to the receptors, especially
S1PR1. 99mTc-HYNIC-S1PR1mAb can be synthesized and specifically targeted to S1PR1 in
vitro and in vivo, allowing S1PR1 expression assessment with SPECT imaging.

Keywords: sphingosin-1-phosphate receptor 1, sphingosine-1 phosphate, 99mTc-HYNIC-S1PR1mAb, radioimmune,
SPECT, MCF-7 (breast cancer), SK-HEP-1
INTRODUCTION

Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid metabolite that plays an important role in
the maturation and homeostasis of the vascular system and in the transport of immune cells (1). S1P
signaling pathways are involved in multiple biological processes, including tumor immune
regulation, angiogenesis, tumor growth, tumor migration and invasion (2). which could be
org August 2021 | Volume 12 | Article 6608421
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abnormal in breast cancer, liver cancer, melanoma, papillary
thyroid cancer, pancreatic cancer, and prostate cancer (3).

S1P can bind to specific G protein-coupled receptors on the
cell membrane surface to generate downstream signals that
regulate physiological processes. The export of S1P is
facilitated by the transporter protein Spinster homolog 2 or the
ATP-binding cassette transporter protein family (4, 5). There are
five known S1P receptor subtypes (S1PR1–5). S1PR1 is involved
in, among many processes, promotion of proliferation and
invasion of tumor cells and the formation of new blood vessels
(6, 7). Studies have shown that S1PR1 is highly expressed in
colorectal cancer and that the up-regulation of S1PR1 expression
is closely related to deep infiltration of cancer cells and liver
metastasis. Multivariate survival analysis has shown that S1PR1
expression levels can be used as an independent prognostic
indicator of colorectal cancer (8). Among ER-positive breast
cancer patients on tamoxifen therapy, patients with high S1PR1
expression had a higher treatment recurrence rate than those
with low expression. Therefore, the expression of S1PR1 is
promising as a biomarker to predict the drug resistance of
tumors, to allow for more effective treatment (9). Further
studies have indicated elevated expression of S1PR1 in bladder
cancer tissue. S1PR1 stimulates bladder cancer cells to secrete
transforming growth factor (TGF)-b and IL-6, thereby inducing
the aggregation of regulatory T-cells (Tregs) (10). These studies
demonstrate that S1PR1 is a promising cancer biomarker that
may play a role in the prognosis of certain tumors.

Some studies have used S1PR1 as a therapeutic target for
tumors. The combination of S1PR1 antagonist and
chemotherapy drugs can be used as a new strategy for tumor
treatment (11). In addition, for the S1PR1 signal is necessary in
vascular stability, the loss of S1PR1 function will produce
disordered and non-functioning blood vessels and increase the
permeability of the blood vessels. Inhibition of S1PR1 can
destroy tumor blood vessels in xenograft tumor models and
ultimately inhibit tumor growth (12). In vivo studies have shown
that S1PR1 inhibitors can reduce the vascular stability of Lewis
lung cancer and inhibit angiogenesis and tumor growth (13). On
the other hand, the vascular endothelial growth factor (VEGF)
can promote tumor angiogenesis and tumor growth (14), and
simultaneous inhibition of S1PR1 and VEGFR can maximize the
effect of anti-angiogenesis therapy and may become an effective
treatment strategy for the treatment of renal cell carcinoma and
other types of tumors (15).

In view of the important role of S1PR1 in the occurrence,
development and metastasis of tumors, noninvasive monitoring
of the expression of S1PR1 in malignant tumors has important
clinical significance in formulating tumor treatment plans,
monitoring treatment effects, and evaluating prognosis. In
some recent studies, Tu’s and Haufe’s groups have designed
and synthesized a series of S1PRs, including specific carbon-11-
and fluorine-18-labeled radiotracers highly targeted to S1PR1
(16–21). They have shown promising cell membrane binding
assays in vitro towards S1PRs. Some in vivo evaluation of these
analogs was accomplished. Single-photon emission computed
tomography (SPECT) radioactive probes targeting S1PR1 are
Frontiers in Immunology | www.frontiersin.org 2
rarely known (22, 23). In this study, the S1PR1-targeted
monoclonal antibody (S1PR1mAb), which can specifically
target the S1PR1 protein on the cell surface, was designed and
synthesized. The antibody was radiolabeled with technetium-
99m using succinimidyl 6-hydraziniumnicotinate hydrochloride
(SHNH, Solulink, Inc., San Diego, CA, USA). The targeting
efficiency and pharmacokinetics of 99mTc-labeled S1PR1mAb
were then assessed to explore its potential clinical value in both
in vitro and in vivo studies.
METHODS AND MATERIALS

Antibody Preparation
We searched the human S1PR1 receptor protein sequence in the
protein database of the National Center for Biotechnology
Information (NCBI). The production and purification of the
murine monoclonal antibody was done by ChinaPeptides
Co., Ltd.

Cell Culture
The human hepatocellular carcinoma cell line SK-HEP-1 (high
expression of S1PR1) and the human breast carcinoma cell line
MCF-7 (low expression of S1PR1) were purchased from the Type
Culture Collection of the Chinese Academy of Sciences,
Shanghai, China (CAT# TCHu109 and TCHu74). SK-HEP-1
cells were cultured in Minimum Essential Medium (MEM,
Gibco, USA) and MCF-7 cells were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM, Gibco, USA). Both medias
were supplemented with 10% fetal bovine serum (FBS, HyClone,
USA), 100 U/ml penicillin and 100 mg/mL streptomycin
(Solarbio, Shanghai, China). The cultures were maintained at
37°C in 5% CO2 incubators.

Western Blot Analysis
When SK-HEP-1 and MCF-7 cells grew to a density of about
80%, we collected them and added cell lysate buffer (Beyotime,
Shanghai, China) and isolated the protein. The protein
concentration was determined using a bicinchoninic acid
(BCA) protein assay kit (Boster, Wuhan, China). After SDS–
PAGE electrophoresis, proteins were transferred to PVDF
membrane. The membrane was incubated with the anti-S1PR1
antibody (Abcam, ab233386) for one night and then an anti-
rabbit secondary antibody (Sanjian, Tianjin, China, LK2001) for
2 h. Images were processed with Image J software.

Monoclonal Antibody Labeling
and Purification
The procedure for S1PR1mAb radiolabeling comprised two key
steps. First, SHNH (40 mg, 140 nmol, Beijing Bailingwei
Technology Co., Ltd.) was added to the S1PR1mAb (140 mL, 1
nmol, 7.1nmol/mL) and reacted in darkness overnight at 4°C.
After filtering, 100 mL tricine (100 mg/mL, Sigma-Aldrich, USA),
4mL SnCl2 (7 mg/mL, Sigma-Aldrich) and 99mTcO−

4 (900-
1100mBq, 25-30 mCi, Beijing Atom High Tech, Beijing,
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China) were added to the reactions and incubated for 30 min at
room temperature to prepare 99mTc-HYNIC-S1PR1mAb.

The labeled compound was then purified on a PD-10 column
(General Electric, Milwaukee WI, USA). The radiolabeled
compound was analyzed by instant thin layer chromatography
(ITLC) to calculate its radiolabeling efficiency, radiochemical
purity, and in vitro stability (3, 6, 9, and 12 h in FBS, n = 4 per
group). Fifty percent acetonitrile and 0.01M PBS were used as the
developing solvent system.

Cell Uptake Assays
99mTc-HYNIC-S1PR1mAb uptake assays were performed in the
SK-HEP-1 and MCF-7 cell lines. Briefly, the cells were plated in
24-well plates (1.5 × 105 cells/well) and then incubated with 800
mL serum-free DMEM, or MEM containing 99mTc-HYNIC-
S1PR1mAb (37 kBq, 1mCi) at 37°C for 0.5, 1, 2, 4 and 6 h,
respectively. The cells were then rinsed twice with 1 mL PBS and
lysed with 1 N NaOH. The cell lysates and supernatants were
collected. Radioactivity was measured with an automatic well-
type gamma counter (2470,WIZARD®; PerkinElmer, Waltham,
MA, USA). For blocking studies, SK-HEP-1 and MCF-7 cells
were incubated with fingolimod (FTY720, Yuanye, Shanghai,
China) (1 nmol) at 37°C for 4 h prior to experiments.

Tumor Models
All animal experiments were performed in accordance with a
protocol approved by the Institutional Animal Care and Use
Committee of Tongji Medical College, Huazhong University of
Science and Technology. Female BALB/c nude mice (3-4 weeks
old, weighing 15.0-17.0g) were obtained from the Huafukang
Bio-Technology Company (Beijing, China). SK-HEP-1 or MCF-
7 cells in the logarithmic growth phase were inoculated
subcutaneously into the right axilla with 1 × 106 cells per
mouse. The mice were used as models for in vivo SPECT
imaging and biodistribution studies when the tumor size
reached 0.5-1.0 cm.

SPECT Imaging and Biodistribution
The SK-HEP-1 and MCF-7 tumor-bearing nude mice were
injected with 37 MBq (37.0MBq, 1mCi) of 99mTc-HYNIC-
S1PR1mAb by tail vein. Static imaging was performed using
SPECT with a pinhole collimator (Symbia T6®; Siemens,
Erlangen, Germany) at 2, 6, 12, 18, and 24 h after injection,
with corresponding acquisition times of 5, 10, 15, 20 and 30 min.
Each anesthetized mouse was placed on the scanner table in the
prone position. For the blocking study, SK-HEP-1 tumor-
bearing nude mice received intragastric FTY720 (3 mg/kg/d)
for 1 week before imaging.

For biodistribution, the SK-HEP-1 and MCF-7 tumor-
bearing nude mice were injected with 29.6 MBq (29.6 MBq,
0.8 mCi) of 99mTc-HYNIC-S1PR1mAb by tail vein injection with
the blocking group of SK-HEP-1 xenografted mice having
received intragastric fingolimod (3 mg/kg/d) for 1 week prior.
After the mice were sacrificed by cervical dislocation, blood,
brain, lung, heart, liver, spleen, kidney, stomach, small intestine,
large intestine, muscle, bone, tail and tumor tissue were taken out
and measured using an automatic gamma counter after washing
Frontiers in Immunology | www.frontiersin.org 3
and weighing. After attenuation correction, the percentage of
injected dose per gram of tissue (%ID/g) was calculated for each
tissue type and the radioactivity count ratio of tumor-to-blood
(T/B) and tumor-to-muscle (T/M) of each tumor-bearing mouse
were calculated.

Tissue S1PR1 Expression Levels
For immunohistochemistry, SK-HEP-1 and MCF-7 tumor-
bearing nude mice were sacrificed by cervical dislocation after
SPECT imaging. Lung, liver, spleen, kidney, muscle and tumor
tissues were removed and fixed with 4% paraformaldehyde.
Subsequent tissue staining was performed by Biossci
Biotechnology (Hubei, China). For western blotting,
appropriate amounts of SK-HEP-1 and MCF-7 tumor tissues
were rinsed with PBS 2–3 times, and then minced with scissors.
Tissues were lysed in radioimmune precipitation buffer
supplemented with a protease inhibitor mixture for 30 min at
4°C, and centrifuged for 10 min (4°C, 10,000 rpm). The
supernatant was considered to comprise the total protein
extracts, and then followed the remaining steps with the
western blot of the cell proteins.

Statistical Analysis
Statistical analysis was performed using Statistical Package for
the Social Sciences (SPSS) software (version 22.0, SPSS Inc.,
Chicago, IL, USA). All data are expressed as mean ± standard
deviation (SD). Differences were considered statistically
significant when P values were < 0.05.
RESULTS

S1PR1 Expression In Vitro
Western blotting was used to analyze the expression of S1PR1 in
SK-HEP-1 and MCF-7 cells. The results demonstrated that SK-
HEP-1 cells overexpressed S1PR1, while MCF-7 cells rarely
expressed S1PR1 (Figure 1A and Supplementary Figures 2–4).

Radiochemical Characteristics of 99mTc-
HYNIC-S1PR1mAb
The radiolabeling yield of 99mTc-HYNIC-S1PR1mAb was 61.45 ±
9.16% (four assays). After purification on a PD-10 column, the
radiochemical purity was 96.70 ± 0.04% (four separate
purifications), which indicated high radiochemical purity
(Supplementary Figure 1). The specific activity of 99mTc-
HYNIC-S1PR1mAb is 4.4MBq/mg. The purified 99mTc-HYNIC-
S1PR1mAb was placed in FBS and incubated at 37°C for in vitro
stability analysis. The results showed that the stability of the
molecular probes in FBS were 95.99 ± 3.99%, 91.05 ± 2.96%,
87.06 ± 4.58%, and 85.49 ± 3.48% at 3, 6, 9, and 12 h,
respectively (Figure 1B). The difference in the stability of 99mTc-
HYNIC-S1PR1mAb at 3h and 12h was not statistically significant
(P = 0.17).

Cell Uptake Study
As shown in Figure 1C, the uptake rate of 99mTc-HYNIC-
S1PR1mAb by SK-HEP-1 cells (experimental group) increased
August 2021 | Volume 12 | Article 660842
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significantly with time, the 0.5 h uptake rate was 2.08 ± 0.27%, and
the 6 h uptake rate was 10.90 ± 0.79% (four separate
measurements). The uptake rate in the blocking group of SK-
HEP-1 cells, incubated with 0.1µM FTY720 4 h earlier, was
significantly lower, measuring 0.62 ± 0.11% at 0.5 h and 4.51 ±
0.36% (n = 4) at 6 h. The specific binding of 99mTc-HYNIC-
S1PR1mAb in SK-HEP-1 cells were 1.47 ± 0.19% at 0.5h, 1.55 ±
0.16% at 1h, 2.64 ± 0.61% at 2h, 4.18 ± 0.81% at 4h and 6.39 ±
0.74% at 6h. The uptake rate in MCF-7 cells was similar to the
blocking group in the SK-HEP-1, measuring 0.69 ± 0.11% at 0.5 h
and 3.96 ± 0.39% (n = 4) at 6 h (P > 0.05). There was no significant
difference between the blocking and non-blocking in MCF-7 cells
(3.24 ± 0.98 vs. 3.66 ± 0.39%, 6h, P > 0.05) (Figure 1C).

SPECT Imaging
SPECT imaging results of SK-HEP-1 tumor model mice at 2, 12,
18, and 24 h are shown in Figure 2A. After injection of 99mTc-
HYNIC-S1PR1mAb, the uptake in SK-HEP-1 tumor-bearing
nude mice was mainly in the liver. The uptake at the tumor
site gradually increased with time, with tumors becoming clear at
18 h and 24 h. The SK-HEP-1 tumor xenografts in the blocking
SK-HEP-1 tumor model group (Figure 2B) and in the MCF-7
xenografts (Figure 2C) in the control group were close to the
background level at 2 h, and no obvious further increase in
uptake occurred. At 24 h, the uptake of the imaging agent by
tumors in the blocking group and the control group was
significantly lower than that in the experimental group.
Frontiers in Immunology | www.frontiersin.org 4
Biodistribution Studies
To further explore the metabolism and specificity of 99mTc-HYNIC-
S1PR1mAb in vivo, biodistribution studies were performed on
tumor-bearing nude mice in the SK-HEP-1 xenografted mice
group, the blocking group (SK-HEP-1 xenografted mice treated
with FTY720) and the MCF-7 xenografted mice. The results are
shown in Figure 3 and Table 1. When 99mTc-HYNIC-S1PR1mAb
was injected into the SK-HEP-1 xenografted mice group via the tail
vein for 24 h, the probes were mainly concentrated in the blood
and taken up by the liver, spleen and kidneys, indicated that the
blood pool activity was slow to clear. The uptake values of the
xenografted nude mice in blood, liver, spleen and kidney were
14.06 ± 0.75%ID/g, 11.89 ± 0.67%ID/g, 8.06 ± 0.54%ID/g, 6.79 ±
0.81%ID/g, respectively (n = 4). At 24 h after the injection of
99mTc-HYNIC-S1PR1mAb, the SK-HEP-1 tumor uptake was
5.53 ± 0.32%ID/g, which was higher than the tumor uptake values
of the tumor-bearing nude mice in the blocking group (P = 0.001)
and MCF-7 xenografted mice group (3.64 ± 0.39%ID/g, 2.81 ±
0.21%ID/g, respectively)(P < 0.001). At the same time, the tumor/
blood and tumor/muscle ratios of the tumor-bearing nude mice in
the experimental group were higher than those in the blocking
group and the control group. The biodistribution results were
consistent with the SPECT imaging results.

Tissue S1PR1 Expression
Western blotting confirmed that S1PR1 is highly expressed in
SK-HEP-1 solid tumors, while the expression of S1PR1 in muscle
A B

C

FIGURE 1 | (A) Western blot analysis of S1PR1 expression in SK-HEP-1 cells and MCF-7 cells; (B) Stability of 99mTc-HYNIC-S1PR1mAb in vitro at 3h, 6h, 9h, 12h
in FBS; (C) In vitro cellular uptake. The total bindings and blocking results of 99mTc-HYNIC-S1PR1mAb in SK-HEP-1 cells (experiment group) and MCF-7 cells
(control group) were included in panel C, as well as the specific binding in SK-HEP-1 cells. There was no significant difference between the blocking and non-
blocking in MCF-7 cells. *, **, and ns indicate P < 0.05 and P > 0.05 (n = 4), respectively.
August 2021 | Volume 12 | Article 660842
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tissues from nude mice in the experimental group and MCF-7
tumor tissues is very low (Figure 4A). Immunohistochemistry
staining confirmed that a small amount of S1PR1 was expressed
in vascular endothelial cells in lung, liver, spleen, kidney, muscle
and MCF-7 tumor tissues, while the cell membranes of SK-HEP-
1 tumors highly expressed S1PR1 (Figures 4B–I).
DISCUSSION

We developed a molecular probe, 99mTc-HYNIC-S1PR1mAb,
that can bind to S1PR1 both in vitro and in vivo. The uptake rate
of 99mTc-HYNIC-S1PR1mAb in tumor cells was related to the
expression of S1PR1 and could be specifically blocked. The
specificity of 99mTc-HYNIC-S1PR1mAb to S1PR1 was verified
at the cellular level. The uptake rate of 99mTc-HYNIC-
S1PR1mAb in SK-HEP-1 cells (S1PR1 high expression) was
Frontiers in Immunology | www.frontiersin.org 5
more than 2-fold greater than in MCF-7 (S1PR1 low
expression) or blocking groups.

SPECT imaging and biodistribution results show that tumors
with high expression of S1PR1 can specifically take up 99mTc-
HYNIC-S1PR1mAb. The tumor uptake in the blocking group
and the MCF-7 xenografted mice group were close to the
background level at 2 h and were significantly lower than in
the SK-HEP-1 group at 2 h. The results of SPECT imaging were
consistent with the biodistribution study results. At 24 h, the
tumor uptake value of the SK-HEP-1 group was 5.53 ± 0.32% ID/g,
which was higher than both blocking group (3.64 ± 0.39% ID/g,
P = 0.003) and MCF-7 group (2.81 ± 0.21% ID/g, P = 0.000),
and indicated that the molecular probe had targeting potential
and specificity for tumors with high S1PR1 expression. The
tumor/blood ratio and tumor/muscle ratio of the SK-HEP-1
group were 0.39 ± 0.01 and 5.99 ± 1.38, and the tumor/muscle
ratio was more than twice that of the blocking group (2.84 ± 0.52,
FIGURE 2 | SPECT imaging of tumor-bearing nude mice injected with 99mTc-HYNIC-S1PR1mAb. (A) SPECT imaging of SK-HEP-1 tumor-bearing nude mice at 2 h,
12 h, 18 h and 24 h. (B) SPECT imaging of blocked SK-HEP-1 tumor-bearing nude mice at 18 h and 24 h. (C) SPECT imaging of MCF-7 tumor-bearing nude mice
at 18 h and 24 h The white arrows indicate the tumor site.
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P = 0.020) and the MCF-7 group (2.38 ± 0.07, P = 0.011). The
results indicated that 99mTc-HYNIC-S1PR1mAb has a good
targeting ability to S1PR1 and could be used as an imaging
tracer for S1PR1.

SPECT imaging showed that 99mTc-HYNIC-S1PR1mAb was
mainly distributed in the liver, and the tumor in the experimental
group was not obvious at 2 h. Subsequently, the imaging agent at
the tumor site gradually concentrated with time, and the tumor
was seen vaguely at 12 h, and the tumor was clearly seen at 18 h
and 24 h. 99mTc-HYNIC-S1PR1mAb is retained in the blood and
non-target organs, especially in the liver, spleen and kidneys.
However, the immunohistochemistry result of tissues showed
that S1PR1 only had a mild expression in the liver. The high
uptake of the tracer might be related to the metabolism of 99mTc-
Frontiers in Immunology | www.frontiersin.org 6
HYNIC-S1PR1mAb through the liver, which is similar to the
results of other experiments using monoclonal antibodies
as radioactive probes (24–26). Antigen-antibody complexes
will be non-specifically taken up by the reticuloendothelial
system of the liver and spleen, resulting in a concentration of
radioactivity. This retention characteristic has a great impact
on the evaluation of liver tumors. The high activity in the kidney
can be attributed to the renal clearance of radioactive
degradation products (27), so it is necessary to further improve
the stability of molecular probes in vivo. In addition, the FTY720
may have anti-cancer effects, so the reducing reduction of
antibodies may be due to the decrease in tumor, rather than
decreased S1PR1. However, in our studies, we usually did not
collect the whole tumor tissues in biodistribution to analyze. The
valid data of 24 cases (complete tumor was collected), including
12 cases in the experimental group and 12 cases in the blocking
group showed that the difference in tumor volume between
the two groups was not statistically significant (P>0.05).
FTY720 does have the potential to kill tumors, but this is not
reflected in our data, probably because our sample size is limited.
However, we will explore more blocking conditions or try
different blockers (such as the blocking of the antibody itself)
in future experiments.

S1PR1 has played an important role in tumor, inflammation,
immune system, vascular regulation, etc. (11–13). It could be a
key biomarker in immune responses, inflammation, and in the
prognosis of certain tumors (4, 28). Current research focuses on
the synthesis of small molecule radioactive probes binding to
S1PRs for PET scanning. For example, 11C-TZ3321 can detect
the up-regulation of S1PR1 in inflammatory blood vessels, and
the expression of S1PR1 is higher in neointimal hyperplasia, so
11C-TZ3321 may realize the detection of early inflammation or
can be used in the diagnosis and prognosis of atherosclerosis (29,
30). To extend the imaging time, some studies have used 18F-
labeled S1PR1 radioligands. After the molecular probes traversed
the blood–brain barrier, an in vivo autoradiographic study of the
FIGURE 3 | Biodistribution study of 99mTc-HYNIC-S1PR1mAb in SK-HEP-1 tumor-bearing nude mice, blocked SK-HEP-1 tumor-bearing nude mice and MCF-7
tumor-bearing nude mice at 24 h post-injection. * and **P < 0.05 (n = 4).
TABLE 1 | Biodistribution of 99mTc-HYNIC-S1PR1mAb in SK-HEP-1 (including
the SK-HEP-1 group and the blocking group) and MCF-7 tumor-bearing nude
mice at 24 h post-injection.

Organs SK-HEP-1 Blocking MCF-7

Blood 14.06 ± 0.75 13.43 ± 1.10 14.03 ± 1.61
Brain 0.38 ± 0.04 0.39 ± 0.09 0.36 ± 0.09
Lung 4.98 ± 0.67 5.92 ± 0.55 4.56 ± 0.68
Heart 4.29 ± 0.88 4.03 ± 1.01 3.01 ± 0.24
Liver 11.89 ± 0.67 12.96 ± 1.64 11.09 ± 1.44
Spleen 8.06 ± 0.54 9.40 ± 1.10 7.51 ± 0.50
Kidney 6.79 ± 0.81 7.49 ± 0.76 6.72 ± 0.24
Stomach 2.72 ± 0.21 3.52 ± 0.47 1.82 ± 0.30
Small intestine 2.43 ± 0.47 2.39 ± 0.93 2.03 ± 0.03
Large intestine 2.42 ± 0.66 2.82 ± 0.79 3.11 ± 2.03
Muscle 0.95 ± 0.20 1.33 ± 0.38 3.11 ± 2.03
Bone 2.05 ± 0.26 2.34 ± 0.49 1.62 ± 0.29
Tumor 5.53 ± 0.32 3.64 ± 0.39 2.81 ± 0.21
Uptake ratio
Tumor/Blood 0.39 ± 0.01 0.27 ± 0.04 0.21 ± 0.02
Tumor/Muscle 5.99 ± 1.38 2.84 ± 0.52 2.38 ± 0.07
All data were expressed as mean ± SD. The uptake in each tissue was expressed as the
percentage of injected dose per gram of tissue (%ID/g) (n=4).
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neuroinflammatory response in mice was performed, and S1PR1
imaging in primates was achieved with satisfactory results (31,
32). Despite the challenges and drawbacks, newer 99mTc-based
S1PR1-targeted tracers should also be studied, for SPECT
imaging is widely used.

Although the use of radiolabeled monoclonal antibodies can
achieve a good target-to-background ratio, the longer circulating
half-life is the main limitation of using them as molecular
imaging probes (33). For example, the tumor in this
experiment was clearly visible at 24 hours, but the image
quality obtained after 4 half-lives of the nuclide is not good
enough. Longer-lived isotopes may be a better choice, such as
indium-111. To optimize the target-to-background ratio,
pretargeting techniques may be used in the future. The
monoclonal antibody and the small molecule radioligand are
injected successively. When the radioligand is injected, the
antibody has accumulated in the tumor and most unbound
antibody has already been removed from the bloodstream. Pre-
targeting techniques can significantly reduce the uptake of tracer
in non-target tissues, which is beneficial to achieve the purpose of
radioimmunoimaging using short half-life nuclides or large
molecular weight monoclonal antibodies (34, 35).

In addition, to optimize the imaging results, small molecule
probes aimed at the same target can be selected, such as small
Frontiers in Immunology | www.frontiersin.org 7
molecule radioligands, targeting peptides, Fab fragments (36).
Targeting peptides have a shorter circulating half-life, better
permeability, lower immunogenicity, and are easily chemically
modified, so they may be more suitable for scientific research and
clinical imaging (37–40). Li used 99mTc-labeled HER2-targeted
peptides for experiments, and the results showed that the
maximum absorption value of the was observed 30 min after
injection of the imaging agent, and the highest tumor/organ
radioactive uptake ratio was observed within 1 h (36). Fab
fragments retain the same specificity and affinity activity as
monoclonal antibodies. Compared with intact antibodies, Fab
fragments have a smaller molecular weight and faster
metabolism in the body. The lack of Fc fragments can reduce
non-specific uptake. Clear tumor visualization and high tumor/
background signal ratio can be obtained in a short time (33, 41).
In general, the reduction in molecular weight optimizes the
imaging performance of the probe, and small molecule probes
can be combined with positron nuclides with a short half-life to
perform rapid PET imaging. The sensitivity and spatial
resolution of PET are higher than that of SPECT, which can
provide more accurate information for the study of S1PR1 and
the diagnosis and treatment related to S1PR1. This will be one
of the development directions of radioimmunoimaging in
the future.
FIGURE 4 | (A) Western blot analysis of S1PR1 expression in SK-HEP-1, MCF-7 tumor tissues and muscle. (B–I) The immunohistochemical staining results of
various organs and tissues (under 100× and 200× magnification).
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CONCLUSION

We developed a molecular probe, 99mTc-HYNIC-S1PR1mAb,
that can target to S1PR1. Both in vitro and in vivo experiments
showed that 99mTc-HYNIC-S1PR1mAb have good specificity
and affinity. Further studies could be performed to optimize
the probe for better pharmacokinetics in vivo.
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