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Probiotics have been associated with a variety of health benefits. They can act as
adjuvant to enhance specific immune response. Bacterial cell wall (CW) molecules are
key structures that interact with host receptors promoting probiotic effects. The adjuvant
capacity underlying this sub-cellular fraction purified from Lactobacillus casei CRL431
and L. paracasei CNCMI-1518 remains to be characterized. We interrogated the
molecular and cellular events after oral feeding with probiotic-derived CW in addition
to heat-inactivated Salmonella Typhimurium and their subsequent protective capacity
against S. Typhimurium challenge. Intact probiotic bacteria were orally administered for
comparison. We find that previous oral feeding with probiotics or their sub-cellular
fraction reduce bacterial burden in spleen and liver after Salmonella challenge. Antibody
responses after pathogen challenge were negligible, characterized by not major changes
in the antibody-mediated phagocytic activity, and in the levels of total and Salmonella-
specific intestinal sIgA and serum IgG, respectively. Conversely, the beneficial effect of
probiotic-derived CW after S. Typhimurium challenge were ascribed to a Th1-type cell-
mediated immunity which was characterized by augmentation of the delayed-type
hypersensitivity response. The cell-mediated immunity associated with the oral feeding
with probiotic-derived CW was accompanied with a Th1-cell polarizing cytokines,
distinguished by increase IFN-g/IL-4 ratio. Similar results were observed with the intact
probiotics. Our study identified molecular events associated with the oral administration
of sub-cellular structures derived from probiotics and their adjuvant capacity to exert
immune modulatory function.
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INTRODUCTION

The intestinal microbiota is a complex microorganism ecosystem
that plays essential roles in both digestive and the gut immune
function (1, 2). As part of this community, beneficial
microorganisms termed probiotics, are able to improve host
health (3–5). Probiotics can influence the intestinal immune
system by several mechanisms including change in the
microbiota composition and its function, and improvement of
the intestinal epithelial barrier (6, 7). Probiotics can activate the
gut immune system by direct interaction with the intestinal
epithelial and immune cells and modulate lamina propria and
extraintestinal immune cell functions (8–10). In addition, one of
the most extensively effects documented for certain probiotic
strains are their capacity to exclude or inhibit enteric pathogens
such as Salmonella (11–15).

Salmonella spp. remains one of the main agents causing
foodborne disease in the worldwide (16). Salmonella infection
is self-limited to gastrointestinal illness; although, in
immunocompromised hosts, the enteric pathogen can
translocate the intestinal barrier and spreads systemically
causing severe disease (17–19). Mice are susceptible to
Salmonella infection and have been ample used to investigate
bacteria pathogenesis and host immune response (20, 21).
Severa l reports have demonstrated that probiot ic
administration to mice before and after oral challenge with S.
Typhimurium, improve animal survival, reduce pathogen spread
outside the intestine, attenuate intestinal inflammation, and
modulate cytokines production and IgA secretion in the gut
(14, 15, 22). Furthermore, probiotic administration, has shown
increases antimicrobial activity of the intestinal fluid against S.
Typhimurium, which was associated with disruption of the
enteric bacteria cell wall (CW) and its fragmentation (23).

The CW of Gram positive probiotic bacteria, exhibit a
peptidoglycan layer embedded with teichoic acid motifs and
polysaccharide molecules (24). Bacterial CW molecules are
crucial structures involved in the probiotic effects (25). These
structural ligands act as microbes-associated molecular patterns
(MAMPs) that interact with host pattern-recognition receptors
(PRRs) and activate immune and non-immune cells (26). We
have previously shown that administration of probiotic-derived
CW to mice for 7 days, modulate cytokine secretion of the
intestinal epithelial cells, enhance antimicrobial function of
macrophages at different compartments including Peyer’s
patches, peritoneal cavity, and spleen, and increase the number
of IgA-secreting cells in the gut lamina propria (10). Despite the
beneficial effect of probiotics and their sub-cellular fraction on
the innate immune function, remains not well characterized the
contribution of the probiotic CW as oral adjuvant of the innate
and adaptive immune response.

Due to the scarceness of effective and safety oral adjuvant
available, our aim was to analyze the adjuvant effect of two
probiotic strains Lactobacillus casei CRL 431 (Lc431) and L.
paracasei CNCM I-1518 (Lp1518) and their CW (CW431 and
CW1518, respectively) in an immunization process with heat-
inactivated S. Typhimurium, mimicking a prophylactic vaccine
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protocol. We evaluate the protective capacity of the immune
response elicited by the immunogen heat-inactivated S.
Typhimurium adjuvanted with probiotics or their CW against
S. Typhimurium challenge. The immune response was
characterized by measuring antibody levels, cytokine
production and cell-mediated function of mice at day 21 post-
immunization and following S. Typhimurium challenge.
MATERIAL AND METHODS

Animals
Male BALB/c mice (6-weeks-old; weight, 26 ± 4 g) were obtained
from closed random bred colony maintained at CERELA
(Centro de Referencia para Lactobacilos, San Miguel de
Tucumán, Tucumán, Argentina). Animals were kept during an
interval period of 21 days in a controlled atmosphere (22 ± 2°C;
55 ± 2% relative humidity) with a 12h light/dark cycle, fed with a
conventional balanced diet, and drinking water ad libitum.
Studies were approved by CERELA Institutional Animal Care
and Use Committee (Protocol No. CRL-BIOT-LI-2011/1A).

Bacterial Strains and Probiotic CW
Probiotic strains: Lactobacillus casei CRL431 (Lc431) was
obtained from CERELA culture collection, and Lactobacillus
paracasei CNCM I-1518 (Lp1518) was provided by DANONE
Argentina. These strains were cultured for 16h at 37°C in Man-
Rogosa-Sharpe (MRS) broth (Britania, Buenos Aires, Argentina).
Salmonella enterica serovar Typhimurium was obtained from
Bacteriology Department, Hospital del Niño Jesús (San Miguel
de Tucumán, Argentina) and cultured for 16h at 37°C in Brain
Heart Infusion (BHI) broth (Britania, Buenos Aires, Argentina).

Probiotic CW were obtained as previously described (10).
Briefly, Lc431 and Lp1518 were grown in MRS broth for 16h at
37°C. The biomass was harvested at 9,900 xg for 10 min at 4°C
and washed three times with distilled sterile cold water. The cells
were resuspended in one volume of distilled sterile cold water
and harvested at 33,000 xg for 30 min. The pellet was lysed three
times with a French press at 20,000 psi. The product obtained
was harvested at 4,000 xg for 15 min at 4°C. The supernatant
obtained was them harvested at 30,000 xg for 30 min at 4°C. The
pellet was delipidated by sequent treatment with methanol:
chloroform:water (1:1:1), methanol:chloroform (1:1) and
chloroform. The delipidated product was resuspended in sterile
0.01M PBS pH 7.4 and treated with bovine pancreatic DNase I
(50 µg/ml) and ribonuclease A (100 µg/ml) (Sigma-Aldrich,
USA) by shaking at 37°C during 4h. The insoluble product
(intact CW) was washed with distilled sterile water, and
aliquoted of ~1000 µg/ml of total proteins determined
by Bradford method. Intact CW was lyophilized (dry
weight ~0.0080 g) and stored at -80°C until used. Lyophilized
was resuspended in distilled sterile water and administered at 8
mg/ml/mice, as previously reported (27). The products obtained
were used as CW from L. casei CRL431 (CW431), and L.
paracasei CNCM I-1518 (CW1518).
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Salmonella Typhimurium Inactivation
S. Typhimurium was grown at 37°C in BHI broth until reach a
final concentration of ~1 x 109 colony forming units (CFU)/ml.
Bacteria harvested at 3,000 xg for 10 min were washed with
sterile and cold 0.01M PBS pH 7.4. The bacterial pellet was
suspended in sterile PBS and inactivated by three heating cycle of
1h at 60°C. Bacterial deaths was confirmed by plating on
Salmonella-Shigella (SS) agar (Britania, Buenos Aires,
Argentina). Protein concentration of heat-inactivated S.
Typhimurium was determined by Bradford method, and
aliquots of 100 µg/ml was stored at -20°C until used.

Feeding Procedures
Lc431 and Lp1518 suspensions were administrated for 7 and 5
consecutive days, respectively, optimal time for the activation of
the intestinal immune system for each strain, as previously
described (28). Probiotic bacteria were given in 5 ml of sterile
10% (w/v) skim milk powder and resuspended in the drinking
water to a final concentration of 1x108 CFU/ml. One hundred
microliters/day/mice of CW431 or CW1518 (8 mg/ml) were given
by gavage during 7 consecutive days. Animals receiving PBS
served as control.

Study Design
Figure 1 shown the experimental design. The study contained
five experimental groups, with three to six mouse per group, were
treated with: PBS, or Lc431, or CW431, or Lp1518, or CW1518 as
described above. Mice were immunized with heat-inactivated S.
Typhimurium (100 ml) via oral route on day 1, 3, and 5 of the
aforementioned treatment. After 21 days, a group of mice were
orally challenged with virulent S. Typhimurium (1x109CFU/ml)
whereas other group of animals received PBS (uninfected). All
animals were euthanized 72h post-challenge.

Enteric Bacteria Colonization in Spleen
and Liver
The spleen and liver were aseptically removed, weighed, and
homogenized under sterile conditions using a microhomogenizer
(MSE, England) in 5 ml of peptone water (0.1%). Serial dilutions
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were plated on MRS and MacConkey agar (Britania, Buenos
Aires, Argentina) and incubated overnight at 37°C.

Opsonophagocytic Uptake
by Macrophages
Opsonophagocytic assay was performed as it was described (29),
with minor modifications. An overnight culture of S.
Typhimurium was diluted 1:25 in fresh BHI broth and
incubated at 37°C until the OD600 reached 0.6. Ninety
microliters of this bacterial suspension were then added to 10
µl mice sera previously heat-inactivated at 56°C for 20 min, and
incubated at room temperature (RT) for 20 min. Bacteria
suspension (1x107 CFU) was added to the semi-confluent
macrophage cell line, Raw 264.7 in RPMI-1640 plus 10% FBS,
to a ratio 100:1 (bacterium/macrophage). The plate was
incubated for 45 min (37°C, 5% CO2). Macrophages were
washed with sterile PBS, replaced with fresh RPMI-1640
medium containing 100 µg/ml gentamicin and incubated
additionally for 1h (37°C, 5% CO2). After removing the media,
macrophages were washed three times with sterile PBS. Finally,
the Raw 264.7 cells were lysed with 500 µl of 0.5% Triton X-100
and vigorous pipetting, and cell lysates were plated on SS
agar. Intracellular bacteria were enumerated. The percentage of
bacteria taken up by Raw 264.7 cells (i.e., percent opsonization)
was calculated by dividing the number of bacteria that survived
the gentamicin treatment by the inoculum size and multiplying
by 100.

Total and Salmonella-Specific
Antibody Measurements
Serum (IgG, IgG1, and IgG2a) and intestinal fluid (sIgA) anti-S.
Typhimurium antibodies were quantified by ELISA. Briefly, 96-
wells EIA/RIA plates high binding (Costar, USA) were coated
with 100 µl/well of heat-killed S. Typhimurium suspension (109

CFU/ml) in carbonate-bicarbonate buffer pH 9.6 and incubated
overnight at 4°C. Non-specific protein-binding sites were
blocked with PBS containing 5% skim milk powder for 1h at
37°C. Appropriate sample dilutions (serum, 1:1000; intestinal
fluid, 1:25) were incubated for 1h at 37°C. For IgG and subclasses
FIGURE 1 | Study design. BALB/c mice (6 weeks-old) were given probiotic bacteria, Lc431 or Lp1518, in the drinking water for 7 and 5 consecutive days,
respectively. CW431 or CW1518, were administered by gavage for 7 consecutive days. Mice were immunized with heat-inactivated S. Typhimurium via oral route on
days 1, 3, and 5 of either probiotics or CW administration. After 21 days, animals were challenged with one dose of virulent S. Typhimurium via oral route and a
group of mice received PBS (oral) and served as control (uninfected); mice were euthanized 72h.
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detection, primary antibodies included biotinylated mouse anti-
IgG (Jackson ImmunoResearch, USA; 1:20,000), anti-IgG1
and -IgG2a (BD Pharmingen, USA; 1:250) were incubated for
1h at RT. Secondary antibodies included HRP-labelled
antibodies obtained in rabbit specific for mouse IgG, IgG1, and
IgG2a were incubated for 1h at 37°C. For sIgA detection,
peroxidase-conjugated mouse anti-sIgA (Sigma-Aldrich, USA)
were incubated for 1h at 37°C. Antibodies were detected by
3,3’,5,5’-tetramethylbenzidine (TMB) peroxidase substrate (BD
Biosciences, USA). Plates were incubated for 30 min at RT and
reaction was stopped with 2N H2SO4. Plates were read at 450 nm
using a VERSA Max Microplate Reader (Molecular Devices,
Sunnyvale, CA, USA). Total sIgA was determined in the
intestinal fluid as previously described (30). Briefly, affinity-
purified monoclonal goat anti-IgA (a-chain specific Sigma, St
Louis, MO, USA) was added in 0.05 M carbonate-bicarbonate
buffer (pH 9.6) to 96 wells plates and incubated at 37°C for 1h.
The plates were then washed with PBS containing 0.05% Tween
20 (PBS-T) and blocked for 1h at 37°C with 0.5% non-fat dry
milk in PBS. Plates were washed and incubated for 2 h at 37°C
with either 50 ml of standard kappa IgA (Sigma, St. Louis, USA)
or 50 ml of intestinal fluid samples. Plates were washed and
incubated in the presence of HRP-conjugated anti-IgA-specific
antibodies (Sigma, St. Louis, USA) for 1h at 37°C. Plates were
washed and TMB was added. Plates were incubated for 30 min at
RT; reaction were stopped with 2N H2SO4 and plates were read
at 450 nm.

Delayed-Type Hypersensitivity
(DTH) Assay
Mice were intradermally injected with 10 µg of heat-inactivated
S. Typhimurium in one of the footpads. As control, the
contralateral footpad was injected with an equal volume of
saline solution. A group of mice were orally challenged with
virulent S. Typhimurium (1x109CFU/ml) whereas other group of
animals received PBS 24h after intradermal injection. Footpad
swelling was measured 48h post injection using a digital caliper
with a precision of 0.01 mm. The increase in footpad thickness
(mm) was calculated as the footpad thickness injected with heat-
killed S. Typhimurium – the footpad thickness injected with
saline solution.

Cytokine Measurements
The spleen was aseptically removed and transferred into 15 ml
tubes containing 5 ml of Hank’s buffered salt solution (HBSS)
(Sigma-Aldrich, USA) and 10% fetal bovine serum (FBS). The
organ was mechanically dissociated under sterile conditions.
Cells were harvested by centrifugation at 800-1000 xg for
15 min at 4°C. The cell pellets were gently mixed with 2 ml
of sterile red blood lysing buffer for 2 min. The hemolysis
was stopped with sterile PBS. Cells were centrifuged and
resuspended in RPMI-1640 medium (Gibco/Life Technologies,
USA) containing 10% FBS. Total splenocytes were cultured
at a concentration of 1x106 cells/ml in 24-well plates with
fresh RPMI-1640 medium containing 10% FBS and gentamicin
Frontiers in Immunology | www.frontiersin.org 4
(100 µg/ml). The plates were incubated for 16h (37°C, 5% CO2).
IFN-g, TNF-a, IL-4, IL-6, and IL-10 were measured in the
supernatant of splenocytes by ELISA following the manufacturer’s
instructions (BD OptEIA; BD Biosciences, USA).

Statistical Analysis
Statistical significances were calculated using non-parametric
Mann-Whitney U test to compare two groups. Significant
differences among more than two groups were determined
based on one-way ANOVA with Šidák’s correction for
multiple comparison. P values, and number of samples are
indicated in the figure legends. Statistical tests were performed
and plotted using GraphPad Prism v9.
RESULTS

Probiotic Bacteria and Their CW Reduce
Enteric Bacteria Burden in Spleen and
Liver After S. Typhimurium Infection
We first evaluated whether oral administration of probiotics or
their CW along with oral immunization with heat-inactivated S.
Typhimurium generate an immune response able to protect mice
against S. Typhimurium challenge. Enteric bacteria spread was
determined in extraintestinal organs including liver and spleen.
As expected, uninfected animals were cleared of organisms in
spleen and liver. By contrast, in Salmonella-challenged mice,
enteric organisms were enumerated in the macerated of spleen
and liver (Table 1). Interestingly, infected animals that have
received Lc431 or Lp1518 or their CW, enteric organisms load
were significantly reduced in spleen and liver compared to PBS
group (Table 1). These results suggest that probiotic bacteria and
their CW protect the host, reducing enteric bacteria burden after
S. Typhimurium challenge.

Probiotics and Their CW Do Not Improve
Antibody-Mediated Opsonophagocytosis
Against S. Typhimurium
We evaluated whether antibodies produced during oral
administration of Lc431 or Lp1518 or their CW along with
oral immunization with heat-inactivated S. Typhimurium
improve the capacity of phagocytic cells to uptake S.
Typhimurium. Mice serum were collected on day 21 after
administration and pre-incubated with S. Typhimurium.
Opsonized Salmonella were then incubated with phagocytic
cells, Raw264.7. Serum derived from PBS group and non-
immunized mice , were used as control . Increased
opsonophagocytic activity was observed in serum derived from
both uninfected and Salmonella-infected mice compared to non-
immunized mice (Figure 2). Striking, in Salmonella-infected
mice that received probiotic bacteria Lc431 or Lp1518,
decreased phagocytosis was observed compared to PBS group
(Figure 2). Thus, probiotics and their CW did not enhance
antibody-mediated phagocytosis against S. Typhimurium.
May 2021 | Volume 12 | Article 660854
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Probiotics and Their CW Modulate
Antibody Immune Response Elicited
Against S. Typhimurium Challenge

We next investigated the levels of antibodies elicited after S.
Typhimurium challenge in mice that were given probiotics or
their CW along with oral immunization with heat-inactivated S.
Typhimurium. Secretory IgA (sIgA) and IgG levels were
Frontiers in Immunology | www.frontiersin.org 5
determined by ELISA in the intestinal fluid and serum,
respectively. sIgA levels were similar with all but one treatment
(Lp1518) in uninfected mice compared to PBS group; whereas,
during infection reduced levels of sIgA were detected in Lc431-,
CW431-, and Lp1518-treated mice as compared to PBS
(Figure 3A). Moreover, Salmonella-specific sIgA levels were
increased in uninfected mice that received Lc431 and CW431,
while reduced levels were determined in CW1518 in comparison
FIGURE 2 | Probiotic and their CW did not enhance antibody-mediated phagocytosis against S. Typhimurium. Percentage of phagocytosis of S. Typhimurium
opsonized with serum obtained from uninfected or infected animals. Non-immunized animals (littermate mice) were used as cut-off (dashed line). Data are shown as
mean ± SEM from three independent experiments with 3 mice per group. P values were calculated with one-way ANOVA with Šidak correction for multiple
comparisons. *P < 0.05.
TABLE 1 | Enteric bacteria burden into spleen and liver after S. Typhimurium challenge.

Organ Group MRS MacConkey

Spleen PBS 6.831 ± 0.056 6.742 ± 0.028
Lc431 6.283 ± 0.155* 5.983 ± 0.172*
CW431 6.165 ± 0.154* 5.669 ± 0.269**
Lp1518 6.197 ± 0.152* 5.719 ± 0.077**
CW1518 6.294 ± 0.030* 6.077 ± 0.150*

Liver PBS 6.677 ± 0.127 6.591 ± 0.164
Lc431 5.853 ± 0.096* 5.460 ± 0.087*
CW431 5.926 ± 0.074* 5.692 ± 0.107ns

Lp1518 5.998 ± 0.246* 5.493 ± 0.466*
CW1518 5.925 ± 0.173* 5.444 ± 0.306*
May 2021 | Volume 12
CFU are expressed as log10 numbers of bacteria per gram of organ. Each value represents the mean ± SEM (n=6). One-way ANOVA with Šidak correction for multiple comparisons.
*P < 0.05; **P < 0.01; ns, not significant compared to PBS group.
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to PBS group (Figure 3B). After Salmonella challenge, a
significantly increase of Salmonella-specific sIgA were detected
in Lp1518-treated mice as compared to PBS as well as, increased
levels (although not significant) where observed for Lc431-, and
CW431-treated mice compared to PBS group (Figure 3B). A
striking observation was the reduced titers of Salmonella-specific
IgG in mice that received probiotics or their CW, even after
Salmonella challenge compared to PBS group (Figure 3C).

Further, we determined the levels of IgG1 and IgG2a in the
serum of mice as a bias of Th2/Th1 response, respectively (31).
Frontiers in Immunology | www.frontiersin.org 6
Increased levels of IgG1 were detected in uninfected mice that
received probiotics or their CW as compared to IgG2a levels
(Figure 3D); inversely, after Salmonella challenge, increased
levels of IgG2a were detected in mice that received Lc431 or
Lp1518 or their CW (Figure 3E).

Probiotics and Their CW Improve In Vivo
Cellular Immune Response
We next sought to investigate whether Lc431 or Lp1518 or their
CW promote cell-mediated response against S. Typhimurium.
A B

DC E

FIGURE 3 | Probiotic and their CW modulate mucosal antibody response against S. Typhimurium. (A, B) Total and Salmonella-specific sIgA levels in intestinal fluid
of uninfected and S. Typhimurium infected mice. (C) Salmonella-specific IgG titer in serum of uninfected and S. Typhimurium infected mice. (D, E) Salmonella-
specific IgG subclasses determined in serum of uninfected (D) and S. Typhimurium infected (E) mice. Data are shown as mean ± SEM. Data are pooled from two
independent experiments (A, B) or representative of three independent experiments (C–E) with 3-6 mice per group. P values were calculated with one-way ANOVA
with Šidak correction for multiple comparisons (A–C) and non-parametric Mann-Whitney test (D, E). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
A B

FIGURE 4 | Probiotic and their CW enhance Th1 response against S. Typhimurium. (A) Intradermal injection with heat-inactivated S. Typhimurium were performed
in one footpad at day 21 of probiotic or CW administration and oral immunization with heat-inactivated S. Typhimurium as was described in Figure 1. PBS was
injected in the contralateral footpad as control. After 24h, animals were challenged with one dose of virulent S. Typhimurium via oral route and a group of mice
received PBS (oral) and served as control (uninfected); mice were euthanized 48h from intradermal injection. (B) Footpad swelling measurement of uninfected and S.
Typhimurium infected mice. Non-immunized animals (littermate mice) were used as cut-off (dashed line). Data are shown as mean ± SEM from three independent
experiments with 3 mice per group. P values were calculated with one-way ANOVA with Šidak correction for multiple comparisons. ***P < 0.001; ****P < 0.0001.
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We performed an in vivo DTH test as measurement of Th1
response. Intradermal injection of heat-inactivated S.
Typhimurium was performed in one footpad of mice that have
previously received oral administration of Lc431 or Lp1518 or
their CW along with oral immunization of heat-inactivated S.
Typhimurium. Following 24h, a group of mice were challenged
with S. Typhimurium. Footpad swelling was measured after 48h
of the intradermal injection (Figure 4A). We found increased
swelling of the footpad in both uninfected and infected mice
previous immunized with heat-inactivated S. Typhimurium and
that received Lc431 or Lp1518 or their CW compared to both
PBS and littermate mice (Figure 4B).

Probiotics and Their CW Modulate
Cytokine Production in a Strain
Specific Manner
Next, we evaluated the cytokine profiles in mice 21 days after
treatments and orally challenged with S. Typhimurium. The
levels of IFN-g, TNF-a, IL-12p70, IL-4, IL-10, and IL-6 were
measured in the supernatants of splenocytes by ELISA.
Splenocytes of uninfected mice under all treatments but one
(CW431) revealed increased levels of IFN-g compared to PBS-
treated animals; whereas Salmonella-infected mice, similar levels
of IFN-g were detected in the supernatants for all evaluated
Frontiers in Immunology | www.frontiersin.org 7
conditions as compared to PBS (Figure 5A). TNF-a levels were
significantly increased in uninfected mice that received CW431
and Lp1518 treatment compared to PBS, while after Salmonella
challenge, reduced levels of TNF-a were detected in Lc431-,
CW431-, and CW1518-treated mice compared to PBS group
(Figure 5B). IL-12p70 were reduced in the supernatant of
splenocytes of uninfected mice that received Lc431, CW431,
and Lp1518 as compared to PBS-treated mice; by contrast,
Salmonella-challenged mice, IL-12p70 were increased in
Lc431-, but reduced in CW431-, and Lp1518-treated mice
compared to PBS (Figure 5C). IL-4 levels were reduced in
uninfected mice that received Lp1518 and CW1518, whereas
after Salmonella challenge, reduced levels were detected in all
groups but one (Lp1518) as compared to PBS (Figure 5D). The
levels of IL-6 were reduced in both uninfected and Salmonella-
challenged mice for all treatments compared to PBS group
(Figure 5E). IL-10 levels were increased in uninfected mice
that received Lc431 and Lp1518 compared to PBS group;
whereas in Salmonella-challenged mice, IL-10 levels were
increased in Lp1518-treated mice compared to PBS (Figure 5F).

We determined IFN-g/IL-4, and IL-10/TNF-a and IL-10/IL-
12p70 ratios as a balance of Th1/Th2 immune response. As
expected, Salmonella-challenged mice revealed bias toward
Th1-cytokine profile associated with both probiotics and their
A B

D E F

G H

C

I

FIGURE 5 | Probiotic and their CW modulate cytokine production. (A–F) Cytokines measured in the supernatant of splenocytes of uninfected and S. Typhimurium
infected. Data are shown as mean ± SEM from three independent experiments with 3-4 mice per group. P values were calculated with one-way ANOVA with Šidak
correction for multiple comparisons. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. Cytokine ratios were calculated dividing IFN-g levels by IL-4 (G), and IL-10
by TNF-a (H) and IL-12p70 (I). P values were calculated by Student’s t test. *P < 0.05.
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CW administration (Figure 5G). Conversely, uninfected mice
revealed a Th2-cytokine profile with an anti-inflammatory state
where probiotic bacteria demonstrate highest ratios IL-10/TNF-
a and IL-10/IL-12p70 compared to their CW (Figures 5H, I).
Thus, probiotics and their CW administration were able to
modulate cytokine production in a strain specific manner
contributing bias the response toward a Th1 profile during
Salmonella challenge.

Immunomodulatory Role of Probiotics and
Their CW Against S. Typhimurium
To highlight the protective mechanisms driven by probiotics and
their CW after S. Typhimurium challenge, we performed a
principal component analysis (PCA) of the biological functions
evaluated. We observed that Lc431- and CW431-treated mice
clustered together and distantly from Lp1518, CW1518, and PBS
group by principal component (PC) 1 on a PCA plot in
uninfected mice (Figure 6A). Lc431/CW431 cluster was
associated with Salmonella-specific sIgA, IgG1, and phagocytic
activity function (Figure 6A). Lp1518 cluster was associated
mainly to cytokine production such as IFN-g, IL-10, and TNF-a;
whereas CW1518 cluster was more closely to IL-12p70 and IFN-
g (Figure 6A). In addition, Lc431/CW431 and Lp1518 clusters
were both related with cell-mediated response (as determined by
DTH) (Figure 6A). Conversely, Salmonella-challenged mice,
probiotics and their CW cluster together and distantly from
PBS control by PC1 on a PCA plot (Figure 6B). As shown in
Figure 6B, probiotics or their CW administration were
associated with cell-mediated immunity, cytokine production
(IFN-g, IL-12p70, IL-10), and mucosal specific sIgA antibody.
DISCUSSION

Probiotic bacteria are beneficial microorganisms that contribute
food digestion, modulate the intestinal microbial communities,
suppress growth of pathogens, and enhance host immunity. Due
to the scarceness of effective and safety oral adjuvant available,
our aim was to analyze the adjuvant effect of probiotics and their
CW in an immunization process with heat-inactivated
Salmonella, mimicking a prophylactic vaccine protocol. We
Frontiers in Immunology | www.frontiersin.org 8
evaluate the protective capacity of the immune response
elicited by the immunogen (heat-killed S. Typhimurium
adjuvanted with probiotics or their CW) against a challenge
with virulent S. Typhimurium. We selected two probiotic strains,
Lc431 and Lp1518 based on their immunomodulatory
properties. Lc431 has demonstrated adherence to and stimulate
cytokine secretion of intestinal epithelial cells (7, 32), and both
Lc431 and Lp1518 have shown to enhance phagocytic cell
function, modulate pro-inflammatory cytokine production and
increase IgA-expressing cells in the lamina propria of the small
intestine (33), improve microbiota composition (28, 34),
ameliorate allergic inflammation (35), and maintain immunity
under stress conditions (36). In this work, we characterized the
immune response elicited by the administration of probiotic-
derived CW along with oral immunization with heat-inactivated
S. Typhimurium. A side-by-side comparison with intact
probiotic bacteria revealed similar effects.

S. Typhimurium is one of the major food poisoning agents
causing mild gastroenteritis and diarrhea disease that self-limited
to the gastrointestinal tract and affect humans at different ages
around the world (37). Severe disease can be a life-threatening
for young children, elderly, and immunocompromised host. A
particular global concern is the emerge of multidrug-resistant by
different Salmonella serotypes that difficult the treatment of
individuals affected with severe disease (38, 39). Several studies
have documented the protective effect of probiotics preventing
Salmonella infections (13–15, 22, 40). S. Typhimurium infection
was associated with disruption of tight junction and increased
epithelial barrier permeability (41, 42). We found that oral
administration of probiotic-derived CW reduced enteric
bacteria translocation, in a similar manner as was accounted
for the intact probiotic bacteria. It was reported that binding of
MAMPs of Gram-positive bacteria to toll-like receptor 2 (TLR2)
on the intestinal epithelial cells, suppress mucosal inflammation
and maintain tight junction complex (43). In addition, purified S
layer protein A (SlpA) from L. acidophilus NCK2187, regulate
tight junction protein expression and prevent colitis via SIGNR3
signaling (44). Exposure of HT-29 and Caco-2 cell monolayers to
L. acidophilus ATCC4356 and Streptococcus thermophilus
ATCC19258, increased the expression of tight junction
proteins occludin and ZO-1 on epithelial cells, that was
A B

FIGURE 6 | Probiotic and their CW reveal similar modulatory effect on the immune system during S. Typhimurium infection. Principal component analysis (PCA)
plots of uninfected (A) and S. Typhimurium infected (B) mice. Variables analyzed: phagocytosis, sIgA, Salmonella-specific sIgA, IgG, IgG1, IgG2a, footpad swelling,
IFN-g, TNF-a, IL-12p70, IL-6, and IL-10.
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correlated with decrease intestinal permeability (45). It remains
to be elucidated whether probiotic-derived CW macromolecules
from Lc431 and Lp1518 correlate with tight junction protein
expression and maintain intestinal barrier function.

Probiotics exert several mechanisms of protection to the host
including modulation of the mucosal and systemic immune
responses. One of them encompass the capacity to impact
humoral immune response. Antibodies are important players
in host defense against pathogens by recognizing and binding to
microorganisms or infected cells. In addition, probiotics have
demonstrated to act as mucosal adjuvant by increasing
immunogenicity to vaccines associated with higher magnitude
in the antibody titers and protection (46, 47). Beyond their
immediate role, binding and neutralizing antigens, antibodies
can interact with cells of the innate immune system, leading to a
remarkable diversity of effector functions to control and
eradicate infections (48). For example, complement-fixing
bactericidal antibodies can kill invasive Salmonella, and
antibody-mediated opsonophagocytosis induce neutrophils
oxidative burst which represent an additional arm of
protection against the invasive enteric organism (49). In the
current study, we found that oral administration of probiotics or
their CW along with oral immunization with heat-inactivated S.
Typhimurium slightly enhance antibody-mediated phagocytic
function of macrophages against S. Typhimurium challenge.

At the mucosal tissues, IgA is the most abundant antibody
isotype, although IgM and IgG are also present, the latest
dominant in circulation (50). Oral immunization with an
attenuated human rotavirus vaccine to neonatal gnotobiotic
pigs co-colonized with the probiotic bacteria L. rhamnosus GG
and Bifidobacterium animalis lactis Bb12, have shown enhanced
mucosal IgA response and protection upon rotavirus challenge
(51). Increased levels of total sIgA in the intestinal fluid of
animals fed for 7 days with Lc431 and challenged with S.
Typhimurium, were reported 10 days after pathogen infection
(22). Similarly, Esvaran et al. (52) reported increased levels of
Salmonella-specific intestinal IgA and serum IgG at day 10 post-
challenge in animals that were given heat-killed S. Typhimurium
via oral route and fed with L. fermentum PC2 for 5 days. In the
current study, our data indicated that oral administration of
probiotic-derived CW or the intact probiotic bacteria as adjuvant
of heat-inactivated S. Typhimurium displayed a negligible
mucosal IgA and serum IgG antibody response after 21 days
and post-challenge with Salmonella. We speculate that oral
administration of CW or their intact probiotic along with heat-
inactivate S. Typhimurium generate polyreactive, low affinity IgA
that could be below the limits of detection of the enzyme-linked
immunosorbent assay (ELISA). Several studies have shown that
non-invasive Salmonella was unable to induce intestinal IgA (53,
54). While our results do not contradict previous findings, where
probiotics and their CW increased the number of IgA+ cells in
the lamina propria after 7 days of administration (10), previous
work have documented an average half-life for intestinal IgA
plasma cells of 5 days and a maximum of 6 to 8 weeks (55). The
development of an antigen-specific sIgA response is a long
process that takes >14 days and around 3-4 weeks to detect an
Frontiers in Immunology | www.frontiersin.org 9
appreciable amount of sIgA in stool (56). Unlike IgG memory
response, intestinal memory IgA response display an additive
effect after repeated challenges, thus, a specific IgA response is
limited to the persistent of a particular stimulus at any given time
(57). This mechanism may contribute to maintain tolerance to
commensal microorganisms. Together, this suggests that CW
and probiotic may stimulate mucosal antibody response via T-
independent mechanism that release transient low affinity
intestinal IgA.

Martinoli and colleagues have shown that invasive and non-
invasive S. Typhimurium can reach the spleen and elicited
systemic IgG response (53). By contrast, our results showed a
limited serum IgG response against Salmonella even when
enteric bacteria reached liver and spleen. It has been reported
significantly lower levels of rotavirus-specific IgG and total IgG
in serum other than IgA in animals given probiotic bacteria,
which suggest an immunomodulatory differential effect exerted
by probiotic (51). We are currently studying the effects of
probiotic-derived CW over time by determine kinetic of IgA-
and IgG-secreting cells in the gut lamina propria, intestinal and
serum IgA and IgG levels.

Despite the small antibody response generated by the oral
immunization with heat-inactivated S. Typhimurium in addition
to probiotics or their CW administration, we found that IgG2a
was predominant after pathogen challenge. Importantly, we
observed increased DTH response in animals that were given
probiotic bacteria and their CW. Th1-type cell-mediated
immunity promotes phagocyt ic cel l act ivat ion and
antimicrobial training. A handful of studies have demonstrated
the ability of different probiotic strains to modulate Th1-type
immune response (35, 58–61). Consistently, it was reported that
Lc431 increased phagocytic function of macrophages in S.
Typhimurium-infected mice (22).

An important observation was the Th1-cell polarizing
cytokines in S. Typhimurium-challenged mice associated with
the oral administration of probiotic-derived CW or the intact
probiotic bacteria in addition to heat-inactivated S.
Typhimurium. Th1 type-differentiated cells produce IFN-g,
which is essential during the initial phase of bacterial infection,
and promote phagocyte-depend protective response, and
suppress Th2-type humoral response (62, 63). Our findings
showed that probiotic-derived CW and the whole probiotic
bacteria exhibit similar levels of IFN-g after S. Typhimurium
challenge. This suggests that probiotics may maximize the Th1-
type cell-mediated response preventing replication and
spreading of the enteric pathogen. Consistently, Lc431
administration after S. Typhimurium infection, demonstrated
elevate the frequencies of IFN-g- and IL-10-secreting cells in the
lamina propria and the presence of these cytokines in the
intestinal fluid (14). In addition, it was reported elevated
numbers of NK cells and IFN-g levels in subjects consuming
yogurt containing a mixture of probiotic bacteria (64). Several
studies indicate that NK cells are predominant source of IFN-g
associated with protection against S. Typhimurium infection
(65–67). By contrast, restraint of NK cell-produced IFN-g by
Bacillus subtilis-derived exopolysaccharide, reduces bacterial
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burden and inflammation during Staphylococcus aureus
bloodstream infection (68). This suggests that probiotic modulate
cytokine response in a strain- and pathogen-specific manner
promoting host immunosurveillance. Furthermore, consistent
with the Th1-biased response modulated by the administration
of probiotic-derived CW and their intact bacteria against S.
Typhimurium challenge, we found that IL-4 production was
reduced. This is in line with the antibody outcomes observed.

Administration of probiotic-derived CW and the whole
bacteria were able to modulate the secretion of other pro-
inflammatory cytokines including TNF-a, IL-12p70, and IL-6
in the context of S. Typhimurium infection. Probiotics can
suppress inflammation by modulating various signaling
pathways including NF-kB and MAPK pathways involved in
the production of pro-inflammatory cytokines (69). Primed
antigen presenting cells with L. jensenii TL2937, modulate the
production of pro- and anti-inflammatory cytokines in response
to ETEC or LPS associated with negative regulators of TLR
signaling (70). Moreover, probiotic-derived CW and the intact
bacteria were able to modulate the secretion of IL-10, which
demonstrated prevent damage inflammation caused by
microbial pathogen infections (71). Further studies are needed
to define the role of probiotic-derived CW interaction with
pattern recognition receptors and signaling events.

Overall, our findings propose an immunomodulatory role for
the sub-cellular fraction derived from probiotic bacteria after S.
Typhimurium challenge. Their effects were comparable to the
intact probiotic bacteria which may indicate their use as mucosal
adjuvant. Importantly, probiotics-derived CW contribute to the
acquired immune response against S. Typhimurium through the
Th1-type cell-mediated immune response. Although, it is
important to remark that each probiotic strain and its CW
may evoke different outcomes. Given the immunomodulatory
effects exerted for the probiotic-derived CW, this study opens
new avenues to discern the exact component(s) on the CW of the
adjuvant effect, although we do not exclude the possibility of the
additive effect of different bacteria structures.
Frontiers in Immunology | www.frontiersin.org 10
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