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and Marques JT (2021) Distinct Roles
of Hemocytes at Different Stages of

Infection by Dengue and Zika Viruses
in Aedes aegypti Mosquitoes.
Front. Immunol. 12:660873.

doi: 10.3389/fimmu.2021.660873

ORIGINAL RESEARCH
published: 13 May 2021

doi: 10.3389/fimmu.2021.660873
Distinct Roles of Hemocytes at
Different Stages of Infection by
Dengue and Zika Viruses in
Aedes aegypti Mosquitoes
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Aedes aegypti mosquitoes are vectors for arboviruses of medical importance such as
dengue (DENV) and Zika (ZIKV) viruses. Different innate immune pathways contribute to
the control of arboviruses in the mosquito vector including RNA interference, Toll and Jak-
STAT pathways. However, the role of cellular responses mediated by circulating
macrophage-like cells known as hemocytes remains unclear. Here we show that
hemocytes are recruited to the midgut of Ae. aegypti mosquitoes in response to DENV
or ZIKV. Blockade of the phagocytic function of hemocytes using latex beads induced
increased accumulation of hemocytes in the midgut and a reduction in virus infection
levels in this organ. In contrast, inhibition of phagocytosis by hemocytes led to increased
systemic dissemination and replication of DENV and ZIKV. Hence, our work reveals a dual
role for hemocytes in Ae. aegypti mosquitoes, whereby phagocytosis is not required to
control viral infection in the midgut but is essential to restrict systemic dissemination.
Further understanding of the mechanism behind this duality could help the design of
vector-based strategies to prevent transmission of arboviruses.

Keywords: Zika virus, dengue virus, cellular immunity, macrophage-like cells, Aedes aegypti,
vector mosquitoes, hemocytes
INTRODUCTION

Aedes aegyptimosquitoes are vectors for a wide variety of arthropod-borne viruses (arboviruses) (1).
How these mosquitoes recognize and respond to viral infection is a central question that directly
affects their vector competence. The understanding of antiviral responses in insects has greatly
benefited from work in the fruit fly Drosophila melanogaster (2). Work in this model organism has
identified many important antiviral defense mechanisms such as RNA interference (RNAi), Jak-
STAT and STING (3–12). Later work in mosquitoes has shown that RNAi and Jak-STAT are
important for the control of arbovirus infections (13–18). Interestingly, despite being widely
conserved throughout evolution, STING has been lost in mosquitoes (19).

In addition to these well-known innate immunity pathways, the Drosophila model has also
highlighted the role of circulating macrophage-like cells, referred to as hemocytes, in the control of
org May 2021 | Volume 12 | Article 6608731
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viral infection (20–22). Cellular immunity in insects includes
phagocytosis of foreign bodies, nodulation, wound healing and
the encapsulation of pathogens (23–27). Hemocytes can be freely
circulating in the insect hemolymph or associated with tissues but
these populations seem to be highly dynamic and interchangeable
(28). Hemocytes are often recruited to infected tissues, which
increases the chances of coming into contact with the pathogen to
be cleared by phagocytosis (28, 29). A good example of hemocyte
recruitment during an infection is in the case of Plasmodium, the
malaria parasite. Invasion of the midgut ofAnophelesmosquitoes by
Plasmodium ookinetes promotes hemocyte recruitment and release
of components of the mosquito complement system, promoting
pathogen elimination (30–34). Despite the importance of
hemocytes for the clearance of bacteria and Plasmodium in
mosquitoes, little is known about their role during viral infections,
particularly arboviruses such as dengue (DENV) and Zika (ZIKV)
viruses. DENV and ZIKV belong to the Flaviviridae family and,
together with the alphavirus chikungunya virus (CHIKV) are
among the most important arboviruses transmitted by Ae. aegypti
mosquitoes causing infections worldwide (1). Similar to the malaria
parasite, arboviruses are acquired orally during blood feeding by
mosquitoes, and the gut represents a physical barrier that hinders
the passage of the viral particles to the mosquito hemocele (35).
Reaching the hemocele is a necessary step for the virus to spread
systemically and reach the salivary glands where it can be
transmitted to a vertebrate host (21–23). During systemic
infection, several tissues may host viral replication, including
hemocytes themselves, but it is unclear how they contribute to
amplification of the virus (36–38). Despite this increasing
knowledge about the functions of hemocytes in mosquitoes, the
role of cellular immunity in the antiviral defense remains
largely unknown.

In this work, we investigated the involvement of hemocytes in
the control of DENV and ZIKV in Ae. aegypti mosquitoes. Our
results suggest a complex role for hemocytes. We show that
hemocytes were recruited to the midgut in response to the
presence of the virus but, once there, their phagocytic activity
seems to facilitate viral replication although other functions my
play a role in the antiviral defense. In contrast, during the
systemic phase of the infection, inhibition of phagocytosis by
hemocytes led to increased viral infection pointing to a more
traditional role in antiviral immunity. Together our results
indicate that hemocytes have dual roles in the control of
arboviruses in Ae. aegypti mosquitoes depending on tissue
affected and the stage of the infection in the vector.
MATERIALS AND METHODS

Indirect Immunofluorescence Assays
Mosquitoes were anaesthetized on ice and then were inject with
250 nanoliters of 20% paraformaldehyde for hemocyte fixation in
midgut basal lamina. After 20 minutes, midguts were dissected in
4% paraformaldehyde diluted in phosphate-buffered saline (PBS)
(13 mM NaCl, 0.7 mM Na2HPO4, 1 mM NaH2PO4 at pH 7.2)
(PBS). The remaining midguts were fixed in the same solution
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for 20 minutes, and then washed three times in PBS and then
incubated with blocking solution PBSBT (1× PBS + 1% BSA +
0.1% Triton X-100) for 15 minutes at room temperature.
Samples were then incubated overnight with 4G2 monoclonal
antibody for Flavivirus E protein (ATCC: HB-112, used at 1:50 in
PBST) at 4°C. Midguts were washed three times with PBSBT
(5 min each) and incubated for 2 h with constant rocking at 25°C
with goat anti-mouse IgG antibody (Invitrogen). Midguts were
washed three times with PBST (5 min each) and incubated for
15 min with DAPI (Molecular Probes, 1:500), and phalloidin-
rhodamine (Molecular Probes, 1:500). Then the midguts were
washed in PBS and placed onto slides. Images were obtained with
an LSM 880 microscope (Zeiss).

Mosquito Perfusion to Obtain Circulating
Hemocytes
Circulating hemocytes were obtained by perfusion of adult
mosquitoes as described (39) with modifications. Briefly,
mosquitoes were injected with 1 uL of anticoagulant buffer
solution (70% PBS 1x (pH 7.0) + 30% citrate buffer (98 mM
NaOH, 186 mM NaCl, 1.7 mM EDTA and 41 mM citric acid,
buffer pH 4.5) and were incubated on a petri dish on ice for
10 min to let hemocytes dissociate from tissues. The last two
segments of abdomen were cut to create an opening, which was
positioned onto a microscope slide. Each individual mosquito was
positioned vertically and then injected with 3 uL of the same
anticoagulant buffer solution in the lateral side of torax using a
microinjector (Nanoject III). The injection pressure forced the
diluted hemolymph to exit the opening made in the final portion
of the abdomen and onto the microscope slide. The hemolymph
was incubated at room temperature for 20 min in order to let the
hemocytes adhere to the slides. Hemocytes were fixed in 4%
paraformaldehyde for 20 min, washed three times in PBS and
then incubated with blocking solution PBSBT (1× PBS + 1% BSA
+ 0.1% Triton X-100) for 15 minutes at room temperature. Slides
were incubated for 15 min with DAPI (Molecular Probes, 1:500)
and phalloidin-rhodamine (Molecular Probes, 1:40), followed by 3
washes in PBS. Cells were visualized in a fluorescence microscope
for counting. To visualize infected hemocytes, the 4G2
monoclonal antibody against Flavivirus E protein was used.

Hemocyte Labeling In Vivo
For in vivo hemocyte staining we used Vybrant™ CM-DiI Cell-
Labeling Solution (Invitrogen™) essentially as described (29).
Briefly, female mosquitoes were placed on petri dish on ice and
injected with 150 nanoliters containing 100 mM CM-DiI, freshly
prepared in sterile water, after blood or sugar meal at specific time
points. Injections were done using a nano-injector Nanoject III
(Drummond Scientific Company). After injections, mosquitoes are
placed on cages at 28°C until specific time points for
midguts dissections.

Quantification of the Infection Area
in the Midgut
Area measurements and hemocyte counting were performed
using ImageJ v1.53c (https://imagej.nih.gov/ij/). All images
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were acquired under identical conditions, digitized, converted to
RGB image and stored in an uncompressed tagged image file
format (.tiff). Infection area computing was performed using
ImageJ. The following steps were performed for all images to
quantify the area of infection in the midgut, as shown in
Supplementary Figure 1: step 1, color-deconvolution was used
to isolate red, green and blue spectra and select the image
corresponding to virus infection staining; step 2, a projection
final image was generated using all acquired series of z-stack
confocal images using the tool “Image > Stacks > Z-project
function”; step 3, the projection image was processed into 8 bits
image type; step 4, the midgut outline was delimited; step 5, the
area outside of midgut delimitation was erased by using the
“clear outside” function; steps 6 and 7, optical density was
assessed by setting a threshold using the “threshold tool”, and
a maximum threshold was set; steps 8 and 9, the function
“Measure” in the ‘Analyze’ tool menu was used to calculate the
optical density and compute the midgut infection area.

Quantification of Hemocytes in the Midgut
Hemocyte numbers were quantified in the confocal microscopy
images of midguts. The following steps were performed using
ImageJ for all images: step 1, color-deconvolution was used to
isolate red, green and blue spectra and select the images
corresponding to hemocytes cell tracker and DNA staining;
step 2, for each color, a projection final image was generated
using all acquired series of z-stack confocal images using the tool
“Image > Stacks > Z-project function”; step 3, the projection
image was processed into 8 bits image type; step 4, the number of
hemocytes was then counted using the ITCN (Image-based Tool
for Counting Nuclei); step 5, for all hemocytes automatically
identified in the hemocytes cell tracker color we additionally
confirmed the presence of nuclei using the DNA staining image
and reject the counts that do not presented a nucleus.

Inhibition of Phagocytosis by Injection
of Latex Beads
To block the phagocytic activity of hemocytes in mosquitoes, we
adapted protocols previously used for Drosophila (20). Adult
mosquitoes were injected with 69 nanoliters of latex
microspheres (CML Latex Beads, 4% w/v, 0.3 µm,
ThermoFisher). Latex beads were washed and resuspended at a
2X concentration in PBS before injections. In order to quantify
the inhibition of phagocytosis, we first injected regular latex
beads followed by injection of red fluorescent beads (FluoSpheres
™ Carboxylate-Modified Microspheres, 0.2 mm, dark red
fluorescent (660/680), 2% solids, ThermoFisher) two days later.
Perfusions were done 4 and 8 days after the first injection and the
total number of hemocytes was counted as well as the percentage
of cells with red beads.

RT-qPCR
Total RNA (200 ng) extracted from individual insects or
individual tissues was reverse transcribed using Moloney
murine leukaemia virus reverse transcriptase. cDNA was
subjected to quantitative PCR (qPCR) using the kit Power
SYBR Green Master Mix (Applied Biosystems), following the
Frontiers in Immunology | www.frontiersin.org 3
manufacturer’s instructions. Primers used for quantitative PCR
(qPCR) were as follows: RPL32 (forward, 5´-ACTTCTTCGTC
CGCTTCTTG-3´; reverse, 5´-AGCCGCGTGTTGTACTCTG-
3´), DENV1 (forward, 5´-TCGGAAGCTTGCTTAACGTAG-
3´; reverse, 5´ TCCGTTGGTTGTTCATCAGA-3´), ZIKV
(forward, 5´-TCAAACGAATGGCAGTCAGTG-3´; reverse,
5´-GCTTGTTGAAGTGGTGGGAG-3´) as previously
described (14).

Mosquito Rearing and Infections
All experiments were carried out using Ae. aegypti Bangkok strain.
Mosquitoes were maintained in an incubator at 28°C and 70–80%
relative humidity, in a 12:12 h light:dark photoperiod, and with 10%
sucrose solution ad libitum. For mosquito infections, we used
previously described models for flavivirus infections using mice or
artificial membrane feeding. Isolates of DENV4 (H241 strain),
DENV1 (MV09) and ZIKV (PE243/2015) were previously
described (14). As a mouse model, we utilized DENV1 and ZIKV
infection of interferon alpha/beta and gamma receptor-deficient
(AG129) animals (14). Mice were injected intraperitoneally with 106

pfu/mL of virus. Infected mice were anaesthetized at 3 days post
injection (peak of viraemia) using ketamine/xylazine (80/8 mg kg−1)
and placed on top of the netting-covered containers with 5- to 6-
day-old adult mosquito females. For infections by artificial
membrane feeding, 5-6 day old adult females were starved for
24h and fed with a mixture of blood and virus supernatant
containing 107 pfu/mL of DENV4 or 106 pfu/mL of ZIKV
utilizing a glass artificial feeding system covered with pig intestine
membrane, essentially as described (14). Mosquitoes were allowed
to feed for 1 h. After blood feeding, fully engorged females were
selected and harvested individually for midgut dissection at different
time points. For direct systemic infections by intrathoracic
injections, mosquitoes were anaesthetized with CO2 and kept on
ice during the whole procedure. 4-day-old females were
intrathoracically injected with 69 nL of L15 media containing
virus (5 or 50 pfu), using a nano-injector Nanoject III
(Drummond Scientific Company). Mosquitoes were harvested at
different days post injection for RNA extraction. Tissues or
mosquitoes were ground in TRIzol (Invitrogen) using glass beads.
Total RNA was extracted from individual mosquitoes or individual
tissues according to the manufacturer’s protocol.
RESULTS

DENV and ZIKV Trigger Accumulation of
Hemocytes in the Mosquito Midgut
Hemocytes play an important role in mosquito immunity but
their function in the antiviral response against arboviruses
remains unclear. Here, we first analyzed whether hemocytes
would respond to the presence of arboviruses, DENV and
ZIKV, in the blood meal (Figure 1A). Others have observed
that blood feeding induces an increase in the numbers of
hemocytes in mosquitoes (40, 41). Here we observed that there
is also an increase in the number of hemocytes associated with
the midgut compared to mosquitoes that were kept on sugar at 4
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and 8 days post feeding (Figures 1B, C). At the earlier time
point, there was no significant difference between the number of
hemocytes associated with the midgut of mosquitoes fed with
blood or blood and virus (Figure 1B). However, at 8 days post
feeding, numbers of midgut-associated hemocytes were
significantly higher in the presence of DENV or ZIKV when
compared to a control blood meal (Figure 1C). Notably, these
hemocytes do not seem to be recruited to sites of viral replication.
We observed that hemocytes were often found dispersed
throughout the midgut and not necessarily concentrated
around regions with staining of the viral E protein as an
indication of infection (Figures 1D–G). These results suggest
that the presence of virus particles in the blood meal increases the
number of hemocytes associated to midgut possibly by providing
signals for increased recruitment or longer retention of these cells
in the organ. The delayed effect at later times post infection also
suggests that the accumulation of hemocytes may require
prolonged stimuli.

Phagocytosis by Hemocytes Does Not
Contribute to the Control of DENV and
ZIKV in the Midgut
Increased numbers of hemocytes in the midgut in response to
arboviruses in the blood meal suggests that these cells may play a
role in the antiviral defense. Phagocytosis is a major function of
hemocytes. Indeed, blocking phagocytosis by hemocytes or
complete genetic ablation of these cells leads to decreased
resistance to viruses in Drosophila (20–22). Here, we decided to
use injection of latex beads into mosquitoes, which is often used as a
strategy to over-load hemocytes and inhibit their phagocytic
capacity (20, 21, 42). In our experiments, we observed that
injection of beads seemed to decrease the number of circulating
hemocytes in the mosquito but that was not significant
(Supplementary Figure 2A). The number of hemocytes was
estimated in a fraction of the hemolymph obtained by perfusion
of mosquitoes with a low volume of buffer. Although this strategy
recovered smaller numbers of hemocytes compared to other
methods (39, 40), it still allowed us to compare numbers of cells
between two conditions, which was our objective. Using the same
strategy, we observed that phagocytosis by hemocytes was
significantly inhibited by latex beads 2 days after their injection
into Ae. aegypti mosquitoes (Supplementary Figure 2B). We next
analyzed the effect of latex beads in mosquitoes that were given a
blood meal containing DENV or ZIKV 2 days later, during the time
when phagocytosis is inhibited (Figure 2A). Blocking phagocytosis
did not affect significantly the area of infection by DENV or ZIKV
in the midgut at 4 days post feeding (Figures 2B, C). In contrast, at
8 days post feeding, we observed that midgut of mosquitoes injected
with latex beads had a significantly decreased area of infection by
DENV and ZIKV compared to controls (Figures 2B–G).
Importantly, injection of latex beads did not significantly change
the total size of the midgut at the same time point but affected the
absolute infection area suggesting that the kinetics of viral
replication itself was affected (Supplementary Figure 3). At 4
days post feeding, injection of beads caused a reduction in viral
RNA levels in DENV and ZIKV infected mosquitoes, although it
Frontiers in Immunology | www.frontiersin.org 4
was only significant for the latter (Supplementary Figure 4). At 8
days post feeding, DENV and ZIKV RNA levels were also
significantly decreased in midguts from mosquitoes injected with
latex beads compared to controls (Figures 2H, I). These results
suggest that blocking the phagocytic activity of hemocytes using
latex beads led to decreased viral replication in the midgut of
mosquitoes. Notably, we consistently observed that latex beads
increased the number of midgut-associated hemocytes in sugar
and blood fed mosquitoes, independent of virus infection
(Supplementary Figure 5). Latex beads also increased numbers
of hemocytes in the midgut of DENV and ZIKV infected
mosquitoes at 4 and 8 days post feeding (Figures 2J, K). During
viral infection, latex beads had a less striking effect on hemocyte
numbers at later time points since infection itself led to
accumulation of hemocytes in the midgut (Figure 1C). This
increased accumulation of hemocytes in the midgut induced by
latex beads preceded the reduction in viral levels. Thus, we cannot
rule out that increased accumulation of hemocytes in the midgut
induced by beads is helping control viral infection but this would
have to occur independently of their phagocytic activity.

Phagocytosis by Hemocytes Is Required
for Systemic Control of DENV and ZIKV
The above results suggest that phagocytosis is not involved in the
control of viral infection in the midgut of Aedes mosquitoes. This
contrasts with the well-known roles of phagocytosis by hemocytes
in insect immunity especially in the antiviral defense of Drosophila.
However, these cells have also been shown to host replication of
arboviruses such as DENV, Sindbis and O’nyong’nyong virus,
which could help explain a proviral function (36–38). We
confirmed that hemocytes could be directly infected by ZIKV as
indicated staining for the viral E protein (Supplementary Figure 6).
Thus, phagocytosis of viral particles by hemocytes could help
promote viral replication in mosquitoes. In order to look further
into this possibility, we analyzed dissemination of DENV and ZIKV
infection from the midgut to the carcass in mosquitoes injected with
latex beads (Figure 3A). Although the midgut infection rate was
significantly reduced when phagocytosis was inhibited (Figures 2B–
I), this did not significantly affect the prevalence of mosquitoes with
disseminated infection (Figures 3B, C). Nevertheless, we observed a
significant increase in viral RNA levels in the carcass of mosquitoes
infected with DENV and ZIKV when phagocytosis by hemocytes
was inhibited (Figures 3D, E). Here we note that mosquitoes fed on
viremic mice show over 80% prevalence of infection. Therefore, to
further analyze a possible effect of latex beads on the dissemination,
we decided to analyze a model of artificial blood feeding where virus
concentrations could be more easily controlled to reach closer to
50% prevalence (Figure 3F). In this model, injection of beads into
mosquitoes prior to blood feeding containing DENV or ZIKV lead
to a significant decrease in the prevalence of infection (Figures 3G,
H). At the same time, viral loads were not significantly different for
DENV and were increased in ZIKV infected individuals when
phagocytosis was inhibited (Figures 3I, J). This reinforces the
idea that blocking phagocytosis by hemocytes leads to decreased
midgut replication that results in lower systemic dissemination. In
order to bypass the midgut and directly analyze the role of
May 2021 | Volume 12 | Article 660873
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FIGURE 1 | Hemocyte accumulation in the midgut of Ae. aegypti mosquitoes in response to DENV and ZIKV. (A) Mosquitoes fed with sugar, blood or blood and
virus were dissected at different times and their midgut was analyzed by confocal microscopy. Virus-infected mice were used as a source of blood.
(B, C) Quantification of the number of midgut-associated hemocytes between mosquitoes fed with sugar, blood or blood and virus at 4 (B) and 8 (C) days post
feeding. DENV and ZIKV were analyzed together. 2 independent experiments for each virus were pooled. Each dot represents an individual midgut. Total number of
midguts tested is indicated below each box plot. Upper, middle and lower bars in the boxplot represent the 75th percentile, the median and the 25th percentile,
respectively. Statistical analyses were performed using the Kruskal-Wallis test followed by Dunn’s test to correct for multiple comparisons. ns, non-significant.
(D–G) Representative confocal microscopy images of mosquito midguts showing CM-DiL stained hemocytes in magenta, DNA in yellow, viral E proteins in green and
actin in blue. Midguts from mosquitoes fed with sugar (D), blood (E), blood + DENV (F) and blood + ZIKV (G) are shown at 8 days post feeding.
Frontiers in Immunology | www.frontiersin.org May 2021 | Volume 12 | Article 6608735
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FIGURE 2 | Phagocytosis by hemocytes is not required to control DENV and ZIKV infection in the midgut of Ae. aegypti mosquitoes. (A) Mosquitoes injected with
latex beads were fed 2 days later with blood + virus and dissected at different times to be analyzed. Virus-infected mice were used as a source of blood. (B, C)
Percentage of total midgut infection area that shows staining for the viral protein at 4 and 8 days post infection was determined by immunofluorescence. Total
number of midguts tested is indicated below each box plot. DENV (B) and ZIKV (C) were analyzed separately. 2 independent experiments for each virus were
pooled. Each dot represents an individual midgut. (D–G) Representative confocal microscopy images of mosquito midguts showing CM-DiL stained hemocytes in
magenta, DNA in yellow, viral E proteins in green and actin in blue. (D, E) Midguts from mosquitoes fed on blood + DENV. (F, G) Midguts from mosquitoes fed on
blood + ZIKV. (D, F) Midguts from control mosquitoes injected with buffer; (E, G) Midguts from mosquitoes injected with latex beads. (H) DENV and (I) ZIKV RNA
levels measured by RT-qPCR at 8 days post feeding. The number of positive midguts over the total tested is indicated below each boxplot. (J, K) Number of
midgut-associated hemocytes in individual midguts from control and virus infected mosquitoes at 4 and 8 days post feeding. DENV (J) and ZIKV (K) were analyzed
separately. Total number of midguts tested is indicated below each box plot. 2 independent experiments for each virus were pooled. (B, C, H–K) Each dot
represents an individual midgut. Upper, middle and lower bars in the boxplot represent the 75th percentile, the median and the 25th percentile, respectively.
Statistical analyses were performed using the Mann-Whitney-Wilcoxon test.
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FIGURE 3 | Systemic dissemination of ZIKV and DENV infection is controlled by hemocyte phagocytosis. (A) Mosquitoes injected with latex beads were fed 2
days later with blood and virus and dissected at 8 days post feeding to be analyzed. Virus-infected mice were used as a source of blood. (B, C) Prevalence of
DENV (B) and ZIKV (C) infection in the mosquito carcass at 8 days post feeding. The number of positive mosquitoes over the total tested is indicated below
each column. One representative experiment is shown. This experiment was repeated 3 times for DENV and once for ZIKV. Statistical analyses were performed
using two-tailed Fishers exact test. (D, E) Viral RNA levels at 8 days post feeding for DENV (D) and ZIKV (E). One representative experiment is shown. This
experiment was repeated 3 times for DENV and once for ZIKV. Each dot represents an individual mosquito. (F) Mosquitoes injected with latex beads were given
an artificial blood meal with virus 2 days later and analyzed at 8 days post feeding. (G, H) Prevalence of DENV (G) and ZIKV (H) infection in mosquitoes injected
with buffer or beads. The number of positive mosquitoes over the total tested is indicated below each column. One representative experiment is shown. This
experiment was repeated twice for DENV and once for ZIKV. Statistical analyses were performed using two-tailed Fishers exact test. (I, J) DENV (I) and ZIKV (J)
RNA levels in mosquitoes injected with buffer or beads. Each dot represents an individual mosquito. The number of positive mosquitoes over the total tested is
indicated below each boxplot. One representative experiment is shown. This experiment was repeated twice for DENV and once for ZIKV. (D, E, I, J) Upper,
middle and lower bars in the boxplot represent the 75th percentile, the median and the 25th percentile, respectively. Statistical analyses were performed using
the Mann-Whitney-Wilcoxon test.
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hemocytes during systemic viral replication, we used a model of
intrathoracic injection of the virus (Figure 4A). Consistent with
results using the oral infection models, we observed that inhibition
of the phagocytic activity of hemocytes led to a clear increase in
systemic viral replication after injection of DENV and ZIKV
(Figures 4B, C). This effect was highly significant and did not
depend on the dose of virus used or the kinetics of infection.
Together, our data indicate that phagocytosis by hemocytes is
essential to control systemic viral replication, which is consistent
with their important roles in cellular immunity.
DISCUSSION

Here we have studied the role of phagocytosis by insect
macrophage-like cells in the control of DENV and ZIKV in
Ae. aegypti mosquitoes. These macrophage-like cells, known as
hemocytes, are important components of the mosquito immune
system (25). We and others have previously shown that
phagocytosis by these cells plays an important function in the
antiviral defense of Drosophila (20–22) but their role during viral
infections in mosquitoes remain unclear.

Our results show that hemocytes accumulate in the midgut of
Ae. aegypti mosquitoes in response to the presence of ZIKV and
Frontiers in Immunology | www.frontiersin.org 8
DENV in the blood meal. Interestingly, increased numbers of
hemocytes in the midgut are not observed at 4 days post
infection but only later at 8 days, suggesting it either requires
continuous stimulation or is triggered only after certain levels of
viral replication. Since the infection did not significantly change
the number of circulating hemocytes, these results suggest that
these cells were recruited or retained more efficiently in the
midgut. Increased numbers of hemocytes in the midgut suggests
an important role for these cells in the response to viral infection.
However, our results were less clear regarding their possible
function in the midgut. We observed that blocking phagocytosis
by hemocytes using latex beads led to decreased virus replication
in the midgut after 8 days post infection when these cells
accumulate significantly. We show that phagocytosis is
inhibited at 2 days post injection of latex beads at the time of
viral infection in the midgut. Although it is unclear how long this
inhibition lasts, these results suggest that phagocytosis by
hemocytes has a proviral function during the early stages of
DENV and ZIKV infection in the midgut. However, when
phagocytosis was blocked by latex beads, we also observed
increased numbers of hemocytes in the midgut of mosquitoes
as early as 4 days post infection. This effect was independent of
viral replication or blood feeding and could be related to lower
motility of hemocytes after phagocytosis since we do observe a
A

B C

FIGURE 4 | Phagocytosis by hemocyte is required to inhibit systemic replication of ZIKV and DENV. (A) Mosquitoes injected with latex beads were subsequently
injected with virus 2 days later and samples were analyzed at different time points. (B) Viral RNA levels in mosquitoes injected with 5 or 50 PFU of DENV at 8 days
post injection. (C) Viral RNA levels in mosquitoes injected with 5 PFU of ZIKV at 2, 4 and 8 days post injection. One representative experiment is shown. This
experiment was repeated twice for DENV and once for ZIKV. (B, C) Each dot represents an individual mosquito. The number of positive mosquitoes over the total
tested is indicated above each boxplot. Upper, middle and lower bars in the boxplot represent the 75th percentile, the median and the 25th percentile, respectively.
Statistical analyses were performed using the Mann-Whitney-Wilcoxon test.
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tendency of decreased numbers of circulating hemocytes after
injection of beads. Nevertheless, increased numbers of
hemocytes in the midgut precede and could be responsible for
the inhibition of viral replication independent of phagocytosis.
Phagocytosis of latex beads does not seem to prime hemocytes
for wound healing in Drosophila (26), which would suggest that
these hemocytes in the mosquito midgut are not activated but
rather inert. Our current data do not allow us to rule out that
there are other antiviral functions by hemocytes triggered by
latex beads (e.g. production of antiviral cytokines) but it is clear
that phagocytosis is not required to control viral infection in the
midgut of mosquitoes. Paradoxically, when the infection
disseminates from the midgut, phagocytosis by hemocytes has
an important role controlling systemic viral replication.
Together, our data point to a dual role for phagocytosis by
hemocytes in the antiviral response of Ae. aegypti mosquitoes
against DENV and ZIKV. Phagocytosis does not affect virus
replication in the midgut but is essential to control systemic
infection. Notably, work by our groups and others have pointed
to important differences in the requirements to control viral
replication in the midgut compared to systemic infection in
mosquitoes (14, 36). For example, RNA interference plays a
major role during systemic infection but has little contribution to
the control of viral replication in the midgut (14). Similarly,
apoptosis, which is coupled to phagocytosis by hemocytes to
restrict viral infection in Drosophila (20, 21), may not be
efficiently induced in response to virus infection in the midgut
epithelium of Aedes mosquitoes

The reason for contrasting roles of hemocytes during
infection of the midgut compared to systemic dissemination of
DENV and ZIKV suggests a complex scenario. It is possible that
hemocytes might carry out immune functions that have
opposing impacts over viral infection whether in the midgut or
systemically. For example, phagocytosis might be important to
clear viruses from the circulation but, in the midgut, could help
virus dissemination. However, recent single cell analyses have
indicated that hemocytes are composed of many subgroups that
likely have distinct functions in immunity (43–46). Based on
these data, it is possible that epithelial and systemic responses to
viral infections mobilize different subtypes of hemocytes. Upon
blood feeding, there is extensive damage to the basal lamina of
the midgut and this is further exacerbated by infection by
chikungunya virus (47, 48). ZIKV causes similar damage to the
basal lamina (49) and that is likely true for other arboviruses.
Damage to the basal lamina presumably leads to the recruitment
of certain subtypes of hemocytes to these damaged regions with
high concentration of the virus (47, 49). It is possible that
hemocytes that are recruited to repair this damage become
infected and help amplify local viral replication. Alternatively,
these hemocytes could promote enterocyte survival or intestinal
stem cell proliferation (50–53) and thus favor viral replication in
the midgut. In contrast, during systemic dissemination of ZIKV
and DENV, other subtypes of hemocytes would then play a more
classical antiviral role by clearing particles and infected cells (20).
Hemocytes may also participate in a systemic antiviral RNA
interference of mosquitoes, as proposed in Drosophila (22), and
Frontiers in Immunology | www.frontiersin.org 9
this may not be functional in the midgut. Notably, recent work in
Anopheles mosquitoes has suggested that subtypes of hemocytes
may have different roles during specific stages of Plasmodium
infection (34). These are pressing questions that we are currently
investigating to elucidate the mechanism by which hemocytes
contribute to the antiviral defense. Alternative methods for
hemocyte depletion (34, 54) or genetic approaches to ablate or
interfere with cell function in mosquitoes will be important tools
for the field going forward. These studies will help understand
how vector mosquitoes recognize and fight viral infections that
could lead to novel strategies to control transmission
of arboviruses.
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