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Hypoxia, angiogenesis, and immunosuppression have been proposed to be interrelated
events that fuel tumor progression and impair the clinical effectiveness of anti-tumor
therapies. Here we present new mechanistic data highlighting the role of hypoxia in fine-
tuning CD8 T cell exhaustion in vitro, in an attempt to reconcile seemingly opposite
evidence regarding the impact of hypoxia on functional features of exhausted CD8 T cells.
Focusing on the recently characterized terminally-differentiated and progenitor exhausted
CD8 T cells, we found that both hypoxia and its regulated mediator, vascular endothelial
growth factor (VEGF)-A, promote the differentiation of PD-1* TIM-3* CXCR5™ terminally
exhausted-like CD8 T cells at the expense of PD-1" TIM-3" progenitor-like subsets without
affecting tumor necrosis factor (TNF)-o. and interferon (IFN)-y production or granzyme B
(GZMB) expression by these subpopulations. Interestingly, hypoxia accentuated the
proangiogenic secretory profile in exhausted CD8 T cells. VEGF-A was the main factor
differentially secreted by exhausted CD8 T cells under hypoxic conditions. In this sense,
we found that VEGF-A contributes to generation of terminally exhausted CD8 T cells
during in vitro differentiation. Altogether, our findings highlight the reciprocal regulation
between hypoxia, angiogenesis, and immunosuppression, providing a rational basis to
optimize synergistic combinations of antiangiogenic and immunotherapeutic strategies,
with the overarching goal of improving the efficacy of these treatments.

Keywords: Hypoxia, CD8 T cell exhaustion, immunosuppression, VEGF-A, anti cancer agents

INTRODUCTION

In the past years, it has become increasingly clear that tumor cells alone are not sufficient to generate
cancer. The tumor microenvironment (TME) (i.e.: endothelial vascular and lymphatic cells, immune
cells and stromal fibroblasts, among others) are key players in tumor progression (1, 2) and play a central
role in acquired resistance to targeted therapies (3, 4). In this regard, the TME has been proposed to be an
attractive target for the generation of anticancer therapies including immunotherapy, antiangiogenic and
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targeted therapies (4, 5). Antiangiogenic therapies target the ability
of cancer cells to generate an abnormal vasculature that engenders a
hostile microenvironment. Strikingly, major hallmarks of this
adverse scenario are hypoxia and acidic pH, which fuel
immunosuppression and promote impairment of effector T-cell
function (6, 7). In this scenario, tumor hypoxia emerges as a major
driving force that influences not only malignant cells but also the
TME, impairing effector immune responses and promoting
angiogenesis, by affecting cell migration and endothelial cell
adhesion or directly influencing immune cell differentiation and
function (8, 9). In this sense, immunomodulatory molecules such as
vascular endothelial growth factor (VEGF-A), hepatocyte growth
factor (HGF), angiopoietins, adenosine, transforming growth
factor-B (TGF-B), and galectins (9-11) are key soluble mediators
that link these pro-tumoral functions (12).

Despite significant progress in understanding the molecular
components of hypoxia-regulated programs in the TME (13), the
cellular mechanisms and mediators coupling tumor hypoxia and
CD8 T cell exhaustion remain elusive. Although the programs
that govern T cell exhaustion are still under debate, there is a
consensus that it comprises phenotypically and functionally
heterogeneous exhausted CD8 (exhCD8) T cells. In this
perspective article, we discuss the role of hypoxia in fine-
tuning CD8 T-cell exhaustion, in an attempt to reconcile
previous studies and emerging evidence describing functional
features of newly characterized terminal and progenitor features
of newly characterized terminal and progenitor exhCD8 T cells.

HYPOXIA IN THE PROMOTION OF
IMMUNE TOLERANCE

Tumor hypoxia impairs immune responses by influencing
mechanisms that bribe immune cells to become
immunosuppressive (14). These molecular pathways include the
hypoxia inducible factor-1 alpha (HIF-101)-dependent induction
and recruitment of Foxp3" regulatory T cells (Tregs) through
mechanisms involving TGF-B-driven STAT-3 signaling (15, 16),
the release of CCL28 chemokine by tumor cells (17) and CCL22 by
tumor-associated macrophages (TAMs) (18). Moreover, T cell
receptor (TCR) cross-linking in HIF-1o-deficient T cells skews the
balance towards a pro-inflammatory cytokine profile (19),
suggesting that HIF-1o. may function as a negative regulator of
T-cell differentiation and cytokine production.

Hypoxia has also been associated with dysregulated activity of
tumor-associated myeloid cells (20-22). Differentiation,
recruitment, and polarization of TAMs may be regulated by
tumor cells via VEGF-A, HIF-1o. and CCL2-dependent
mechanisms (23, 24). Tumor cell expression of VEGF-A
contributes to recruitment of Tregs to the TME (25), promotes
CD8 T cell exhaustion (26), and impairs dendritic cell (DC)
maturation (27). Furthermore, under hypoxic conditions HIF-
lo, but not HIF-2a. activation contributes to up-regulation of
PD-L1 in myeloid-derived suppressor cells (MDSCs), TAMs,
and DCs, endowing these cells with tolerogenic activity (28-30).
These data suggest that simultaneous blockade of HIF-1o. and

immune checkpoints such as programmed death-1 (PD-1) and
cytotoxic T-lymphocyte antigen-4 (CTLA-4) could represent a
novel approach for combinatorial cancer immunotherapy.

Despite the well-established proangiogenic and anti-
inflammatory roles of hypoxia through the stabilization of HIF-
o. proteins, more recent studies revealed that these transcription
factors contribute to inflammation by promoting Th17 cell
differentiation (31, 32). Additionally, prolyl hydroxylase proteins
(PHD), together with vkl genes, induce O,-tagged-dependent
HIF-1o. degradation; this effect restrains the function of CD4
and CD8 T cells and increases Treg cell expansion in lung tissues,
thereby promoting a permissive niche for lung metastasis (33, 34).
These data highlight the need of further exploration of the
interplay between hypoxia and inflammation in the TME. In
this complex scenario, the impact of hypoxia in CD8 T cell
immunoregulation is not fully understood.

CD8 T CELL EXHAUSTION

Exhausted T cells were initially described as hyporesponsive or
hypofunctional effector T cells characterized by sustained
expression of multiple inhibitory receptors, progressive loss of
effector functions (cytotoxicity and cytokine production), reduced
proliferative capacity, altered expression and function of key
transcription factors and dysregulation of epigenetic programs.
Even though these phenotypic features have been widely used as
hallmarks of T-cell exhaustion programs, enabling the distinction of
naive (Tn), effector (T eff) and memory T cells (Tm) (35, 36), recent
transcriptional and epigenetic studies have demonstrated that
exhaustion is not merely a transient impairment of the
functionality of T cells. Instead, T-cell exhaustion involves distinct
states of T-cell differentiation with a continuum of phenotypic and
functional intermediate states (37, 38). Thus, a deeper understanding
of the factors that control exhaustion programs is central for shaping
the course of chronic infections and cancer.

During an acute immune response, immune receptors are
transiently expressed by Tef cells to limit immunopathology and
autoimmunity (39, 40). However, in chronic infections and
cancer, sustained expression of immune checkpoint molecules
gives rise to the expansion of exhausted T cells. Among these co-
inhibitory molecules, CTLA-4 (CD152), PD-1 (CD279), T cell
immunoglobulin domain and mucin domain-containing protein
3 (TIM-3/HAVCR2/CD366), lymphocyte activation gene-3
(LAG-3/CD223), T cell immunoreceptor with Ig and ITIM
domains (TIGIT), B and T lymphocyte attenuator (BTLA/
CD272), 2B4 (CD244) and CD160 (41-43), play key roles in
T-cell exhaustion and represent important targets for the design
of new generation anticancer immunotherapies (42).

Although different signals may promote CD8 T-cell exhaustion,
persistent antigen stimulation appears to be the major driving force
leading to a T-cell exhausted phenotype (37, 44). Impairment of
CD8 T-cell functionality is favored when CD4 T-cell function is
affected by diminished IL-21 production (45, 46). Moreover,
increased levels of pro-inflammatory cytokines, such as type I
interferons (IFNs) and IL-6, or immunosuppressive cytokines
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including IL-10 and TGF-B1 (45, 47) contribute to shape an
exhausted phenotype. In addition, microenvironmental factors,
such as hypoxia and nutrient deprivation (e.g., glucose, amino
acids, glutamine), can limit T-cell activity and consequently impair
the immune response by modulating metabolic pathways (42, 48,
49). Thus, T-cell exhaustion represents an evolutionary adaptation
to conditions of chronic antigen stimulation and inflammation
(38), favoring tissue repair following an inflammatory injury.

Recently, high-dimensional studies identified approximately
nine phenotypic subtypes of exhausted T cells (50), but to date
two major subsets of exhCD8 T cells have been described,
namely progenitor or stem-like subset, and terminally-
exhausted populations (Figure 1A) (36, 38). The identification
and characterization of these exhCD8 T cell subpopulations
represents a paradigm shift in the conception of cytotoxic T
cells during the course of antitumor responses. Notably, the
balance between progenitor and terminally exhCD8 T cells
determines the cytotoxic potential and longevity required for
mounting an effective immune response (41).

The so called exhCD8 T cells progenitor population can be
defined as PD-1™ (36) CXCR5" (51) or Slamf6*/Ly108 (38, 52)
lacking expression of TIM-3 (51), while terminally exhCD8 T

cells are identified as PD-1™ (36, 37) or TIM-3" (37, 51).
Although several transcription factors have been proposed as
key determinants of exhaustion programs, recent studies
highlighted a dynamic interplay between T Cell Factor-1
(TCF-1) and thymocyte selection-associated high mobility
group box protein (TOX), in the control of different exhausted
populations (51, 53-56). TCF-1-expressing progenitor T cells are
also characterized by enhanced proliferative capacity,
polyfunctional cytokine production, and long-term persistence
in the absence of antigen. Two progenitor interchangeable states
have been described with functional and anatomical differences,
but similar epigenetic programming that can be catalogued in the
lymphoid tissue resident Texh Progl and the blood accessible
Texh Prog2, which eventually give rise to terminally exh T cells
inside the tumor tissue or inflammatory site (53). The terminally
exhCD8 T cells are characterized by coexpression of B
lymphocyte-induced maturation protein-1 (Blimp-1) (56) and
effector genes (e.g. GZMB), which sustain their cytotoxic activity,
and exhibit reduced long-term survival and polyfunctional
cytokine production (41). The main implications of the two
subsets of CD8 T cells in TME rely on their potential to respond
to PD-1 immune checkpoint blockade (ICB); the progenitor
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FIGURE 1 | Association between CD8 T cell exhaustion and hypoxia. (A) Schematic representation of progenitor and terminally exhausted T cell subsets. Although
T cell exhaustion comprises a wide range of exhausted states, two major subsets of exnCD8 T cells have been studied in detail: the progenitor and the terminally
exhausted T cell population. Whereas progenitor exhausted T cells exhibit proliferative potential, and stemness properties and can be rescued by immune checkpoint
blockade (ICB) therapies, terminally exhausted T cells have higher cytotoxic potential but represent a terminal differentiation state and cannot be rescued by ICB.
Proposed key molecules which discriminate these subpopulations are listed. (B) Modulation of CD8 T cell functions by hypoxia. Through HIF-1o and HIF2a:-
dependent mechanisms, hypoxic stimuli favor glycolytic anaerobic metabolism promoting T cell receptor (TCR) signaling. These include enhanced perforin and
granzyme-B (GzmB) release as well as expression of immune checkpoint molecules (including both activators and inhibitors). Hypoxia inhibits expression of
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population expands giving rise to terminally-differentiated
exhausted subsets (38, 51), a primary cytotoxic CD8 T cell
population in the TME. Therefore, a balance of both
progenitor and terminally-exhausted populations may be
required for effective control of tumors and chronic infections
(36, 38). With the major goal of improving therapeutic
interventions, new studies are required to explore the relevance
of these phenotypical changes in pathophysiological settings and
their crosstalk with environmental factors in inflammatory
and TME.

HYPOXIA MODULATES CD8 T CELL
DIFFERENTIATION

CD8 T cell reinvigoration and its relevance in immunotherapy
have been extensively discussed (41, 57). However, the role of
hypoxia in shaping the phenotype of these cells is a matter of
debate. In tumors, adipocyte tissue, and secondary lymphoid
organs, CD8 T cells are preferentially localized in hypoxic zones
(58, 59). In pioneering studies, hypoxia was reported as a critical
factor that potentiates CD8 T cells lytic properties but interrupts
their development (60, 61) (Figure 1B). In this sense, VHL-
mediated HIF-lo. and HIF-20 stabilization blunts the
differentiation of CD8 T cells in vitro but increases GZMB
expression, promoting the capacity of these cells to control
tumor growth and persistent viral infections (34). Additionally,
GZMB and the activation-associated costimulatory receptors 4-
1BB, GITR, and OX40 were found to be increased in CD8 T cells
exposed to hypoxia (62). In this sense, HIF-1o but not HIF-20u
drives CD8 T cell migration and eftector function (63). However,
the expression of key immune checkpoint receptors such as
LAG-3 and CTLA-4 was also increased in these CD8 T cells
under hypoxia in a VHL/HIF-10-dependent mechanism (34). In
addition, hypoxia fuels T cell exhaustion through a miRNA-24-
dependent MYC dysregulation that affects mitochondrial
function and metabolism (64), suggesting a complex regulatory
program driven by hypoxia in CD8 T cells.

Interestingly, the relevance of hypoxic regions in the tumor
tissue varies from acute hypoxia surrounding blood vessels that
slowly consolidates in chronic hypoxia according to oxygen
supply. The interplay between distinct hypoxic stages may
determine local T cell cytotoxicity and global success of a wide
variety of therapies (65). On the other hand, residence of TCF1"
CD8 progenitor T cells appear to depend on MHCII™ DC niches
that ensure their survival and further conversion to a
differentiated late exhausted and highly cytotoxic progeny.
Notably, these tertiary lymphoid structures correlate with
lymphatic and blood vessel infiltration into the tumor (66). In
conclusion, these data suggest a spatial correlation between
immunosuppression, hypoxia and terminally-differentiated
exhausted T cells.

Under hypoxia, the primary biological mediator of HIF
activation is VEGF-A (67). In addition to its functions as a
regulator of the angiogenic process (68), this growth factor
promotes a dysfunctional phenotype in CD8 T cells by increasing
the expression of co-inhibitory molecules including PD-1, CTLA-4,

and TIM-3 (26, 63). Moreover, VEGF-A upregulation in
microsatellite stable colorectal cancers promotes resistance to anti-
PD-1 immunotherapy by antagonizing the effector function of CD8
T cells and favoring expansion of exhCD8 T cells via induction of a
TOX-mediated transcriptional program (69). Under hypoxic
conditions, CD8 T cells maintain or even increase their cytotoxic
capacity but slow down their development, secrete less IFN-y and
IL-2, and enhance the expression of immune inhibitory checkpoints
(58, 69). However, evidence linking hypoxia to exhCD8 T cell
differentiation is still scarce. To fill this gap and reconcile the
apparently controversial data, we conducted in vitro experiments
exploring how hypoxia influences generation and functionality of
different subsets of exhCD8 T cells.

HYPOXIA AND VEGF-A FAVOR
DIFFERENTIATION TO TERMINALLY
EXHAUSTED CD8 T CELLS

In order to address the role of hypoxia in exhCD8 T cell
differentiation, we first performed in vitro experiments (Figure
2A) exposing differentiated exhCD8 T cells to hypoxic or
normoxic conditions, and explored the frequency and
functionality of the different exhCD8 T cells subsets (Figures
2B-D). According to previous reports, in vitro differentiation of
CD8" T cells resulted in an exhausted phenotype characterized
by expression of PD-1 and TIM-3 co-inhibitory receptors (63,
69). Among them, two subpopulations can be clearly
distinguishable as PD1"TIM3™ and PD1'TIM3" (Figure 2A).
While the former displayed a phenotype characterized by lower
cytotoxic potential, demonstrated by GzmB expression and
CD107a mobilization, the latter (PD1"TIM3") subpopulation
exhibited an increased cytotoxic potential (Figure 2B), with
higher expression of TNF-oo and IFN-y, compared with the
PD1"TIM3" cells (Figure 2B). These features are consistent
with the two well-characterized exhCD8 T populations
recognized so far, the progenitor and the terminally exhausted
subsets (37). In this sense, and as previously reported, hypoxic
conditions enhanced the cytotoxic profile of CD8" T cells,
assessed by GzmB expression and CD107a mobilization to the
cell surface (Figure 2C). Notably, when we further analyzed CD8
T subpopulations, we found that hypoxia increased the
percentage of terminally exhausted-like cells at the expense of
the progenitor-like subset (Figure 2D). We confirmed that
PD1'TIM3" cells expressed CXCR5", a typical marker of the
progenitor exhausted phenotype (51), while PD1"TIM3" cells
displayed a terminally exhausted-like phenotype (Figure 2D).
Nonetheless, no differences in cytokine production were
observed in these populations under hypoxic conditions
(Figure 2E), suggesting that hypoxia favors the generation of a
terminally exhausted phenotype in CD8 T cells with no evident
changes in their cytokine secretion profile.

To study whether hypoxia could affect secretion of pro-
angiogenic factors, we performed an angiogenic cytokine array
to assess cytokines expressed by naive, activated, and exhCD8 T
cells, under normoxic or hypoxic conditions. Interestingly,
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activation of CD8" T cells imprinted these cells with a
predominant proangiogenic phenotype, characterized by
greater secretion of soluble proangiogenic factors (Figure 2F).
Moreover, hypoxia-driven differentiation of terminally
exhausted T cells resulted in enhanced expression of pro-
angiogenic mediators when compared with exhCD8 T cells
exposed to normoxic conditions (Figure 2G). Under hypoxic
conditions, differentiated exhCD8 T cells displayed a broad pro-
angiogenic program characterized by higher levels of pro-
angiogenic molecules such as VEGF-A, platelet-derived growth
factor (PDGF), placental growth factor (PIGF), and
angiopoietin-3 (Ang3). On the other hand, under normoxic
conditions, exhCD8 T cells showed a secretome associated
with regulation of T cell responses, as shown by IL-10 and the
cell surface receptor endoglin, a component of the TGF-f-
signaling receptor family (Figure 2G). Interestingly, hypoxia
selectively increased VEGF-A secretion in the progenitor
exhCD8 T cell subset (Figure 2H).

Finally, given the role of VEGF-A in promoting CD8 T cell
exhaustion (26) and its regulated expression in exhCD8 T cell
subsets differentiation in vitro (Figures 2F-H), we explored its
effects in the frequency of progenitor and terminally exhCD8 T
cell subsets. Remarkably, VEGF-A (50 ng/ml) favored the
differentiation of CD8" T cells toward a terminally exhausted-
like phenotype (Figure 2I), although at a lesser extent than
hypoxia. Of note, VEGF-A did not alter the percentage of cells
expressing CD107a, GzmB, TNF-q,, or IFN-yamong the different
exhCD8 T cell populations (Figure 2J). Thus, increased
frequency of terminally-exhausted-like cells arising following
exposure to hypoxic conditions, could be attributed, at least in
part, to the effects of VEGF-A.

METHODS

Splenic CD8" T cells were obtained from C57BL/6 mice bred at
the animal facility of Instituto de Histologia y Embriologia de
Mendoza (IHEM) according to NIH Guidelines for the Care and
Use of Animals. All procedures were approved by the
Institutional Animal Care and Use Committee of the School of
Medical Science, Universidad Nacional de Cuyo (Protocol
approval N° 111/2017). CD8" T cells were isolated using the
Dynabeads Untouched Mouse CD8 cells kit (Invitrogen) and
subsequently seeded (5 x 10° cells/mL) in RPMI supplemented
with 10% fetal bovine serum (EBS) (Gibco) and 5.5 x 10> M 2-
mercaptoethanol, in 48-well culture plates. In vitro stimulation
was performed with immobilized anti-CD3 antibody (2.5 pug/mL;
Clone BD Biosciences) and anti-CD28 antibody (2 pg/mL; Clone
BD Biosciences). After 96 h, cells were re-stimulated with anti-
CD3 (1.5 pg/mL) and anti-CD28 (1 pg/mL) antibodies in 10%
FBS RPMI. CD8" T cells were incubated under hypoxia in a
modular incubator chamber (Billups-Rothenberg, San Diego,
CA, USA), flushed at 2 psi for 10 min with a mixture of 1%
0,, 5% CO,, and 94% N,. The chamber was sealed and placed in
a 37°C incubator for 48 h. Control CD8" T cells were placed in
the same incubator at 20% O,. Cell cultures in both conditions

were then incubated with VEGF-A (50 ng/ml, R&D systems) for
24 h at 37°C. The Zombie Green Fixable Viability Kit (Biolegend,
San Diego, CA, USA) was used to exclude dead cells. CD8" T
cells were phenotyped by cell surface staining with anti-CD4
(clone GK1.5), anti-CD8 (clone 53-6.7), anti-TIM-3 (clone
RMT3-23) anti-PD1 (clone RMP1-14) and anti-CXCR5 (clone
L138D7) antibodies (all from Biolegend) in 1% BSA in PBS for
20 min at 4°C. For intracellular staining, cells were permeabilized
with BD Perm/Wash buffer (BD Biosciences) and further stained
with anti-Gzm-B (clone 6B11; e-biosciences) and anti-TNF-o
(clone MP6-XT22), anti-IFN-y (clone XMG1.2) and anti-
CD107a (clone 1D4B), all from BD Pharmigen. To assess
cytokine production, CD8" T cells were incubated with PMA
(50 ng/mL, Sigma), ionomycin (1 pg/mL, Sigma) and monensin
(Golgi STOP, BD Biosciences) at 37°C. Cells were harvested after
4h and intracellular cytokines were evaluated by flow cytometry.
Experiments were performed in a BD Accuri C6 Plus flow
cytometer (BD Biosciences) and data was analyzed with FlowJo
V10.7.1 software.

Cytokine arrays were performed with the Proteome Profiler
Mouse XL Cytokine Array (R&D Systems) following
manufacturer’s instructions using conditioned media from
CD8" T cells obtained after the differentiation process and
exposed to hypoxic or normoxic conditions. Murine VEGF-A
secretion was determined by ELISA (R&D systems) in
conditioned media from previously sorted progenitor or
terminally exhCD8 T cells.

Statistical analysis and data representation was performed using
GraphPad Prism 8.2.1 Software (GraphPad, CA, USA). Student’s ¢
test was used for unpaired data. Two-way ANOVA and Dunnett’s
or Tukey post-tests were used for multiple comparisons. Cluster
differentiation analysis from normalized row Z-score values was
performed with Infostat software. P values of 0.05 or less were
considered significant. Exact P values are reported in all figures.

DISCUSSION

In the past years, combination therapies have changed the
landscape of cancer treatment (70). Interestingly, combinations
of antiangiogenic therapies and ICB are currently being
evaluated in several tumor types (9, 70, 71). Hypoxia, the
primary driving force responsible of triggering vascularization
programs, has come into the spotlight because of its concomitant
immunosuppressive activity in the TME (72, 73). Hypoxia
promotes T cell activation and cytotoxic activities and favors
the development of exhaustion programs (4). Although there are
no studies focused on the role of hypoxia or VEGF-A on different
exhCD8 T cell subpopulations, it is known that expression of
TIM-3, a signature of terminally-exhausted T cells, is highly up-
regulated under hypoxic conditions (26, 63, 74).

Here, we showed that hypoxia promotes the differentiation of
PD-1"TIM-3" terminally exhCD8 T cells at the expense of the
PD-1"TIM-3 CXCR5" progenitor-like population. Although
these cells exhibit a highly cytotoxic-like phenotype (38, 74),
they are resistant to ICB therapies. In fact, it has been recently
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proposed that anti-PD1 antibodies targets the progenitor
exhausted TILs, but not the terminally-exhausted T cells (38,
75). Thus, favoring expansion of the progenitor exhCD8 T cells
might improve responses to ICB.

In this sense, Voron and colleagues demonstrated that VEGF-A
increases the percentages of TIM-3" expressing CD8" T cells and
highlighted the role of VEGF-A in resistance to anti-PD-1
treatment in a murine model of colorectal cancer (26). Then,
Palazon and colleagues confirmed and expanded these findings
suggesting a direct role of HIF-1ot as an essential regulator of T cell
effector responses in the TME through mechanisms involving
VEGEF-A regulation, angiogenesis, and T cell migration (63). In
this sense, we found an up-regulation of pro-angiogenic factors
upon T cell activation. Furthermore, in exhCD8 T cells hypoxia
imprints a pro-angiogenic program characterized by up-regulation
of Ang-3, PDGF, hepatocyte growth factor (HGF), and VEGF-A. In
this regard, our study demonstrates that VEGF-A promotes CD8 T
cell exhaustion by increasing the frequency of terminally-exhausted
T cells. Moreover, our results, albeit limited to in vitro experiments,
suggest a cross-talk between vascular and immune cell programs
which target exhausted T cells and simultaneously foster immune
escape and neovascularization. These results support the rationale
of improving combinatorial therapies using HIF inhibitors or
antiangiogenic therapies plus ICB in highly hypoxic tumors (70).

Although further studies are needed to understand how hypoxia
links immune tolerance and angiogenesis and sustains resistance to
anti-tumor therapies, studies in clear cell renal cell carcinoma
(ccRCC) could give a preliminary insight into this possibility.
This tumor is characterized by a high CD8" T cell infiltration and
loss of the tumor suppressor von Hippel-Lindau (VHL), which
promotes HIF stabilization leading to activation of several oxygen-
independent hypoxic transcriptional programs. In ccRCC tumors,
CD8 T cell infiltration rate is typically associated with poor
prognosis (76), imposing hurdles to most immunotherapeutic
modalities (77). In this sense, and in line with our hypothesis,
Siska and colleagues reported that phenotypical and functional
differences of CD8 T cells from ccRCC involve constitutive
activation of HIF-1qa, which promotes an altered metabolism
(78). These results shed light on the complex relationships
between HIF activation and CD8 T cell functionality in the TME.

In conclusion, our findings suggest that hypoxic programs
may represent an attractive target to attenuate T cell exhaustion
and immunosuppression in the TME. However, further studies
in vivo are required to examine the role of hypoxia, its cellular
mediators and signaling pathways in supporting tumor-immune
escape and T cell exhaustion in antigen-specific and pathologic
settings. Further investigation should be aimed at exploring the
intimate link between hypoxia, immunosuppression, and
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