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Despite advances in post-transplant management, the long-term survival rate of kidney
grafts and patients has not improved as approximately forty percent of transplants fails
within ten years after transplantation. Both immunologic and non-immunologic factors
contribute to late allograft loss. Chronic kidney transplant rejection (CKTR) is often clinically
silent yet progressive allogeneic immune process that leads to cumulative graft injury,
deterioration of graft function. Chronic active T cell mediated rejection (TCMR) and chronic
active antibody-mediated rejection (ABMR) are classified as two principal subtypes of
CKTR. While significant improvements have been made towards a better understanding
of cellular and molecular mechanisms and diagnostic classifications of CKTR, lack of early
detection, differential diagnosis and effective therapies continue to pose major challenges
for long-term management. Recent development of high throughput cellular and
molecular biotechnologies has allowed rapid development of new biomarkers
associated with chronic renal injury, which not only provide insight into pathogenesis of
chronic rejection but also allow for early detection. In parallel, several novel therapeutic
strategies have emerged which may hold great promise for improvement of long-term
graft and patient survival. With a brief overview of current understanding of pathogenesis,
standard diagnosis and challenges in the context of CKTR, this mini-review aims to
provide updates and insights into the latest development of promising novel biomarkers
for diagnosis and novel therapeutic interventions to prevent and treat CKTR.

Keywords: chronic allograft rejection, kidney transplant, biomarkers, IFTA, T cells mediated rejection
INTRODUCTION

Chronic kidney transplant rejection (CKTR) is characterized by progressive decrease of renal graft
function that starts to manifest at one-year after the transplantation and usually accompanied by
hypertension and proteinuria (1). CKTR usually occurs in patients with insufficient
immunosuppression or medication nonadherence (2). While Persistent allogeneic immune
response remains a major cause (3, 4), multiple risk factors, e.g. early ischemia reperfusion injury,
acute rejection episodes and transplant infectious diseases, can contribute to the development and
org May 2021 | Volume 12 | Article 6616431
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progression of CKTR. Histologically, there are two principal
distinct subtypes of CKTR, namely chronic active antibody-
mediated rejection (ABMR) and chronic active T cell-mediated
rejection (TCMR) according to the revised Banff criteria (5, 6). It
is not uncommon that both chronic active TCMR/ABMR co-exist
and lead to rapid loss of graft function (7–9).

Effective treatment and prognosis of CKTR are largely
dependent upon the severity and reversibility of rejection at
the time of diagnosis. However, it remains a major challenge to
identify early changes before irreversible damage to the graft
occurs. Currently, no immunotherapies are clinically proven to
be effective in prevention and treatment of CKTR, particularly
ABMR. Recent advances in high-throughput cellular and
molecular biotechnologies have allowed for in-depth analyses
of cellular and molecular processes and deconvolutions of
mechanisms underlying CKTR and have led to identification
and validation of new molecular and cellular biomarkers through
non-invasive or minimal-invasive approaches. The discovery of
these biomarkers holds tremendous promise for early detection
and development of promising novel therapies for improvement
of kidney transplant outcomes. This review will first provide a
brief summary on current understanding of pathogenesis and
standard mothed challenges for the diagnosis of CKTR, and then,
focus on more in-depth discussions to the area of biomarker
discovery and novel therapeutic interventions to improve long
term transplant outcome.
PATHOGENESIS OF CHRONIC ACTIVE
ABMR AND CHRONIC TCMR

Chronic active ABMR represents most cases of CKTR (2),
featuring transplant glomerulopathy along with severe
peritubular capillary basement membrane multilayering and
new onset arterial intimal fibrosis. In contract, chronic active
TCMR is determined based on inflammation in areas of the
cortex with interstitial fibrosis and tubular atrophy (i-IFTA), a
hallmark feature of CKTR in addition to tubulitis. The newly
revised Banff criteria of chronic active TCMR recognize the
pathogenic importance of TCMR in the development of
chronic interstitial inflammation leading to i-IFTA, nonetheless,
it does not discriminate alloimmune-mediated tissue injury from
‘non-specific injuries, particularly calcineuirn inhibitor (CNI)
mediated nephrotoxicities (10, 11).

While precise mechanisms underlying ABMR remain elusive,
it is believed that the interaction of donor-specific alloantibodies
(DSAs) against donor HLA antigens, especially HLA class II
antigens expressed by endothelial cells of the microvascular
circulation, initiates ABMR (12). DSAs binding to endothelial
cells leads to a cascade of molecular events, including complement
activation that may contribute to endothelial dysfunction,
microvascular inflammation and remodeling, and ultimately
results in irreversible tissue injury (13). B cell deficiency resulted
in reduced transplant glomerulopathy, decreased microvascular
inflammation, reduced macrophage infiltration and IFNg
transcripts in the allograft (14), which underscores the
Frontiers in Immunology | www.frontiersin.org 2
importance of B cells in the pathogenesis of ABMR. In addition
to uncontrolled allogeneic immune response due to insufficient
immunosuppression or nonadherence, early inflammatory events
such as acute TCMR and viral infection are suggested to be risk
factors for DSA (dnDSA) production (15–17). Preceding TCMR
is found to be strongly correlated with development of chronic
active ABMR dnDSA (7). Moreover, it has been shown in biopsy-
proven chronic active ABMR cases that T cells (especially CD8+ T
cells) and macrophages are the dominant infiltrating cell types in
glomerulus, whereas B cells are frequently observed in the
tubulointerstitial compartment, indicating that both T cells and
macrophages play a pivotal role in renal chronic ABMR (18). The
involvement of NK cells in ABMR has recently gained attention.
Recent studies have revealed that NK cells are involved in ABMR
via CD16a Fc receptors (19, 20). Depletion of NK cells
significantly mitigates DSA-induced chronic allograft
vasculopathy (CAV) (21). NK cells increase IFNg production
after exposure to alloantigens through an antibody-dependent
cellular cytotoxicity-like mechanisms, which is associated with an
increased risk for ABMR (22) and NK cell infiltration predicts
poor outcome after kidney transplantation (23).

Persistent T cell–mediated injuries can lead to chronic active
TCMR (24). Alloreactive effector memory T Cells (Tem),
particularly CD8+ Tem subsets (express increased CD44hi,
CD45RO+, OX40, KLRG-1 and BLIMP-1), are implicated in
the development of TCMR (25). Unlike naïve T cells, Tem cells
are known for their low activation threshold, robust effector
functions, and resistance to conventional immunosuppression
and costimulation blockade (26). Memory T cells are originated
from environmental antigens or generated from previous
rejection episodes and once activated, they enter into the renal
interstitium and secrete several cytokines such as IFNg and
TGFb, and subsequently trigger a cascade of inflammation
leading to tubulitis (27). Chronic TCMR also results in renal
vasculature injuries, such as arterial inflammation and intimal
fibrosis (6). In a recent study, Claudia and colleagues (25)
demonstrated that CD8+ effector memory T cells mediated by
the OX40 gene pathway play an important role in the
pathogenesis of chronic TCMR.
CURRENT DIAGNOSIS AND CHALLENGES

Early diagnosis of CKTR determines successful therapeutic
interventions and prognosis. CKTR is a slowly progressive
process in which pathologic changes as such vascular
inflammation and i-IFTA do not have clinical manifestations
until late stages. In addition, differential diagnosis is extremely
important to distinguish CKTR from late graft dysfunction
caused by other complications including CNI toxicity, BK-
virus associated nephropathy and recurrent renal diseases, each
of which requires different treatment. Transplant patients are
subjected to routine laboratory tests for continuous graft
monitoring. Serum creatinine (sCr), blood urea nitrogen
(BUN) and cystatin C are commonly used to evaluate graft
function. The estimated glomerular filtration rate (eGFR),
May 2021 | Volume 12 | Article 661643
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calculated based on sCr level, age, weight and gender, is
considered as an accurate indicator and predictor for graft
function and long-term graft survival (28). Proteinuria>500
mg/day is also considered as a marker of chronic kidney
allograft dysfunction (29). However, because chronic rejection
is an indolent process with slow progression in pathologic
changes (30), these aforementioned tests are non-specific, often
failing to detect renal damage at early stages and easily influenced
by other non-immune injuries can also influence the results.
Emergence of circulating de novo DSAs is associated with
increased risk for graft failure as a result of chronic active
ABMR (31, 32). Prospective monitoring for DSAs may be
indicative for early treatment before irreversible graft injury
(33, 34), however, not all DSAs are doomed to be pathogenic
(35) and DSA levels may not correlate with tissue injury (15).
Imaging technologies such as Doppler ultrasonography (US),
Contrast-enhanced ultrasound (CEUS) and Magnetic Resonance
Imaging (MRI) are non-invasive complementary methodologies
used to assist in the early diagnosis of both acute and chronic
graft rejection by evaluating renal vasculature resistance (US)
(36, 37), graft blood perfusion (CEUS) (38), and anatomical
changes (MRI) such as fibrosis (39). However, findings from
these tests are mostly non-specific with limited value in guiding
the clinical treatment.

Currently, graft biopsies still remain the gold standard for
diagnosing graft rejection. Graft histology provides visual evidence
of the underlying pathology and pathogenesis of graft dysfunction.
More recently, genetic analysis of biopsy tissue has been used to
assist in the differential diagnosis of allograft rejection in
conjunction with histology and immunohistochemistry. The
Banff classification, founded in 1991, has established specific
criteria for the diagnosis of kidney allograft rejection. It has
been updated multiple times in the past two decades (5). C4d
complement fragment deposition in the peritubular capillaries
was regarded as a marker for ABMR (40), but removed as a
diagnostic criterion in the latest Banff (2019) Classification
Criteria for chronic active ABMR due to the emergence of C4d
negative ABMR (41). Although histological examination through
renal biopsy remains the diagnostic gold standard criterion, it
cannot be carried out too often due to its invasiveness. Graft
needle biopsy can cause various surgery-related complications,
such as perinephric hematoma, arteriovenous fistula, bleeding,
infection. In addition, there are other limitations associated with
histologic examination, e.g. lack of standardization and
quantitation, sampling errors and accurate diagnosis largely
relies on the pathologists’ skills (42). Therefore, non-/minimally-
invasive and predictive biomarkers are highly desirable for early
diagnosis and tailored inventions to delay or prevent CKTR and
improve graft longevity.
POTENTIAL BIOMARKERS FOR EARLY
DIAGNOSIS AND PROGNOSIS

Recent development of high-throughput cellular and molecular
biotechnologies has led to tremendous advances in biomarker
Frontiers in Immunology | www.frontiersin.org 3
discoveries in the field of transplantation, with great promise for
better understanding and management of CKTR. Contributions
of biomarker studies are multifold, including 1) generating new
insight into molecular mechanisms of CKTR, 2) allowing for
early and differential diagnosis, 3) providing evaluation of
therapeutic intervention, and 4) predicting prognosis. Principal
characteristics of the biomarkers have been thoroughly reviewed
elsewhere (42–44). Although most studies have centered in
exploring non-invasive biomarkers for ischemia/reperfusion
injury and acute allograft rejection in blood and urine (42), a
variety of biomarkers generated from studies in renal protocol
biopsies and blood and urine samples are suggestive for diagnosis
and prognosticator for CKTR. Based on the characteristics of the
biomarkers and technologies used, biomarkers pertaining to
CKTR can be divided into five main categories: transcriptomic
biomarkers, Epigenetic biomarkers, Proteomic biomarkers, and
Metabolomic biomarkers, and cellular biomarkers, which are
summarized Table 1, and also briefly discussed in the
following sections.

Transcriptomic Biomarkers
These biomarkers are generated by high-throughput gene or
transcriptome profiling, also termed transcriptomics, using
microarray and next generation gene sequencing technologies.
These studies have been more commonly performed on renal
biopsy samples as they provide sufficient material for RNA
extraction. As listed in Table 1, gene signatures associated with
fibrosis, i-IFTA, chronic rejection (ABMR and TCMR) and graft
failure can be identified by determining gene expression profiling
(45–53). Importantly, the gene set has higher predictive capacity
than that of baseline clinical variables, and clinical and
pathological variables. One notion from these studies is that
similar gene signatures for acute rejection are also indicative of
CKTR. For example, a study by Khatri et al. (85) revealed 11
genes associated with acute rejection across different engrafted
tissues, among which 7 genes (CD6, INPP5D, ISG20, NKG7,
PSMB9, RUNX3, and TAP1) were identified as predictors for the
development of progressive i-IFTA at 24 months posttransplant
(45). More interestingly, a set of four gene markers (vimentin,
NKCC2, E-cadherin, and 18S rRNA) in urine samples has been
identified as reliable non-invasive biomarkers for i-IFTA (46).

Epigenetic Biomarkers
Epigenetic modifications and regulators control relevant gene
expression and function in response to altered biological
process, and thereby can be employed as disease biomarkers
(86). Epigenetic modifications include cytosine methylation of
DNA at cytosine-phosphate diester-guanine dinucleotides,
microRNA interactions, histone modifications, and chromatin
remodeling complexes (87), which occur to genome without
alteration of the DNA sequence. Epigenetics is an emerging field
of research in kidney transplantation. Most studies have been
performed in the context of ischemia and reperfusion injury and
acute rejection, demonstrating the implication of aberrant DNA
methylation (88). Recent studies in both humans and animals (54,
89) have shown that altered epigenetic modifications, particularly
DNA methylation, influences the activation, proliferation,
May 2021 | Volume 12 | Article 661643
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TABLE 1 | Potential biomarkers for chronic rejection.

Biomarker
classification

Biomarker candidate Sample
type

AUC Sensitivity/
Specificity

Application Ref

Transcriptomic
biomarker

CD6, INPP5D, ISG20, NKG7, PSMB9, RUNX3, TAP1 (↑) Kidney
graft

n/a n/a Predict the
development of
progressive i-IFTA
at 24 months

Sigdel TK,
et al. (45)

vimentin, NKCC2, E-cadherin, 18S rRNA (↑) Urine 0.95 0.938/0.841 As a 4-gene
model diagnostic
of i-IFTA

Lee JR, et al.
(46)

CHCHD10, KLHL13, FJX1, MET, SERINC5, RNF149, SPRY4, TGIF1,
KAAG1, ST5, WNT9A, ASB15, RXRA

Kidney
graft

0.889
(average)

0.81/0.79
(average)

Predict fibrosis
and graft failure

O’Connell PJ,
et al. (47)

RSAD2, ETV7 (↑) PBMC 0.761
(RSAD2)
0.84 (ETV7)

n/a Diagnose of
ABMR

Matz M, et al.
(48)

TIM-3 (↑) PBMC 0.71 0.83/0.75 Predict CAD Shahbaz SK,
et al. (49)Urine 0.75 0.83/0.75

TIM-3, KIM-1 (↑) PBMC 0.99 (TIM-3) 1/0.98 (TIM-
3)

Predict CAD Shahbaz SK,
et al. (50)

0.97 (KIM-1) 1/0.7 (KIM-1)
Urine 0.95 (TIM-3) 1/0.81 (TIM-

3)
0.99 (KIM-1) 1/0.93 (KIM-

1)
0.95 (KIM-1
concentration)

1/74 (KIM-1
concentration)

CIITA (↓), CTLA-4 (↑) PBMC 0.902 (CIITA) n/a Predict dnDSA
and chronic ABMR

Yamamoto T,
et al. (51)0.785

(CTLA4)
TLR-2, TLR-4, MyD88 (↑) PBMC 0.94 (TLR2) 0.93/0.93

(TLR2)
Predict early and
late CAD

Hosseinzadeh
M, et al. (52)

0.95 (TLR4) 0.93/0.93
(TLR4)

0.94 (MyD88) 1/0.93
(MyD88)

Kidney
graft

0.94 (TLR2) 0.93/0.93
(TLR2)

0.95 (TLR4) 0.93/1 (TLR4)
0.98 (MyD88) 1/0.93

(MyD88)
CASP3, FAS, IL-18 (↓) PBMC 0.79 (CASP3) 0.71/0.88

(CASP3)
Predict graft
function

Kaminska D,
et al. (53)

0.75 (FAS) 0.64/0.8
(FAS)

0.77 (IL-18) 0.71/0.8 (IL-
18)

Epigenetic
biomarkers

Foxp3 DNA demethylation Kidney
graft

n/a n/a Protector for long-
term allograft
outcome

Bestard O,
et al. (54)

PD1 DNA methylation in memory CD8+ T cells (↑) PBMC n/a n/a PD1 DNA
methylation
increases in
recipients with
rejection

Karin Boer,
et al. (55)

miR-21, miR-200b (↑) Urine 0.89 (miR-21) 0.85/0.8
(miR-21)

Corelate with renal
allograft
dysfunction and i-
IFTA; diagnostic
biomarkers for
renal allograft
monitoring

Zununi VS,
et al. (56)

0.81 (miR-
200b)

0.84/0.95
(miR-200b)

miR-150 (↑), miR-423-3p (↑), miR192 (↓), miR-200b (↓) Plasma 0.87 (all) 0.78/0.91 Predict graft
outcome in
recipients with
CAD

Zununi VS,
et al. (57)

(Continued)
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TABLE 1 | Continued

Biomarker
classification

Biomarker candidate Sample
type

AUC Sensitivity/
Specificity

Application Ref

miR21, miR-155, miR-142-3p (↑) Plasma 0.82 (all) 0.81/0.92 Upregulate in
recipients with i-
IFTA; corelate with
renal allograft
dysfunction; can
be used for graft
monitoring

Zununi VS,
et al. (58)

miR-145-5p (↓) Plasma 0.891 0.933/0.731 Diagnostic
biomarker of i-IFTA

Matz M, e al
(59)

miR-148a (↓) Plasma 0.89 0.97/0.72 Correlated with
renal function and
histological
grades; biomarker
of the progression
to i-IFTA

Nariman-
Saleh-Fam Z,
et al. (60)

miR-142-3p(↓), miR-204 (↑), miR-211 (↑) Urine,
kidney
graft

0.974 (miR-
142-3p)

0.89/1 (miR-
142-3p)

As markers of
CAD with i-IFTA
and for monitoring
graft function

Scian MJ,
et al. (61)

0.967 (miR-
204)

0.95/1 (miR-
204)

1 (miR-211) 1/1 (miR-211)
miR-142-5p (↓), miR-486-5p (↑) PBMC n/a n/a Predict chronic

ABMR
Iwasaki K,
et al. (62)

Proteomic
biomarker

V305_HUMAN_NTLYLNMNSLR, RL18_HUMAN_ILTFDQLALDSPK,
F151A_HUMAN_AVGPSLDLLR, TGFR2_HUMAN_LTAQCVAER,
LYAM1_HUMAN_AEIEYLEK, K2C8_HUMAN_LSELEAALQR,
F151A_HUMAN_TYTQAMVEK, PLGB_Human_AFQYHSK,
K1C19_HUMAN_ILGATIENSR, IBP7_HUMAN_GTCEQGPSIVTPPK,
LV102_HUMAN_WYQQLPGTAPK
DSRAD_Human_YLNTNPVGGLLEYAR,

Urine 0.995 n/a Predict CAD Sigdel TK,
et al. (63)

PARP1 (↓) Serum 0.871 n/a Predict AR and
chronic graft injury

Srivastava M,
et al. (64)

TNF-a, ANXA11, Integrin a3, Integrin b3 (↑) Urine 0.805 (TNFa) n/a Diagnose AR and
CR

Srivastava M,
et al. (65)0.855

(Integrin a3)
0.813
(integrin b3)
0.963
(ANXA11)

CXCL9, CXCL10 (↑)
CXCL9/Cr ratio (↑)
CXCL10/Cr ratio (↑)

Urine 0.86 (CXCL9),
0.9 (CXCL9/
Cr)

n/a Predict TCMR Rabant M,
et al. (66)

0.8 (CXCL10),
0.82
(CXCL10/Cr)

n/a Predict mixed
rejection

0.7 (CXCL10),
0.7 (CXCL10/
Cr)

n/a Predict ABMR

CXCL10/Cr ratio (↑) Urine 0.81 (sub-
clinical TCMR)

0.59/0.67
(subclinical
TCMR)

Predict TCMR for
pediatric recipients

Blydt-Hansen
TD, et al. (67)

0.88 (clinical
TCMR)

0.77/0.6
(clinical
TCMR)

Vitronectin (↑) Urine 0.963 n/a Monitor fibrotic
changes in kidney
allograft

Carreras-
Planella L,
et al. (68)

Properdin, sC5b-9 (↑) Urine n/a n/a As risk factors of
graft failure

Lammerts R,
et al. (69)

AZGP1 (↑) Urine 0.946 0.846/0.8 Predict and
diagnose chronic
ABMR

Jung HY,
et al. (70)

(Continued)
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differentiation, and migration of a variety of cell types, e.g. helper T
cells (90, 91) or regulatory T cells (54) and fibroblast (92), which
are implicated in allograft survival and kidney fibrosis. For
example, Foxp3 demethylation at the T(reg)-specific
demethylation region positively correlates with numbers of
intragraft Foxp3-expressing T cells in patients with subclinical
rejection with i-IFTA via protocol biopsies; consequently, patients
with more Foxp3+ T(reg) cells within graft infiltrates showed
significantly better 5-year graft function evolution than patients
without Foxp3+ T(reg) cell infiltration (54). Boer et al. (55) studied
DNA methylation (DNAm) of the pro-inflammatory cytokine
Frontiers in Immunology | www.frontiersin.org 6
interferon g (IFNg) and the inhibitory receptor programmed death
1 (PD1) in naïve and memory CD8+ T cell subsets in kidney
transplant recipients. Increased DNAm of IFN-g and PD1 was
observed in memory CD8+ T cells in kidney transplant recipients
3 months after transplantation, regardless of a rejection episode or
not, suggesting that it was a non-specific change associated with
transplant surgery or use of immunosuppressive drugs. However,
PD1 methylation in the CD27− memory CD8+ T cells was more
prominently increased in recipients with rejection episode than
those without. In a more recent study concerning the role of
DNAm in progression of IFTA in renal biopsies, normal allograft
TABLE 1 | Continued

Biomarker
classification

Biomarker candidate Sample
type

AUC Sensitivity/
Specificity

Application Ref

b2 microglobulin, NGAL, clusterin, KIM-1 (↑) Urine n/a n/a Predict chronic
allograft
nephropathy

Cassidy H,
et al. (71)

Metabolomic
biomarkers

Newly Synthesized DNA and ATP PBMC n/a n/a Analyze
lymphocyte subset
activation
responses

Sottong PR,
et al. (72)

NAD, 1-MN, cholesterol sulfate, GABA, nicotinic acid, NADPH,
proline, spermidine, alpha-hydroxyhippuric acid

Urine n/a n/a Predict TCMR Kalantari S,
et al. (73)

Alanine, Citrate, Lactate, combined with urea or glucose or
glucutonate

Urine 0.76 n/a Diagnose AR Miriam B,
et al. (74)

threitol, inositol, glucose, xylono-1, 5-lactone, xylitol, xylopyranoside,
2,3-dihydroxybutanoic acid, glucitol, ribonic acid, octadecanoic acid,
phosphate (↑)
fructose, glycolic acid, 3-hydroxyisovaleric acid (↓)

Urine n/a 0.867/0.677 Diagnose AR Long Zheng,
et al. (75)

guanidoacetic acid, methylimidazoleacetic acid, dopamine (↑)
4-guanidinobutyric acid, L-tryptophan (↓)

Urine 0.926 0.9/0.846 Diagnose AR Kim S, et al.
(76)

Itaconate, kynurenine (↑) Kidney
graft

n/a n/a Distinguish acute
cellular rejection
from IRI

Beier UH,
et al. (77)

glycine, glutaric acid, adipic acid, inulobiose, threose, sulfuric acid,
taurine, N-methylalanine, asparagine, 5-aminovaleric acid lactam,
myo-inositol

Urine 0.985 0.929/0.963 Diagnose AR Sigdel TK,
et al. (78)

Cellular
biomarker

TEMRA/EM CD8 T cell ratio (↑) PBMC 0.75 (8 year
graft failure)

n/a Predict graft failure Jacquemont
L, et al. (79)

0.79 (11 year
graft failure)

CD154+ T-cytotoxic memory cells (↑) PBMC 0.968 0.923/0.846 Predict rejections
(liver)

Ashokkumar
C, et al. (80)

PBMC 0.938 1/0.88 Predict AR (kidney) Ashokkumar
C, et al. (81)

alloreactive memory IFN-g-producing T cells (↑) PBMC 0.725 0.8/0.64 Predict subclinical
TCMR and DSA

Crespo E,
et al. (82)

Ratio of T follicular helper cells and T follicular regulatory cells (Tfc/Tfr)
(↑)

PBMC n/a n/a Risk factor of CAD Yan L, et al.
(83)

Myofibroblast Kidney
graft

n/a n/a Identify CR Liu YG, et al.
(84)
May
 2021 | Volume 12 |
NKCC2, Na-K-Cl cotransporter 2; CD6, cluster of differentiation 6; INPP5D, inositol polyphosphate-5-phosphatase D; ISG20, interferon-stimulated gene 20; NKG7, natural killer cell
granule protein 7; PSMB9, proteasome subunit beta type-9; RUNX3, runt-related transcription factor 3; TAP1, transporter associated with antigen processing 1; CHCHD10, Coiled-coil-
helix-coiled-coil-helix domain containing 10; KLHL13, Kelch-like family member 13; FJX1, Four jointed box 1; MET, Met proto-oncogene; SERINC5, Serine incorporator 5; RNF149, Ring
finger protein 149; SPRY4, Sprouty homolog 4; TGIF1, TGFB-induced factor homeobox 1; KAAG1, Kidney associated antigen 1; ST5, Suppression of tumorigenicity 5; WNT9A, Wingless-
type MMTV integration site family member 9A; ASB15, Ankyrin repeat and SOCS box-containing 15; RXRA, Retinoid X receptor alpha; TIM-3, T cell immunoglobulin and mucin domain 3;
KIM-1, kidney injury molecule-1; CIITA, class II transactivator; CTLA-4, cytotoxic T-lymphocyte antigen; TLR, toll-like receptor; MyD88, myeloid differentiation factor 88; CASP3, caspase 3;
FAS, first apoptotic signal; PD1, programmed death 1; miR, micro RNA; PARP1, Poly(ADP-ribose) polymerase 1; CXCL9, chemokine C-X-C motif ligand 9; CXCL10, chemokine C-X-C
motif ligand 10; AZGP1, zinc-alpha-2-glycoprotein; NAD, nicotinamide adenine dinucleotide; 1-MN, 1-methylnicotinamide; GABA, gamma-aminobutyric acid; NADPH, nicotinamide
adenine dinucleotide phosphate; IRI, ischemia reperfusion injury; NGAL, neutrophil gelatinase-associated lipocalin; TEMRA, terminally differentiated effector memory; EM, effector memory;
PBMC, Peripheral blood mononuclear cell; AUC, area under curve; n/a, not available; I-IFTA, interstitial fibrosis and tubular atrophy; AR, acute rejection; CR, chronic rejection; ABMR,
antibody-mediated rejection; TCMR, T cell-mediated rejection; CAD, chronic allograft dysfunction; dnDSA, de novo donor specific antibody.
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biopsies at 2-years post-transplantation showed similar DNAm
patterns comparable to preimplantation biopsies, whereas
persistent differentially methylation was associated with
progression of allografts to chronic renal allograft dysfunction
(93). Epigenetic mechanisms such as hypomethylation could
directly boost and indirectly modulate their expression by
controlling miRNAs (93). Recent studies have revealed that mi-
R21 and miR200b expression in urine are associated with IFTA
and CAD (56), while circulating miR-150, miR192, miR-200b, and
miR-423-3p in plasma are related to IFTA (57). Meanwhile,
expression of miR21, miR-155, and miR-142-3p was up-
regulated in the plasma of patients with IFTA (58), while miR-
145-5p and miR-148a were down-regulated (59, 60). Another
study showed that expression of miR-142-3p was up-regulated,
whereas miR-204 andmiR-211 were down-regulated both in urine
and kidney graft of recipients with CAD-IFTA (61). In addition,
up-regulation of miR142-5p, and down-regulation of miR-486-5p
may serve as biomarkers for early detection of chronic ABMR
(62). These markers could, therefore, be considered as potential
markers for CAD.

Proteomic Biomarkers
Scores of non-invasive proteomic biomarkers of CKTR are
generated using high-throughput proteomic techniques, such as
liquid chromatography-mass spectrometry (LC-MS), isobaric tag
for relative and absolute quantitation (iTRAQ), protein
microarray, and bead-based immunoassay. Studies investigating
non-invasive proteomic biomarkers in urine and blood (94), have
discovered unique protein sets valuable for differential diagnosis.
For example, one study on a set of 245 urine samples from a
pediatric and young adult kidney allograft recipient cohort,
identified 35 proteins that could discriminate three types of
graft injury, 11 peptides for acute rejection, 12 urinary peptides
for chronic allograft nephropathy and 12 peptides for BK virus
nephritis (63). Metzger et al. (95) validated a multi-marker
urinary peptide classifier constructed from capillary
electrophoresis mass spectrometry (CE-MS) peptide spectra of
urine from a training set of 39 allograft patients to discriminate
TCMR from healthy allografts. Srivastava et al. (64, 65) identified
that the up-expression of urine ANXA11, Integrin a3, Integrin b3
and TNF-a, and the downregulation of serum PARP1 could be
used as candidate proteomic biomarkers for kidney allograft
rejection. Furthermore, several proteins, some chemokines and
cytokines in blood and urine are also identified as biomarkers for
diagnosing CKTR and predicting graft outcomes (66–71). Several
recent efforts have established urinary C-X-C motif chemokine 9
(CXCL9) and CXCL10 as reliable biomarkers for subclinical
allograft rejection and for guiding the post-transplant
management (66, 67). A recent study shows that platelets
contain a wide array of mediators that could potentially
promote acute and chronic ABMR (96, 97). In fact, platelet
factor 4 (PF4, also known as CXCL4), the most abundant
platelet-related mediator detected in the allograft with large
quantities, has multiple consequences on allografts, one of
which is to promote monocytes survival and macrophage
differentiation (98), predicting poorer graft outcomes (99).
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Metabolomic Biomarkers
Metabolomics is a rapidly emerging research field that involves
comprehensive analysis of all metabolites in a single biological
sample (100) and has recently gained tremendous interest in the
biomarker study in organ transplantation. Compared to
proteomic or transcriptomic markers, metabolomic biomarkers
may be more precise in reflecting cellular functions (101).
Metabolomics can be used in two ways: intensively analyzing
and identifying individual metabolites; or using pattern
recognition to record spectral patterns and intensities instead
of recording individual molecules (100, 102). Researchers
recommend that metabolomic markers improve observing
rejection and other organ injuries (103). In children, urinary
metabolomics improved detection of borderline TCMR and
demonstrated promise in ABMR (104). Measuring adenosine
triphosphate (ATP) generation by mitogen-stimulated CD4
lymphocytes (ImmuKnow assay) is an FDA-approved
biomarker potentially effective in transplant recipients (72). In
a randomized prospective study, based on immune function
values determined by ImmuKnow assay, one-year patient
survival was markedly improved and infection rates were
reduced in the group receiving ATP release biomarker-guided
immunosuppressant regulation (105). In a recent study, a panel
of nine differential metabolites in urine were identified as novel
potential metabolite biomarkers of TCMR (73). The
metabolomic biomarkers that considered as potential markers
for rejection episodes are listed in Table 1 (72–78).

Cellular Biomarkers
There has been significant attentions drawn to quantify
alloreactive CD8+ T cells as potential cellular biomarkers of
rejection (25, 79, 106), or tolerance (107). Ashokkumar et al.
(80) found that allospecific CD154+ T-cytotoxic memory cells
were associated with rejection risk in liver transplant recipients.
Limited data showed that an increase in CD154+ subset is
implicated in acute kidney transplant rejection (81). Resent
studies showed that monitoring alloreactive memory IFN-g-
producing T cells could assess subclinical TCMR and predict de
novo DSA (82), while ratio of T follicular helper cells and T
follicular regulatory cells (Tfc/Tfr) was an independent risk factor
for CAD (83). However, multicenter validation of its diagnostic/
prognostic biomarker utility in CKTR remains to be determined
(108). Both macrophages and NK cells are implicated in chronic
rejection (21, 109–111). However, it remains to be determined
whether a specific subset of macrophages or NK cells could be
served as cellular markers for CKTR. Recently, single-cell
sequencing technologies have been rapidly developed and have
evolved as a power tool for unbiased assessments of genomic,
epigenomic, and transcriptomic profiling at the single-cell level.
Compared with traditional sequencing technology, single-cell
technologies have the advantages of detecting heterogeneity
among individual cells, distinguishing a small number of cells,
and delineating cell maps (112, 113). Using scRNA-seq technique,
Liu et al. revealed multiple novel subsets of immune cells,
including five subclasses of NKT cells, two subtypes in memory
B cells, a classic CD14+ group and a nonclassical CD16+ group in
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monocytes, in patients with CKTR. They also identified a novel
subpopulation [myofibroblasts (MyoF)] in fibroblasts, which
express collagen and extracellular matrix components in CKTR
group (84).While still in its early infancy, scRNA-seq is considered
as diagnostic tool for identifying cellular andmolecular biomarkers
specific for CKTR. With improved understanding of cellular
mechanisms underlying CKTR and advances in the multi-color
flow cytometry analyses combining with more recent development
of single-cell genomics studies, it is conceivable that more precise
cellular biomarkers will be identified for CKTR.

Several considerations ought to be adequately addressed
before these biomarkers can be regularly used in the clinical
practice for kidney transplants (114–116). First, sensitivity,
specificity, positive and negative predictive values must be
considered, and receiver operating characteristic (ROC) curves
need to be thoroughly assessed for their clinical utility. Secondly,
integration of different biomarkers is necessary for accurate
d iagnos i s . Th ird ly , robus t va l idat ion s tudies and
standardization of measurements are required to identify new
biomarkers. Finally, timing required for generating results and
cost of assessment should be reasonable.
NEW THERAPIES FOR THE TREATMENT
OF CKTR

Chronic active ABMR is the most widely recognized cause of
allograft failure (117), whereas TCMR usually exists in a mixed
rejection phenotype (118). Given current understanding that
that chronic active TCMR is often associated with insufficient
immunosuppression, TCMR treatment has been directed to
increasing doses and types of anti-T cell immunosuppressive
agents such as combinations of therapies with basiliximab,
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everolimus in addition to tacrolimus (119). Numerous
therapies have been used in the clinical setting, mostly focusing
on chronic active ABMR. The strategies include plasmapheresis,
intravenous immunoglobulin (IVIG), CD20 antibody
(rituximab), proteasome inhibitor (bortezomib) (120–122) and
anti-complement monoclonal antibody (eculizumab), single or
combined therapies (123, 124). Their therapeutic effectiveness in
treatment of chronic active ABMR have been evaluated in recent
randomized controlled trials and results have been extensively
reviewed (125), suggesting limited success being achieved by
using these agents alone or in combination despite their
effectiveness in treating acute ABMR. Through biomarker
discovery, understanding of CKTR has been tremendously
improved over the last five years. Recognition of biological
similarities shared by CKTR, cancer immunology and
autoimmune diseases has led to frontier investigations in
repurposing of several treatment strategies from cancer therapy
or autoimmune diseases to ABMR. IL-6/IL-6R blockade
(Tocilizumab), C1 esterase inhibitor (C1 INH), and B-
lymphocyte stimulator (BLyS) inhibitor (Belimumab) are
among those that have been tested for their therapeutic
potentials in mitigating ABMR and have shown promising
results as described below and summarized in Table 2.

IL-6/IL-6R Blockade
IL-6 is a pleotropic cytokine associated to many facets of innate
and adaptive immunity, which plays an important role in DSA
generation and chronic ABMR, including its effects on B cell
immunity and antibody-producing plasma cells, as well as the
balance between effector and regulatory T cells (130). Blockade of
the IL-6/IL-6R axis with Tocilizumab, anti–interleukin-6
receptor monoclonal antibody has been well-established for the
treatment of rheumatoid arthritis (131), and is recently
TABLE 2 | Clinical trials - new therapies for chronic ABMR after kidney transplantation.

Trial design Inclusion criteria Test therapeutics Other Immuno
suppression

Patients Follow
up

Major results Ref

single center,
open-label
case study,
historical
control

chronic ABMR,
DSA+, TG

Tocilizumab (8 mg/kg monthly,
maximal dose 800 mg for 6–25
months)

Tac/MMF/Pred 36 6 years reduction in DSAs and
stabilization of renal function at 2
years; graft survival rate of 80%,
patient survival rate of 91% at 6
years

Choi J, et al.
(126)

randomized
controlled
trials

ABMR, DSA+ C1 INH (5000 U on day 1 of
ABMR, 2500 U on days 3, 5, 7,
9, 11, and 13) add-on standard
of care (PP+IVIG+/- anti‐CD20)

n/a 18
(treatment:
n=9;
placebo:
n=9)

6
months

reduction of transplant
glomerulopathy

Montgomery
RA, et al.
(127)

single center,
observational
study,
historical
control

refractory active
ABMR with acute
allograft dysfunction,
DSA>3000 MFI, g
+ptc≥2

C1 INH (20 units/kg on days 1,
2, and 3 and then twice weekly;
IVIG at 2 g/kg every month for 6
months

Tac/MMF/Pred 6 6
months

improvement in eGFR, reduced
DSA; no change in histological
features

Viglietti D,
et al. (128)

randomized
controlled
trials

adult patient receiving
a kidney transplant

Belimumab (10 mg/kg on day 0,
14, and 28, and then every 4
weeks for a total of 7 infusions)

Tac/MMF/Pred 28
(treatment:
n=14;
placebo:
n=14)

6
months

similar proportions of adverse
events; no change in the number
of naive B cells

Banham GD,
et al. (129)
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considered as a new therapy to prevent ABMR progression (126).
It has been shown that tocilizumab markedly reduced DSAs and
stabilized renal function at 2 years post-transplant, suggesting a
therapeutic effect of tocilizumab in ABMR. Tocilizumab has also
been evaluated in combination with IVIG and rituximab for
patients who failed standard desensitization, and it appeared well
tolerated and safe (132). However, there is still a lack of
randomized controlled trials to systematically evaluate the
efficacy and safety of tocilizumab to date. Another new
inhibitor for IL-6/IL-6R axis is clazakizumab, a genetically
engineered humanized monoclonal antibody directed against
IL-6. Two pilot trials (NCT03444103, NCT03380377) (132–
134) and a large multicenter trial evaluating clazakizumab in
late/chronic ABMR (NCT03744910) (135) are underway.

C1 Esterase Inhibitor (C1 INH)
Since the efficacy of C5 blockade in late ABMR is limited (123,
124), blockade of early complement pathway at the level of key
component C1 has attracted a great deal of attention. One
potential strategy being studied is the use of C1 INH, which has
been used to prevent and/or treat attacks of hereditary
angioedema for years and has an established safety record
(136). C1-INH is a serum protease inhibitor that binds
covalently and inactivates C1r, C1s, and mannan-binding
protein-associated proteases (136, 137). In a double-blind RCT,
C1-INHwas tested as a treatment for biopsy-proven ABMR. Both
C1-INH and placebo groups showed improvements in early
follow-up biopsies. However, in a subset of patients with late
follow-up biopsies (6 months), a decreased rate of transplant
glomerulopathy was seen in C1-INH treated group, accompanied
by improved graft function, suggesting C1-NIH may be effective
in preventing the development of chronic injury (127). In a
prospective, single-arm pilot clinical trail, C1-INH was added to
IVIG to treat refractory acute ABMR. In comparison with
historical controls, patients treated with C1-INH showed
decreased C4d deposition and improved renal function,
whereas microcirculatory damage still persisted (glomerulitis,
peritubular capillaritis, and allograft glomerulopathy) (128).
Currently, a large multicenter clinical trials evaluating C1-INH
added to standard treatment of ABMR (NCT02547220) (138) is
underway, while another clinical trial evaluating C1-NIH for the
treatment of refractory AMR (NCT03221842) in renal transplant
recipients (139) is also ongoing.

Inhibition of B-lymphocyte Stimulator
B-lymphocyte stimulator (BLyS) is a critical cytokine that
enhances B cell and plasma cell survival (140). Targeting BLyS
has recently driven increasing interest in transplant by modulating
B cell alloimmunity. Belimumab, a humanized anti-BLyS antibody,
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which has shown therapeutic efficacy in systemic lupus
erythematosus (141), has now been applied in organ
transplantation. In a double-blind, randomized, placebo-
controlled phase 2 trial, belimumab was evaluated in 28 kidney
transplant recipients (129). The findings revealed that treatment of
belimumab showed no effect on reducing the number of naïve B
cells from baseline to 24 weeks after transplant. However, the
activated memory B cells and plasmablasts were significantly
reduced, and tissue-specific antibodies in serum were lowered. In
addition, treatment with belimumab modulated the B cell profile
towards a regulatory profile by changing the IL-10/IL-6 ratio. In
parallel, genes coding for IgG and markers of T cell proliferation
were reduced (129). To date, there is still lack of clinical trial using
belimumab to treat chronic rejection. In a murine chronic ABMR
kidney transplant model, blockade of APRIL/BLyS by TAC-Ig
resulted in decreased antinuclear antibody (ANA) and disruption
of splenic germinal center architecture, but have no significant
difference in lymphocyte infiltration and kidney graft pathology
compared with control grafts, which may be due to the absence of
T cell immunosuppression (142).
CONCLUSION

Discovery of novel earlier diagnostic biomarkers will not only
allows designing individualized therapy for timely therapeutic
intervention, but also further advance understanding of
pathogenesis of CKTR. Although many biomarkers listed in
Table 1 still require validation and standardization in several
independent cohorts, considerable progress has been made in
recent years (115, 116, 143). The management of CKTR remains
a daunting task due to the complex pathogenesis of CKTR and
irreversibility at the time of diagnosis. Nevertheless, several
promising therapies have been in robust intervention trials
with promising results. With the emergence of new
technologies, such as single cell genomics, computational
biology along with artificial intelligence-based assistance, it is
conceivable that more specific biomarkers and therapeutic
targets for CKTR will be identified and translated into the
clinical practice in the very near future.
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