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Transmembrane protein engulfment receptors expressed on the surface of phagocytes
engage ligands on apoptotic cells and debris to initiate a sequence of events culminating
in material internalization and immunologically beneficial outcomes. Engulfment receptors
are modular, comprised of functionally independent extracellular ligation domains and
cytosolic signaling motifs. Cognate kinases, adaptors, and phosphatases regulate
engulfment by controlling the degree of receptor activation in phagocyte plasma
membranes, thus acting as receptor-proximal signaling modules. Here, we review
recent efforts to reprogram phagocytes using modular synthetic receptors composed
of antibody-based extracellular domains fused to engulfment receptor signaling domains.
To aid the development of new phagocyte reprogramming methods, we then define the
kinases, adaptors, and phosphatases that regulate a conserved family of engulfment
receptors. Finally, we discuss current challenges and opportunities for the field.

Keywords: phagocytosis, engulfment, immune receptor, signal transduction, macrophage reprogramming,
chimeric antigen receptor, immunotherapy

INTRODUCTION

The Megf10/Draper/CED-1 receptors, an ancient family of single-pass transmembrane proteins,
enable phagocytes across phyla to initiate the internalization of apoptotic cells, synapses, and cell
debris (1-3). Ligation of engulfment receptor extracellular domains to “eat me” signals on the target,
including the complement protein Clq and the lipid phosphatidylserine (PS), induces receptor
phosphorylation by “writer” kinases. Phosphorylation recruits “reader” proteins that initiate a series
of cytoskeletal and membrane-remodeling events that enable the phagocytes to ingest large targets
and digest internalized material in intracellular compartments. “Eraser” phosphatases then
dephosphorylate engulfment receptors to return the receptor to its unphosphorylated resting
state (4). Writer-reader-eraser modules that regulate receptor activation are common components
of vertebrate immune cell signaling pathways (Figure 1A). Notable examples include the Src-Syk-
CD45 writer-reader-eraser network that controls Fc-receptor signaling and the Lck-ZAP70-CD45
module that tunes activation the T cell receptor (TCR) (5).

The Megf10/Draper/CED-1 receptors are composed of functionally separable extracellular ligation
and intracellular signaling modules. The modularity of engulfment receptors enables phagocyte
reprogramming, as replacement of the extracellular domain with a new recognition element directs
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FIGURE 1 | Receptors and proximal writer-reader-eraser modules. (A) Schematic of a generalized receptor and writer-reader-eraser module. Receptor ligation
induces phosphorylation of a receptor intracellular signaling domain by a writer kinase. The phosphorylated receptor recruits a reader adaptor protein. An eraser
phosphatase removes phosphorylation marks on the receptor intracellular domain, returning the system to its resting state. (B) A writer-reader-eraser module
regulates signal transduction through the Draper receptor. Draper, expressed on fruit fly phagocytes, recognizes phosphatidylserine (PS) or other ligands.
Phosphorylation of the Draper intracellular domain by the kinase Src42a induces recruitment of the adaptor kinase Shark. The phosphatase Corkscrew erases
phosphorylation marks on the intracellular domain of Draper. (C) Chimeric Antigen Receptor for Phagocytosis (CAR-P). Synthetic CAR-Ps bind cancer antigens (e.g.
the B cell antigen CD19) via an extracellular single-chain antibody fragment (scFv). Extracellular antibody ligation induces phosphorylation of engulfment receptor
signaling domains (e.g. the intracellular domain of mouse Megf10). Phosphorylation of the Megf10 receptor signaling domain on CAR-P recruits the Syk adaptor, a

cognate reader for murine Megf10. Schematic created in BioRender (biorender.com).

phagocytes to identify and ingest new targets (6-8). The
organization of engulfment signaling is also modular at the level
of the receptor proximal signaling networks. Engulfment receptors
function in concert with effector modules comprised of kinases,
adaptors, and phosphatases that initiate the engulfment signaling
program. Here, we review recent work that highlights the promise
of reprogramming phagocytosis to understand basic immunology
in pre-clinical settings. We then use the modular structure of
synthetic engulfment receptors as an inlet to define and compare
the writers, readers, and erasers that regulate initiation of the
engulfment signaling program through the Megf10/Draper/CED-
1 receptors (Figure 1B).

REPROGRAMMING PHAGOCYTOSIS
USING CHIMERIC ANTIGEN RECEPTORS

In multiple immune cell types, including T cells, phagocytes, and
natural killer cells, replacement of an extracellular domain with a
single-chain antibody fragment (scFv) can reprogram an
immune cell towards the cognate antigen of a specific scFv (7,
9, 10). Reprogramming immune cell signaling has ushered in a
new suite of methods to engineer the immune response to target
cancer (11). Analogous to Chimeric Antigen Receptors in T cells
(CAR-T), the modular organization of engulfment receptors
enables investigators to reprogram phagocytes to identify and
eliminate targets of therapeutic interest.

The modular organization of the T cell, Fc-, and phagocyte
receptors enables the reprogramming of immune cells to

recognize and respond to non-native targets of therapeutic
interest, including cancer antigens (6, 7, 9). Multiple groups
have successfully reprogrammed macrophages to recognize
cancer antigens by introducing synthetic Chimeric Antigen
Receptors for Phagocytosis (CAR-Ps) (6, 7). Fusing the Megf10
or Fc-receptor signaling domains to an scFv recognizing the B-
lymphocyte antigen CD19 programmed mouse macrophages to
ingest antigen-coated beads and cancer cells (Figure 1C) (7).
Surprisingly, chimeric receptors expressed in macrophages
composed of extracellular scFvs fused to the T cell receptor
signaling domain CD3{ also drive engulfment (6, 7).
Importantly, Klichinsky et al. also demonstrated the following:
anti-cancer activity in humanized mouse models; induction of a
pro-inflammatory tumor microenvironment; and antigen cross
presentation to boost anti-tumor T cell responses (6).
Collectively, coupling scFv-based extracellular modules to
ITAM-based intracellular signaling domains from Megf10, Fc-
receptor, and the TCR, presents an attractive strategy to
reprogram macrophages towards therapeutically relevant
targets linked to both hematopoietic malignancies and solid
tumors (6, 7).

At present, methods primarily rely on extracellular antibody-
based modules that recognize antigens with high affinity.
However, high-affinity CAR-Ps may signal in a manner that
does not reflect endogenous receptor mechanisms. Recent work
demonstrates that T cells transduce signals through CAR-T
independently of a key T cell signaling protein required by
physiological T cells called Linker of Activated T cells (LAT)
(12). Future work for the field will require engineering molecules
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that more closely reflect the biology of native engulfment
receptors, perhaps by developing new CARs that combine
multiple signaling modules to orient cellular responses towards
desired immunological outcomes. To learn how engulfment
receptors interface with proximal signaling modules, we
systematically defined the writer, reader, and erasers that
regulate the Megf10/Draper/CED-1 family.

MODULAR ORGANIZATION OF
ENGULFMENT SIGNALING NETWORKS
ACROSS PHYLA

Application of the writer-reader-eraser framework enables
conserved rules and regulatory principles underlying engulfment
to emerge from this complex collection of receptors and their
proximal signaling networks. Here, writers refer to protein
tyrosine kinases that create reversible binding sites for readers.
The readers, SH2- and PTB-domain-containing proteins, initiate
the engulfment program by activating “downstream” signaling
modules that remodel the actin cytoskeleton and cell membranes
(13). The cycle is completed by erasers, protein tyrosine
phosphatases that return the system to its deactivated state.

Megf10: Clearing Corpses and Shaping
Synapses in the Mouse Brain

Megf10, a receptor expressed on phagocytic astrocytes in the mouse
brain, promotes synapse elimination (14) and apoptotic cell
clearance (1). Megfl0 also plays roles in retinal patterning (15)
and elimination of amyloid-f (16). After recognition of its ligand,
the complement protein Clq (1), Src-family kinase writers
phosphorylate Tyrosine (Tyr) residues within the Megfl0
Immunoreceptor Tyrosine-based Activation Motif (ITAM) (17).
In addition to its ITAM, the cytosolic tail of Megfl0 encodes an
NPxY motif (18), a domain capable of recruiting cytosolic signaling
proteins via direct interaction with phosphotyrosine binding (PTB)
domains. Consistent with a writer function for Src-family kinases,
treating HeLa cells that overexpress Megfl0 with the Src-family
kinase inhibitor PP2 decreases engulfment of microspheres by HeLa
cells transfected with Megf10 (17). Thus, multiple Src-family kinases
can create binding sites for readers on the cytosolic tail of Megf10.

The tandem SH2-domain-containing kinase Syk is a Megf10
reader that interacts with phosphorylated ITAM residues on the
cytosolic domain of Megf10 (17). Though the specific actions of
Syk that enable phagocytosis in glia are unclear, Syk is an
important engulfment effector in macrophages and plays a role
in remodeling the actin cytoskeleton when bound to the Fc-
receptor (19). The PTB-containing protein GULP is upregulated
in reactive astrocytes after transient ischemic injury, an
expression pattern similar to Megf10 (20). Thus, in addition to
Syk, GULP is a candidate to interact with the intracellular
domain of Megf10 via an NPxY motif.

A specific eraser for Megfl0 is not reported, though mouse
astrocytes express SHP-2 (PTPN11) mRNA (21). SHP-2 is a
cytosolic protein tyrosine phosphatase that dephosphorylates the
ITAM-bearing C-type lectin receptor that governs anti-fungal

immunity (22). In sum, Megfl0 is an invariant single-pass
transmembrane engulfment receptor. A module comprised of
multiple Src-family kinases and Syk enables Megf10 to initiate
the clearance of apoptotic cells and synapses.

Draper and a Proximal Writer-Reader-
Eraser Module Initiate Engulfment by

Fly Phagocytes

Phagocytes in the fruit fly Drosophila melanogaster clear apoptotic
corpses and axonal debris to maintain tissue homeostasis and
repair the nervous system after injury. Engulfment in flies is
carried out by an array of cell types including hemocytes (23),
epithelial cells (24), and glia (2, 25). The Draper receptor,
expressed in each of these cell types, is comprised of an
extracellular emlin (EMI) domain that facilitates protein-protein
interactions (26) and nimrod (NIM) repeats, EGF-like domains
found on multiple fruit fly innate immune receptors (27). The
intracellular signaling domain of Draper contains two
phosphotyrosine-based signaling sequences that serve as
candidate sites for phosphorylation by Src-family kinase writers:
an NPxY and an ITAM.

Ligation of Draper to phosphatidylserine induces
phosphorylation of the cytosolic signaling domain of Draper
(8, 28). Intriguingly, Draper recognizes a diverse array of
additional ligands in other contexts including the proteins
Pretaporter (29) and DmCaBP1 (30) and the bacterial surface
molecule Lipoteichoic acid (31). Once ligand-receptor binding
occurs, clustered Draper is rapidly phosphorylated in phagocyte
plasma membranes (8). At least 5 residues on the cytoplasmic
signaling domain of Draper, including at least 4 outside the
ITAM, are phosphorylated by the kinase Src42a (8, 32). The
kinase Src42a is the writer in this system, creating a binding site
for the tandem SH2-domain kinase Shark (32) (Figure 1B).

The cytosolic protein tyrosine phosphatase Corkscrew, which
binds an alternatively spliced isoform of Draper called Draper-II via
an Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM), is the
eraser for Draper (33). Corkscrew is capable of dephosphorylating
Draper and, intriguingly, loss of Corkscrew in vivo inhibits the
ability of glia to respond to secondary injury (33). The
interdependence of the writer, reader, and eraser in the fly system
underscores the importance of returning this immune cell signaling
system to its ground state to respond to future insults.

Collectively, a wealth of genetic, biochemical, and cell biological
evidence supports the model that engulfment through Draper is
carried out by a writer-reader-eraser module comprised of a writer
kinase Src42a, an SH2-domain-containing reader Shark, and an
eraser Corkscrew. As writers, readers, and erasers remain to be
determined in other organisms, the fruit fly represents an
exceptional model system for defining the mechanisms
underlying engulfment through the Megf10/Draper/CED-
1 receptors.

CED-1 in the Worm: A Divergent
Engulfment Receptor

Genetic work in the nematode Caenorhabditis elegans, including
the discovery of the CED-1 receptor (3), founded the engulfment
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field. C. elegans phagocytes clear dead and dying cells using two
pathways governed by engulfment factors expressed by ced
genes. One pathway includes ced-2, ced-5, and ced-12 while
the other pathway includes ced-1, ced-6, and ced-7 (34). These
pathways converge on actin to facilitate rearrangements that
enable engulfment (35).

Corpse clearance by phagocytic cells in the worm is initiated
when cells neighboring the apoptotic cell release the secretory
protein Transthyretin-related 52 (TTR-52) (36). TTR-52 binds
PS on the corpse and serves as a bridging molecule to the
receptor CED-1. CED-1 ligation to TTR-52 induces activation
of the CED-6 and CED-7 signaling pathway. Like Draper and
Megf10, the extracellular domain of CED-1 contains EMI and
EGF-like domains (3, 26). The cytosolic signaling tail on CED-1
contains a possible Tyrosine phosphorylation site on a single
YxxL motif (3). The tail also contains an NPxY motif with a Tyr
residue. However, in vitro evidence indicates that NPxY motifs
may bind PTB-domain-containing proteins such as CED-6 in
the absence of Tyr phosphorylation (37). Thus, our application
of the writer-reader-eraser framework to the C. elegans CED-1/
CED-6/CED-7 engulfment module reveals that while worms do
encode candidate writer kinases and eraser phosphatases, the
CED-1 receptor may perform engulfment in the absence of
Tyr phosphorylation.

CONCLUSIONS, CURRENT CHALLENGES,
AND NEW OPPORTUNITIES

Comparison of Writer-Reader-Eraser

Modules Used by Phagocytes Across Phyla
Our application of the writer-reader-eraser framework to define the
proximal signaling networks that regulate the Megf10/Draper/CED-
1 receptor family revealed broad mechanistic similarities and
intriguing differences (Table 1). All three receptors contain at
least one cytoplasmic Tyr residue in an ITAM or NPxY motif,
potential phosphorylation sites for kinase writers. At least one
reader protein interacts with Megf10, Draper, or CED-1 to initiate
the complex series of cytoskeletal and membrane-remodeling events
that power material internalization. Megf10 and Draper recruit a

Syk-family kinase reader and CED-6/GULP adaptor proteins. CED-
1 binds the reader CED-6. Collectively, the proximal writers and
readers governing Megf10 and Draper function are highly similar to
one another. Because the CED-6 adaptor protein may bind CED-1
independently of Tyr phosphorylation, CED-1 may function via a
distinct activation mechanism that does not require a writer kinase.
Less is known about the eraser phosphatases that negatively regulate
the Megf10/Draper/CED-1 receptors. The eraser for Draper, a SHP-
2 tyrosine phosphatase ortholog called Corkscrew, works by binding
an inhibitory splice isoform of Draper (33). The cognate
phosphatases for Megf10 and CED-1, though presumably
expressed by the relevant phagocytes, remain unreported.

Megf10, Draper, and CED-1 differ remarkably in their ligand
specificities, perhaps a result of their evolutionary divergence and
the large number of different “eat me” signals presented on the
surface of apoptotic cells and other targets (41). Megf10 binds the
complement protein Clq to initiate the engulfment of apoptotic
cells (1). Draper initiates engulfment by interacting with diverse
ligands including the lipid PS and the proteins DmCaBP1 and
Pretaporter (8, 28-30). Finally, CED-1 recognizes the secreted
protein TTR-52 that serves as A bridge between CED-1 and PS
(36). Perhaps the diversity of ligands that the Megf10/Draper/CED-
1 receptors recognize provides the mechanistic basis for
reprogramming the receptors using synthetic extracellular
domains. We hope that further study of engulfment receptors and
their proximal signaling modules will enable researchers to design a
new generation of synthetic signaling systems comprised of CARs
that interact with engineered intracellular signaling modules.

Reprogramming Phagocytes Toward

New Targets

In theory, new CAR-Ps that enable phagocytes to bind any
extracellular cell surface protein or secreted molecule should
program phagocytes to ingest non-native targets. At present,
however, implementing CAR-Ps in a clinical context requires
laborious editing protocols to manipulate autologous cells. Thus,
the use of CAR-Ps as therapies to treat human disease remains a
goal for the future. For now, CAR-Ps are emerging as
important tools to define basic immunology by elucidating the
mechanisms used by receptors expressed across diverse
phagocyte populations.

TABLE 1 | Summary of receptors and writer-reader-eraser modules used across biological processes and organisms.

Biological Process (Organism) Receptor Ligand(s) Writer Reader Eraser References

Phagocytosis of opsonized targets Fc-receptor Antibody fragment crystallizable (Fc) region Src-family Syk CD45 (38, 39)

(Mouse) kinases

T-cell receptor activation (Mouse) T-cell receptor Peptide-MHC Lck ZAP70 CD45 40)

Targeting hematologic malignancies Antibody-based Chimeric CD19, CD22 Not reported Syk Not 6,7)

(Mouse) Receptors reported

Targeting solid tumors (Mouse) Antibody-based Chimeric Mesothelin, HER2 Not reported Syk Not 6)
Receptors reported

Engulfment of apoptotic cells and Megf10 Clqg Src-family Syk Not (1, 17)

synapses (Mouse) kinases reported

Engulfment of apoptotic cells and Draper Phosphatidylserine, Lipoteichoic acid, Src42a Shark  Corkscrew (8, 28-33)

axonal debris (Fly) Pretaporter, DmCaBP1

Engulfment of apoptotic cells (Worm) CED-1 TTR-52 Not reported  CED-6 Not (3, 35, 36)

reported
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As investigators continue to design and express new receptors, it
will be critical to move beyond internalization to learn how engulfed
material is targeted to promote specific immunological outcomes.
For example, recent work linking the receptor DNGR-1 to antigen
cross-presentation suggests that expression of a DNGR-1-based
CAR-P in Dendritic Cells may drive the efficient cross-presentation
of cancer antigens (42). In the long term, replacing cell-based CAR-
Ps with bi- or tri-specific antibodies that couple desired phagocyte
populations exposing known cell surface molecules to disease-
associated antigens may prove to be viable, inexpensive strategies
that could democratize access to new therapies.

Reprogrammed Phagocytes That Facilitate
Nondestructive Immune Responses

In conclusion, further study of engineered phagocytes could spur
the development of therapeutic interventions that cover a broad
array of “accommodation” immune archetypes: active,
nondestructive responses that, among other outcomes,
promote wound healing and tissue repair (43). Phagocytes are
particularly well suited to promote nondestructive responses
because their endogenous functions include clearing apoptotic
cells without inducing local inflammatory responses. In this
review, we focused on modular receptor signaling systems that
offer opportunities to reprogram phagocytes to ingest cancer
cells. A key future challenge for the field is to develop phagocyte
engineering strategies targeted at a broader range of diseases and
cell populations. We anticipate that the development of new
chimeric receptors that connect extracellular ligation to synthetic
intracellular signaling modules will lead to exciting discoveries at
the frontier of this nascent, expanding field.
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