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Persistent liver inflammation can lead to cirrhosis, which associates with significant
morbidity and mortality worldwide. There are no curative treatments beyond
transplantation, followed by long-term immunosuppression. The global burden of end
stage liver disease has been increasing and there is a shortage of donor organs, therefore
new therapies are desperately needed. Harnessing the power of the immune system has
shown promise in certain autoimmunity and cancer settings. In the context of the liver,
regulatory T cell (Treg) therapies are in development. The hypothesis is that these
specialized lymphocytes that dampen inflammation may reduce liver injury in patients
with chronic, progressive diseases, and promote transplant tolerance. Various strategies
including intrinsic and extracorporeal expansion of Treg cells, aim to increase their
abundance to suppress immune responses. We recently discovered that hepatocytes
engulf and delete Treg cells by enclysis. Herein, we propose that inhibition of enclysis may
potentiate existing regulatory T cell therapeutic approaches in patients with autoimmune
liver diseases and in patients receiving a transplant. Moreover, in settings where the
abundance of Treg cells could hinder beneficial immunity, such us in chronic viral infection
or liver cancer, enhancement of enclysis could result in transient, localized reduction of
Treg cell numbers and tip the balance towards antiviral and anti-tumor immunity. We
describe enclysis as is a natural process of liver immune regulation that lends itself to
therapeutic targeting, particularly in combination with current Treg cell approaches.

Keywords: enclysis, hepatitis, transplantation, liver autoimmunity, regulatory T cells (Treg), immune regulation,
tolerance, liver cancer
INTRODUCTION

The liver has a critical role in detoxification and hence it often becomes the site of cellular damage.
Hepatocytes are liver epithelia that bear the worst of this process, and drive liver regeneration during
injury. A healthy liver can cope with small amounts of tissue damage and repair itself as needed.
Persistent liver injury, however, can lead to progressive liver damage, fibrosis, cirrhosis and end
stage disease requiring a transplant.

Mortality due to liver disease is projected to overtake coronary heart disease by 2020 in the UK (1,
2). Globally, liver disease is estimated to account for 2 million deaths every year (3). Aside from
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preventable dietary injury, the major causes of liver failure are viral
and autoimmune hepatitis. Autoimmune family liver diseases are
T-cell-driven disorders that lead to hepatocyte (autoimmune
hepatitis, AIH) or bile duct damage (primary biliary cholangitis,
PBC, primary sclerosing cholangitis, PSC) that cause progressive
liver failure. In some groups of patients that we are unable to
predict, steroid or bile acid treatment respectively, can delay
disease progression. Patients that fail to responsd to treatment
rely on transplantation for survival. Viral hepatitis caused by
hepatitis B (HBV) or hepatitis C virus (HCV), is the major
indication for liver transplantation worldwide. In the UK,
180,000 patients have diagnosed chronic HBV (1) and 215,000
have persistent HCV infection (1). The WHO estimates that in
2015, HBV resulted in 887,000 deaths (4) and in 2016, HCV
resulted in 339,000 deaths worldwide (5). Of these diseases that
cause chronic liver inflammation, HCV is the only one where a
curative treatment for the majority of patients is now available.
However clinical disease progression continues in cirrhotic
patients with severe disease even after virus eradication (6).

The increasing demand for liver transplantation and the
decline in donor organs has highlighted the need for
alternative novel therapies to prevent chronic hepatitis, which
eventually leads to liver cirrhosis and increases the risk for liver
cancer. The outcome of liver inflammation is determined by the
balance of effector and regulatory immune cells activities:
chronic hepatitis arises when effector cells persist, causing liver
injury. Despite their prevalence, effector cells in chronic disease
fail to control hepatocellular carcinoma, one of the two cancers
with mortality projected to rise by 38% by 2035 (1). There is a
pressing need to discover new approaches to toggle liver
inflammation to prevent liver failure (7).

The liver plays a key role in immune tolerance (8) and it hosts
a rich, specialised immune compartment (9, 10). Regulatory T
cells (Treg) play a critical role in dampening overactive immune
responses (11, 12). Treg cells suppress immune effector function
by secreting immunosuppressive cytokines, by competing with
effector T cells for costimulatory molecules by depriving effector
cells of IL-2 and other direct and indirect processes recently
reviewed in detail by Romano and colleagues (13).

Understanding how to control Treg cell frequencies in the liver
is of increasing clinical interest in transplantation, in chronic liver
inflammation from multiple etiologies, and in primary and
metastatic liver cancer. The clinical goal is to increase the
abundance of functional Treg cells in autoimmunity (14–16)
and eliminate Tregs in early infection (16, 17) in order to clear
the virus and potentiate immunotherapy (12, 18).
ENCLYSIS IN LIVER IMMUNE
REGULATION

CD4+ T cells are crucial cytokine-producing helper cells that
orchestrate the tailoring of immune responses to fit the cause of
injury. Hepatocytes comprise around 80% of the liver mass and
perform vital functions including drug detoxification, clearance of
dead cells (efferocytosis) and the remarkable ability of the liver to
regenerate. We recently discovered that hepatocytes preferentially
Frontiers in Immunology | www.frontiersin.org 2
engulf live CD4+ T cells (19) in i) 2-D coculture and 3-D organoid
models, ii) perfused human liver explants and iii) in healthy and end
stage disease livers in vivo. Yet, not all T cells were treated equally:
hepatocytes preferentially engulfed and deleted Treg cells, compared
to effector T helper cells (Th), which promote immune responses
(Figure 1). The incidence of Treg cells inside hepatocytes was
higher in autoimmune hepatitis compared to viral hepatitis (19).
We termed the engulfment and lysis of Treg cells Enclysis from the
Greek ϵgklϵίw (to enclose, to confine, to keep in captivity), and
herein we explore how to target this process in different liver disease
settings. The liver is the largest internal organ and it filters blood at a
rate of ~ 1.4 L/min, enclysis could therefore have a major impact in
Treg cell populations.

We demonstrated that enclysis was distinct to known cell
engulfment processes (19, 20), including dead cell efferocytosis
(21), the elimination of autoreactive cytotoxic T cells by suicidal
emperipolesis (22) and the homotypic internalization of cancer
epithelia called entosis (23, 24), it is therefore possible to target
it specifically.
TARGETING ENCLYSIS IN AUTOIMMUNE
LIVER DISEASE

Loss of tolerance in the liver is observed in autoimmune family
disorders such as autoimmune hepatitis (AIH), primary biliary
cholangitis (PBC), and primary sclerosing cholangitis (PSC), where
immune-mediated injury affects hepatocytes, small and large bile
ducts respectively. The trigger for these diseases is not understood.
Immunosuppression in AIH and PBC can be beneficial, however
this is not the case for PSC (25). Current therapies are not curative
and vary in efficacy in a manner that is presently challenging to
predict for each patient, stressing the need for new treatments that
effectively dampen inflammation in the liver to prevent the need
for a transplant (26–29). Treg cell therapies are in various stages of
development for AIH but not for cholangiopathies (25, 27). In
autoimmunity, increasing the frequency of Tregs specifically in the
liver by inhibiting enclysis may be useful alone or in combination
with immunosuppressive regimens.

AIH is a chronic liver disease characterized by excessive
immune responses associated with effector T cells (30, 31). In
northern Europe, AIH affects approximately 1.9 per 100,000,
with 25% of patients presenting as asymptomatic, and 40%
showing signs of acute hepatitis before diagnosis (32–34).
Approximately one third of patients show previous signs of
increased fibrosis and liver cirrhosis (35). When treatment is
readily available, a 10-year survival rate can be as high as 93%,
however if no treatment is given, 40% of patients may die within
six months of diagnosis (36) and current treatment shows
measurable effects in up to 80% of patients (30, 37).

Various underlying liver damage mechanisms are associated
with AIH. Predominantly, the presentation of self-antigens by
antigen presenting cells to the T cell receptor of T-helper
lymphocytes results in their activation and differentiation into
more specified subsets of T-helper cells (38). For example, Th1
differentiation triggers IL-2 and interferon-gamma (IFN-g)
production, which in turn initiates activation of cytotoxic
April 2021 | Volume 12 | Article 662134
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CD8+ T cells (39). Increased exposure of hepatocytes to IFN-g
increases the production of MHC class I complexes leading to
increased T-cell activation and liver injury (13). Th2-type T cells
secrete IL-4, IL-10 and IL-13, which are key cytokines for B cell
maturation and the production of autoantibodies against hepatic
auto-antigens, contributing further to cytotoxicity (40).
Successful treatment of hepatic autoimmunity reduces hepatic
inflammation and fibrosis. Our increased understanding of
disease pathogenesis over the past few years suggests that a
reduction in the dose and duration of steroid treatment can be
considered, to minimize adverse effects associated with
immunosuppression (41–43).

Evidence of Treg involvement in AIH have emerged in
patients and murine models (44–46). Lapierre et al.
demonstrated that severe AIH develops as a result of reduced
numbers of functional Tregs, and that adoptive transfer of Tregs
in mice with AIH was sufficient to restore peripheral tolerance to
an ectopic liver autoantigen (FTCD), and induce remission (44).
Various studies aimed to answer if Treg cell frequency or
function were altered in AIH livers. Some showed numerical/
functional impairment of regulatory cells in AIH (45, 47–54),
and others found no deficiency in their patient cohorts (55, 56).

Although we noted no differences between FOXP3+ Treg cell
numbers in liver tissue sections from AIH patients compared to
other end stage diseases, we found that more FOXP3+ cells were
engulfed by hepatocytes in AIH (19). Enclysis was also more
frequent in FOXP3+ cells compared to Tbet+ helper cells, and
this difference was increased in AIH patients compared to those
Frontiers in Immunology | www.frontiersin.org 3
with hepatitis B infection. Further investigation is needed to
establish if the imbalance in enclysis observed with AIH would
play a role in disease pathogenesis.

In patients with AIH (57, 58), as well as ten other
autoimmune conditions (58), treatment with low dose IL-2
was safe, paving the way for phase II trials. Intriguingly,
complexed IL-2/anti-IL-2 restored the balance between Treg
and effector T cells (Teff) in the liver thereby improving the
course of disease in experimental murine AIH (59). In mice with
concanavalin-A-induced AIH, adoptive transfer of Tregs
stimulated by allogeneic hepatic stellate cells alleviated injury
(60). In CYP2D6-induced AIH mice and in AIH patients, Treg/
Th17 imbalance associated with poor prognosis (61).

Supplementation with all-trans-retinoic acid (RA) or
rapamycin (RP) agents enhanced Treg function and decreased
up-regulation of Th1/Th2/Th17 transcription factors in cells
from AIH patients (62). Further Treg conditioning
experiments achieved skewing towards regulatory phenotype in
cells from healthy volunteers and AIH patients, however AIH
cells did not maintain suppressing function after stimulation
(63). Together these data show that Treg therapies in AIH show
promise, but we must carefully consider the preparation of Treg
cells ex vivo or in vivo.

Ex vivo expansion of clinical grade regulatory T cells is
laborious and costly, but it is certainly possible (64), and they
can reach the liver following infusion (65). The persistence of
these cells in inflamed livers and the duration of any benefit need
further investigation, however in low dose IL-2-treated patients
FIGURE 1 | Enclysis is a CD4+ T cell engulfment process that leads to the deletion of regulatory T cells. Hepatocytes from non-cirrhotic donor livers, or from end stage
disease explants, and hepatocellular carcinoma cells were all able to engulf CD4+ T cells by enclysis. T helper cells and Treg cells experience different fates inside
hepatocytes, where T helper cells were preserved alive for hours or released and thus they survived enclytic capture, while Treg-containing vesicles quickly acidified.
April 2021 | Volume 12 | Article 662134

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Aghabi et al. Targeting Enclysis in Liver Diseases
with refractory AIH, increase in Treg populations persisted until
28 days after treatment (57). Enclysis-targeting interventions
could prolong efficacy of Treg therapies by preventing
elimination of Treg cells in the liver parenchyma. Worryingly,
immunosuppressive treatment with steroid and azathioprine
diminished intrahepatic Treg cells (66). The role of
immunosuppressive treatments on enclysis has not been
studied. Table 1 summarizes current and novel AIH therapies
and lists the potential of enclysis inhibitors in treating AIH.
TARGETING ENCLYSIS IN
TRANSPLANTATION

As regulatory T cell therapies are in the forefront for
transplantation (11, 67–69), targeting enclysis may also be
useful to help prevent Graft Versus Host Disease (GVHD) and
the rejection of donated organs, or to maintain remission profiles
for patients post-transplant. Transplant rejection is limited solely
through immunosuppressive drugs that are taken for the duration
of a patient’s life, increasing risk of infection. In the liver,
however, withdrawal of immunosuppression post-transplant is
possible in some patients and must be managed carefully (70).

In the absence of frequent biopsies, we are unable to confirm
complete absence of GVHD activity in liver patients, intervention
Frontiers in Immunology | www.frontiersin.org 4
success is thereforemeasured as operational tolerance. The first study
to achieve operational tolerance in transplant patients was by Todo
et al. where a cell product enriched for Treg cells was infused in ten
patients who were weaned off immunosuppression after 18 months
(71). The treatment failed to achieve operational tolerance in only
three out of ten patients, all of whom suffered from autoimmune
liver diseases. Furthermore, in recent phase 1 clinical trials blood
Treg cells were isolated and infused into post-liver transplantation
patients at 1-4.5 million/KG (68). Nine patients were administered
GMP-Treg cells and it was shown that the therapy was safe and the
overall Treg number increased. However, patients with autoimmune
liver disease remained a challenge.

Regulatory T cell therapies are remarkably promising in
transplantation and have been reviewed recently (11, 12, 72–
78). To avoid broad immunosuppression and the risk of
infection with polyclonal Tregs, one strategy is to focus on
antigen-specific Treg cells, which induced tolerance in animal
models and can also be expanded from patients (64). CAR-T cell
technologies are also being explored to this end (79, 80). To aid
these efforts, enclysis inhibition has the potential to prolong
therapeutic Treg cell persistence in the liver by preventing their
engulfment and degradation by donor liver hepatocytes. Table 2
summarizes current approaches of regulatory T cell therapies
and shows how enclysis could act in preventing liver transplant
rejection and GVHD.
TABLE 1 | AIH therapy approaches with a focus on regulatory T cells.

Type of therapy Clinical/preclinical model Outcomes

Corticosteroids Immunosuppressive treatment with steroid and azathioprine
diminishes intrahepatic Treg cells (66)

Life-long, does not restore liver homeostasis (25, 63)

Adoptive transfer
(PolyTregs)

Xenoimmunized Type II AIH murine model (44) Reduces the numbers of circulating autoreactive T cells and is sufficient to
prevent AIH development in mice (44)

Adoptive transfer
(arTregs)

Concanavalin-A-induced AIH murine model (60) Selectively stimulates arTregs following adoptive transfer to alleviate injury and
control AIH (60)

IL-2 Therapy Murine AIH model (59)
AIH patients clinical trials (57, 58)

In low dose IL-2-treated patients with refractory AIH, increases in Treg
populations persisted until 28 days after treatment (57)

Retinoic acid and
rapamycin agents

AIH patients clinical trial (63) Enhances Treg function and reduces expression of Teff transcription factors
(62, 63)

Enclysis Inhibitor Enclysis inhibitors could be tested alone or in combination
with existing Treg treatments

Enclysis inhibitors could potentiate Treg immunotherapy for AIH
PolyTreg, Polyclonally-expanded regulatory T cells; arTreg, Alloantigen-reactive regulatory T cells.
TABLE 2 | Treg cell-focused approaches to prevent transplant rejection and graft versus host disease (GvHD).

Type of therapy Clinical/preclinical model Outcomes

Corticosteroids Immunosuppression in transplant patients affects Treg number and function,
reviewed in (11)

Effective in preventing rejection, associated with short- and long-
term adverse events (81)

Adoptive transfer
(PolyTregs)

Phase I clinical trial demonstrating safety of polyTreg therapy in addition to IL-
2 therapy (68)

Operational tolerance achieved in 7/10 patients (71)
Risk of infection

Adoptive transfer
(arTregs)

arTregs successfully home to the liver and prevent allograft rejection in
preclinical skin graft model (82)

arTregs are significantly more effective than polyTregs (64, 82)

CAR-Tregs Tailored Treg specificity using CARs specific for antigens relevant to liver
transplantation.
(83–86)

Encouraging results in human and preclinical skin allograft models
(87, 88)

Enclysis Inhibitor Enclysis inhibitors should be tested alongside current immunosuppression
regimens in liver transplantation

Enclysis inhibitors could potentiate immunosuppression
PolyTreg, Polyclonally-expanded regulatory T cells; arTreg, Alloantigen-reactive regulatory T cells; CAR, Chimeric Antigen Receptor.
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TARGETING ENCLYSIS IN VIRAL
INFECTION

Hepatitis B virus (HBV) and hepatitis C virus (HCV) are
hepatotropic viruses that are the leading causes of liver
transplantation worldwide. They cause progressive liver
damage after decades of infection that can promote a pro-
tumorigenic environment and may lead to liver failure
requiring a transplant (89, 90). Chronic infection with HBV
and HCV account for approximately 80% of hepatocellular
carcinoma (HCC) cases worldwide (91). Every year, 1.4 million
people die from viral hepatitis-related cirrhosis and liver cancer
(92). An early, broad, robust T cell response has been associated
with viral clearance (93, 94), and regulatory T cell frequencies are
thought to hamper antiviral responses and promote
persistence (90).

Sprengers et al. showed a correlation between the levels of
intrahepatic CD8+ T cells and the degree of liver damage in
HBV, highlighting the concept that a balance between an
immune response and tolerance is essential to ensure clearance
of the virus, whilst limiting any liver cell injury leading to fibrosis
(95). Although Treg cells suppress immune-mediated
mechanisms of liver damage, the suppression of antiviral T cell
responses, which are essential for the resolution of acute HBV
infection, may promote viral persistence. Indeed, vigorous
cytotoxic responses are crucial to control viral infections
beyond the liver (96, 97), and transient depletion of Treg cells
can boost cytotoxic T cell antiviral activity (98).

There are limited data on the immunological response to
acute HBV and HCV infection in the liver because of the
potential complications associated with standard liver biopsies
and the difficulty in detecting an often-asymptomatic acute
phase. Therefore, most studies of intrahepatic Treg cells in
HBV and HCV have focused on the chronic phases of
infection. Elevated Treg levels in chronic HCV infection were
associated with limited immunopathological damage, suggesting
a critical role for Tregs in controlling the chronic inflammatory
response to HCV thus limiting hepatic damage (90, 99).
However, Tregs have also been shown to inhibit CD8+ T cells
in chronic infection in a nonspecific manner; as they were shown
to also suppress CMV-, EBV-, and HCV-specific T cells
(100, 101).

Patients who spontaneously cleared HCV infection had
reduced Treg cell frequencies in their blood compared to
chronically infected patients after clearance, however there is a
paucity of information regarding liver Treg populations in these
cohorts (100–103). In chimpanzees, the sole animal model for
HCV immunity, Treg cells persisted after viral clearance and
aided the maintenance of HCV-specific memory T cells by
regulating proliferation, ex vivo effector functions, and
activation-induced death of HCV-specific memory T cells (104).

Another important study in this field was the low dose IL-2
treatment of ten patients with HCV-induced vasculitis (105).
Extrahepatic manifestations present in some HCV-infected
people and these include mixed cryoglobulinaemia with
reduced peripheral blood Treg cells (106). Low dose IL-2
Frontiers in Immunology | www.frontiersin.org 5
restored blood Treg frequencies in these patients without
increasing viraemia or liver enzymes, and 8/10 showed clinical
improvement (105). In this setting, increase in functional
peripheral Treg numbers did not induce a viral flare; it would
be interesting to investigate if hepatic Treg frequencies
were affected.

In the case of HBV, it is hypothesised that persistent infection
leads to transforming growth factor b (TGF-b) production from
hepatic stellate cells which contributes to the differentiation of
conventional CD4+ T cells into induced Treg cells (107). In
chronic HCV infection, elevated serum IL-10 levels are thought to
play a role in the induction of Tregs (108, 109). To address whether
viral infection would offer measurable immune suppression in the
context of transplantation, Bohne et al. conducted a clinical trial
of immunosuppression withdrawal in 34 HCV patients, 50% of
whom achieved operational tolerance. The magnitude of HCV-
induced proinflammatory gene expression and the breadth of anti-
HCV effector T cell responses in these patients did not influence
drug withdrawal outcome (110). The authors describe an overall
restrained alloreactive immune landscape in HCV patients, and viral
infection did not hinder the establishment of operational tolerance.

To clear infection in patients with chronic hepatitis, reducing
Treg cell frequencies in the liver in a specific and transient way
may provide a sufficient boost to antiviral immunity. Increasing
enclysis with enhancer compounds may reduce Treg cell
numbers in the liver without depleting Tregs from the
circulation. Indeed, depletion of Tregs has been shown to
increase the immune control of acute HBV early in infection
as the hepatitis B antigens HBeAg and HBsAg were cleared
considerably faster in the serum of Treg-depleted mice compared
to control. Further, early elimination of Tregs in acute HBV
infection was shown to improve the recruitment of macrophages
and DCs into HBV-infected livers, aiding viral clearance (16,
111). Table 3 lists current therapies for viral hepatitis, and
highlights how enclysis might be of benefit.
TARGETING ENCLYSIS IN LIVER CANCER

Primary liver cancer is the sixth most common type of cancer
and is responsible for over 700,000 deaths annually, making it the
fourth leading cause of cancer-related death worldwide (117).
Hepatocellular carcinoma (HCC) is the most common
malignancy in the liver, accounting for over 75% of all primary
liver cancer cases (118). Malignancies in the liver, and
particularly HCC, are characterized by high rates of recurrence
and poor prognosis, owing mostly to the late presentation and
thus late diagnosis of disease (119). As aforementioned, HBV
and HCV infections are a substantial risk factor for HCC (120).
Other risk factors include alcohol consumption leading to
alcoholic liver disease and steatohepatitis as well as non-
alcoholic fatty liver disease, associated with obesity and other
metabolic disorders (121). Most HCC cases attributed to these
risk factors develop in the context of cirrhosis in the liver, with
up to 90% of HCC patients displaying liver cirrhosis pre-
diagnosis (122).
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The main treatments available for HCC, namely local
ablation, surgical resection, or liver transplantation, are only
viable if implemented at early stages of the disease. Thus, 80% of
patients with HCC are not eligible for these treatments (123). For
such patients, the first-line strategy for palliative treatment
involves multi-kinase inhibitors. One such inhibitor is
sorafenib, which is associated with severe adverse events (122,
124). Overall, there is a considerable unmet clinical need for
patients that continue to progress or do not respond to systemic
treatment. This emphasizes the need for new therapies for HCC.

It is well-established that chronic pathological inflammation is a
key driver of HCC tumourigenesis in cirrhotic livers (125).
Repeated and unresolved injury to hepatic tissues leads to the
constitutive activation of a local immune response, resulting in the
enhanced secretion of proinflammatory and mitogenic cytokines
such as IL-6 and tumor necrosis factor a (TNF-a) (126). This,
coupled with the subsequent recruitment of effector immune cells,
results in a proinflammatory tissue microenvironment. The
hypoxic environment caused by impaired blood flow to the liver
further exacerbates inflammation in the cirrhotic liver. Such hostile
environments drive hepatocyte apoptosis and increase the
production of reactive oxygen species, driving hepatocellular
mutagenesis and genomic instability, further potentiating the
carcinogenic phenotype (122, 127).

The creation of a pro-inflammatory environment also stimulates
the recruitment of regulatory immune cells. In HCC, tumor-
infiltrating Tregs are recruited to the neoplastic site following
enhanced secretion of the chemokines CCL17 and CCL2 by
tumor associated macrophages (128). Once activated, these cells
promote immune evasion through a variety of proposed
immunosuppressive mechanisms, including the secretion of TGF-
b and IL-10, the inhibition of dendritic cell activation and antigen
presentation, and granzyme-dependent cytotoxicity (129). The
constitutive expression of CTLA-4 is important for Treg
immunosuppressive functionality, as its interaction with CD80 and
CD86 ligands on the surface of dendritic cells impedes the antigen
presenting cells’ activation by costimulatory molecules (130).

Different stages of HCC pathogenesis have been linked to
distinct signatures of tumor-infiltrating immune cell populations
(131). A large-scale analysis of tumor-infiltrating immune cells in
1090 HCC tumors revealed that greater intratumoural Treg
populations were strongly correlated with poorer patient
Frontiers in Immunology | www.frontiersin.org 6
outcomes (132). This finding is consistent with several studies
that also report an association between high levels of Treg
infiltration and poor prognosis and response to treatment in a
variety of different cancer types, including breast cancer, cervical
cancer, and melanomas (133–135). In 2020, Yu et al. also reported
a greater-than-3-fold increase in Treg populations in tumor tissues
compared to adjacent healthy tissues, further implicating Tregs in
HCC development (132). In another study, a higher proportion of
Treg tumor infiltration in HCC tumors was also associated with
poor tissue differentiation and advanced stages of hepatic fibrosis
(136). Overall, it appears that elevated Treg numbers are
associated with poor patient outcome. Thus, we propose that
harnessing hepatocytes’ capacity for enclysis could provide a novel
and specific mechanism of reducing Treg populations in HCC.
Enhancing enclysis in the context of HCC could restrict Treg
frequencies and alleviate local immunosuppression within the
tumor microenvironment, aiming to reinstate tumor
immunogenicity and suppress HCC tumourigenesis.

Treg cells may also augment immune dysfunction by
inducing effector T cell exhaustion, characterised by inhibition
of intratumoural CD8+ T cell expansion and activation (137).
This exhaustive effect synergizes with neoplastic cells’
overexpression of programmed death-ligand 1 (PD-L1),
activating effector T cells’ programmed cell death protein 1
(PD-1) pathway and further eliminating CD8+ T cells at
tumor site (138). The various immunomodulatory mechanisms
employed by Tregs contribute to the inhibition of effector
immune cells in the tumor stroma, consequently depleting
anti-tumor immunity and promoting immune evasion and
tumor progression. Accordingly, enhanced Treg tumor
infiltration was found to impede both the activation and
recruitment of effector CD8+ T cells in patients with HCC
(139). Tumor-infiltrating CD8+ T cells from advanced HCC
tumor samples displayed significantly impaired secretion of the
cytolytic enzymes perforin, granzyme A, and granzyme B.
Specifically, Tregs extracted from patients with HCC were
capable of significantly suppressing CD8+ T cells’ production
of these cytolytic enzymes, in addition to inhibiting the secretion
of the key anti-tumor cytokines IFN-g and TNF-a in vitro (139).
These findings support a direct role for Tregs in dampening anti-
tumoral immune responses by diminishing effector T cell
activation in patients with HCC.
TABLE 3 | Treatment regimens for viral hepatitis and their effects on regulatory T cells.

Therapies in viral
hepatitis

Clinical model Outcomes

Antivirals and
therapeutic vaccines

Combination therapies are needed for HBV infection, including vaccines, antivirals and
regimens to invigorate the liver immune response (112)
HCV-targeted DAAs do not restore Treg functionality or frequency, increased after
chronic infection (113)

HBV antivirals do not eliminate infection (2).
Vaccine treatment reduced Treg numbers in HBV
patients (114)
Treg numbers could also further increase after DAA
treatment for HCV (115)

IL-2 therapy Low dose IL-2 therapy reduced peripheral blood Tregs in patients (105) Investigation into whether intrahepatic Treg frequencies
are also affected by IL-2 therapy (116)

Enclysis enhancer Enclysis enhancement should be attempted in combination with current antiviral
regimens

Increasing enclysis would reduce Treg numbers in the
liver to boost antiviral immunity
DAA, Direct acting antivirals; HBV, Hepatitis B virus; HCV, hepatitis C virus.
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Treg cells have been explored as a therapeutic target in a variety
of different cancer types (128). These approaches mainly aim to
restore and replenish intrinsic anti-tumor immune responses by
eliminating the suppressive effect of Tregs within the tumor stroma.
For example, in the context of melanoma, antibody blockade of
CTLA-4 results in both a strong increase in both CD8+ and CD4+
T cell infiltration and a reduced proportion of intratumoural Tregs
in vivo (140). Additionally, co-culture of CD8+ T cells extracted
from HCC patients in vitro with Treg cells showed that Treg cells
treated with anti-PD1 and anti-PD-L1 resulted in restoration of
IFN-g secretion compared to control Treg cells, which inhibited
IFN-g secretion and cytotoxicity of CD8+ T cells (141). Despite
these findings, clinical trials of immune checkpoint monotherapy in
patients with advanced HCC exhibited only modest improvements
in patient outcomes. Treatment with the anti-CTLA-4 monoclonal
antibody tremelimumab produced a less than 20% partial response
rate in HCC patients (142). Furthermore, a phase III clinical study
concluded that the anti PD-1 antibody nivolumab showed no
superiority over sorafenib treatment in improving overall survival
in patients with HCC (143), demonstrating that check point
inhibition may not be sufficient to transcend liver intrinsic
immune tolerance mechanisms.

Pharmacological enhancement of enclysis could be used as an
adjuvant to checkpoint blockade immunotherapy, further
depleting tumor-infiltrating Treg populations and thereby
improving the efficacy of CTLA-4 and PD-1/PD-L1 blockade
in patients with advanced HCC. As a natural liver-restricted
process, targeting enclysis locally and transiently may boost anti-
tumor responses in the presence or absence of check point
inhibition or CAR-T cell therapy. Table 4 lists current HCC
therapies that target regulatory T cells, and highlights how
enclysis enhancement might potentiate their effects to
eliminate tumors in the liver.
PHARMACOLOGICAL INTERVENTIONS
TO MODIFY ENCLYSIS

To target enclysis specifically, we must elucidate the mechanisms
by which T cells are engulfed by hepatocytes, how these are
specific for CD4+ T cells, and how Treg cells suffer a different fate
to Teff cells (Figure 2). It is important to note that when
TABLE 4 | The impact of liver cancer treatments on Treg cells.

Cancer Therapies Clinical/preclinical model Outcomes

Multi-kinase Inhibitor
(Sorafenib)

Sorafenib reduces Treg numbers in HCC (144) Teff/Treg frequencies correlated with anti-tumor effects (144)

Immune checkpoint
blockade

Immune checkpoint blockade therapy using anti-CTLA-4
reduced intratumoural Tregs in vivo (140) Tregs treated
with anti-PD1 and anti-PD-L1 restored IFN-g secretion in
B16 melanoma (141)

Effective in B16 melanoma tumors (140). Nivolumab an anti-PD-1 antibody was
no more efficacious than sorafenib treatment in improving overall survival
outcome in patients with HCC (143) Treg cells may contribute to resistance to
checkpoint inhibitors (145)

CAR-T cells Tumor-targeting CAR-T cells have curative potential (146) It is anticipated that eliminating Treg cells would be important to boost CAR-T
cell therapies, particularly for solid tumors (146).

Enclysis enhancers Enclysis enhancers could be used in combination with
current immunotherapies for liver cancer.

Enclysis enhancement could potentiate antitumor immunity specifically for liver
cancer (19)
Frontiers in Immunology | w
ww.frontiersin.org 7
HCC, Hepatocellular carcinoma; CAR, Chimeric Antigen Receptor.
FIGURE 2 | Pharmacological interventions to modulate enclysis.
Understanding the mechanisms of enclysis reveals opportunities for
therapeutic targeting. For example, understanding the interaction between the
lymphocyte and the hepatocyte (I), the downstream signaling pathways that
lead to T cell internalization (II), and the mechanism by which a hepatocyte
decides the fate of the T cell (either deletion of regulatory T cells or survival
and release of non-regulatory T cells) (III).
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considering ways to target enclysis, we must take into account
housekeeping functions of hepatocytes such as phagocytosis, and
prevent the modulation of these functions as a side-effect. To this
end, broad endocytosis inhibitors would not be suitable to
modulate enclysis.

We have shown that ICAM-1 plays a role in early adhesion of
T cells to hepatocytes, and inhibiting ICAM-1 using blocking
antibodies reduces enclysis (19). Despite ICAM-1 playing a role
in lymphocyte adhesion, it is unlikely that it mediates enclysis
specificity, since ligands for ICAM-1 (e.g. b2 integrins), are also
present on other lymphocytes such as CD8+ T cells and B cells,
which are not subjected to enclytic capture. Enclysis receptor
interactions between T cells and hepatocytes can be inhibited
using blocking antibodies, or enhanced by treatment with
soluble factors that upregulate surface expression of the putative
receptor(s). By targeting molecules on hepatocytes, rather than
T cells, we can avoid causing broad T cell dysfunction, which
would echo functionally outside the liver resulting in extra-
hepatic implications.
Frontiers in Immunology | www.frontiersin.org 8
Additionally, by understanding the signaling cascade of
events after Treg cell adhesion, which result in internalization,
we could target enclysis specifically. For example, we have
demonstrated that enclytic vesicles are enriched in beta-
catenin, and not E-cadherin, although both are important for
epithelial cell-in-cell structures in cancer cells (19, 24). It would
be important to understand if Wnt/b-catenin signaling pathway
(147) molecules play a role in the formation of the enclytic
vesicle. Cell-permeable small molecules or growth factors are
ideal to modulate signaling pathways.

Finally, we have demonstrated that hepatocytes are able to make a
distinction between regulatory T cells (which results in their
degradation) and helper T cells (which results in survival and
release) (19). Understanding the mechanisms by which hepatocytes
make this distinction will reveal newmolecular targets for therapeutic
intervention. For example, to increase the frequency of regulatory
T cells in the liver, we could manipulate the hepatocyte such that it
blocks Treg cell degradation in enclytic vesicles, and rather directs the
cells towards a pathway reserved for the release of T helper cells.
FIGURE 3 | Targeting enclysis to restore immune regulation in autoimmune liver disease, transplantation, viral infection and liver cancer. Enclysis is a natural process
with the potential to alter regulatory T cell frequencies specifically in the liver, and potentiate existing Treg therapies. We propose that enclysis inhibition may augment
Treg abundance where most needed, to dampen overactive immune responses in autoimmunity or transplantation. Conversely, enclysis-enhancing compounds
would aid local, transient elimination of Treg cells to jump-start exhausted antiviral or anti-tumor responses.
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FUTURE PERSPECTIVES AND
CONCLUDING REMARKS

As Mujal and Krummel elegantly discussed (148), it is simplistic
to consider immunity as an on/off switch between activation and
tolerance. The outcome of complex immune responses is best
described as a continuum, where synergistic effects frommultiple
cell types and processes protect from autoimmunity while
permitting efficient viral clearance and tumor elimination.
Regulatory T cell activity is part of this continuum, and we are
beginning to understand how these cells can be employed most
effectively in the tolerising microenvironment of the liver.

In viral infection, the liver needs to deal with abundant Treg
populations swiftly to mount an effective immune response, thus
Tregs cross the sinusoidal endothelial layers into the
parenchyma. Hepatocytes engulf them by enclysis to rapidly
tip the balance towards inflammation when needed. At the
resolution of infection, the endothelial barriers are restored
and Treg populations increase again to restore tolerance.

We described how inhibition of enclysis could increase
frequencies of Tregs in AIH and in transplantation, where
regulatory cell-targeting approaches have started to yield
promising results. Conversely, we propose use of enclysis-
enhancing drugs to promote Treg deletion in a well-controlled
Frontiers in Immunology | www.frontiersin.org 9
transient and liver-specific setting, to boost antiviral and anti-tumor
responses where necessary (Figure 3). Small interventions such as
enclysis modulation may be sufficient to restore healthy immune
regulation in livers where chronic inflammation has caused
immune dysfunction. This fits well with the “accommodation
archetypes” described by Mujal and Krummel (148).
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