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Traditional vaccine development against infectious diseases has been guided by the
overarching aim to generate efficacious vaccines normally indicated by an antibody and/or
cellular response that correlates with protection. However, this approach has been shown
to be only a partially effective measure, since vaccine- and pathogen-specific immunity
may not perfectly overlap. Thus, some vaccine development strategies, normally focused
on targeted generation of both antigen specific antibody and T cell responses, resulting in
a long-lived heterogenous and stable pool of memory lymphocytes, may benefit from
better mimicking the immune response of a natural infection. However, challenges to
achieving this goal remain unattended, due to gaps in our understanding of human
immunity and full elucidation of infectious pathogenesis. In this review, we describe recent
advances in the development of effective vaccines, focusing on how understanding the
differences in the immunizing and non-immunizing immune responses to natural infections
and corresponding shifts in immune ontogeny are crucial to inform the next generation of
infectious disease vaccines.

Keywords: antigens, natural infection, innate immunity, adaptive immunity, immune system, vaccines, vita-
PAMP, adjuvants
1 INTRODUCTION

Apart from clean drinking water and sanitation, vaccination is one of the most effective medical
interventions to avert infectious diseases (1, 2). Despite the great successes of past revolutions in
vaccinology, current vaccine technologies may still provide suboptimal protection in vulnerable
populations, such as infants (1) and the elderly (3). This is an important unmet need for these
vulnerable age-groups, but there are important lessons that can be taken from the breadth of
vaccinology work performed for future vaccine design. Moreover, there is a growing need to develop
improved vaccine strategies for globally emerging respiratory infections such as tuberculosis,
pertussis, influenza and coronaviruses including the pertinent severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), the causative agent of the severe coronavirus disease 2019
(COVID-19) pandemic.

Historically, the earliest efficacious vaccine was constructed by using live attenuated pathogen
small pox to induce protective immunity (4). Subsequently, inactivated, live attenuated, subunit,
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recombinant, polysaccharide and conjugate vaccines-which all
induce humoral and cell mediated immunity-have been used to
protect against different viral and bacterial infections. The
classical purpose of vaccination is to establish a long-lived state
of immunological memory to a given pathogen which can
mediate an accelerated response to that pathogen upon
secondary infection (5). Vaccines of variable effectiveness
against several diseases, including pertussis, influenza and
tuberculosis, have been available for many years. In the last
few decades, a lack of vaccine induced immunity in distinct
populations, especially newborns and older adults, have been
reported with impairments attributed to an absence of functional
adaptive immunity (6), alternative microbe pathogenicity/
activity in newborns/aged compared to adults, and alternative
immune regulation processes (7).

Subunit or inactivated vaccines have proven effective against
most childhood infections, like tetanus, diphtheria, pertussis, flu
and meningitidis (8). The early life window of vulnerability
alongside abnormally quick waning immunity from early life
vaccinations, elicits major concerns in modern vaccinology (9). A
major contributing factor could be the ontological differences in
the immune responses. Firstly, upon pathogen challenge or
vaccination, the inability of the neonatal and infant immune
system to mount a polyfunctional T helper (Th) polarizing
response (10), shifting away from protective Th1 and cytotoxic
T cell immunity toward dysregulated Th2 and Th17 polarization
(11). Secondly, during an infection microbial antigens act as
distinct pathogen associated molecular patterns (PAMPs) and
viability-associated PAMPs (vita-PAMPs) which elicit broad and
long-lasting immune responses. Live vaccines (containing
weakened or attenuated form of the microbe) have been able to
mimic these responses more closely. Interestingly, growing
research suggests that adjuvants and delivery systems may lead
to long term immunity by simulating immune responses similar
to exposure to live microorganisms (2, 12, 13). Here, we discuss
three examples, tuberculosis, pertussis and influenza, in which
lessons can be learnt from our current understanding of natural
pathogen-specific immunity which can better guide (Box 1) novel
vaccination strategies to elicit targeted and effective immune
activation in neonates and infants, with possible applicability in
vulnerable elders and those with immunocompromised status.
Frontiers in Immunology | www.frontiersin.org 2
2 Mycobacterium tuberculosis AND
BACILLE CALMETTE GUERIN

Tuberculosis (TB) is a leading bacterial cause of mortality
worldwide and is caused by an infectious agent named
Mycobacterium tuberculosis (MTB) (18). Bacille Calmette-Guérin
(BCG), the live attenuatedMycobacterium bovis vaccine, is the only
licensed vaccine for TB to date. It provides protection against
disseminated childhood TB but BCG efficacy wanes slowly over
time (10-15 years post-vaccination) (19). BCG vaccination has little
effect against adult pulmonary TB infection which is the most
communicable form of TB (20) and it comparatively carries a
greater impact with higher death rates in those over 65 years of age
(21). The emergence of drug-resistant strains (22) and limited
understanding of protective immunity against MTB has become a
major caveat in developing a novel effective TB vaccine.

2.1 Innate Immunity to MTB
Emergence of innate immunity is essential between MTB and
host which eventually initiate the long term memory responses.
Lung resident macrophages, neutrophils, dendritic cells (DCs),
and natural killer (NK) cells are the major participants of
pulmonary innate immunity. As an intracellular pathogen,
MTB first comes in contact with airway epithelial cells and is
phagocytosed by lung-resident macrophages (23). During the
innate response, phagocytosed MTB can be cleared from the
phagosome or induce Th1 type adaptive immunity (Figure 1A)
via antigen processing and presentation (24). After infection,
pattern recognition receptors (PRRs) of macrophages recognize
pathogen-associated molecular patterns (PAMPs) of MTB. PRRs
including Toll-like receptors (TLRs), Nod-like receptors (NLRs)
and C-type lectin receptors (CLRs) coordinate multiple signaling
cascades (25). TLRs recognize mycobacterial glycolipids,
lipoproteins, carbohydrates or nucleic acids as a PAMP.
Signaling between MTB’s PAMPs and TLRs activates MyD88
and elicits proinflammatory cytokines or type I IFNs (25). All
TLRs use MyD88 for their downstream signaling except TLR3
(26). Involvement of TLR2, TLR4, TLR8 and TLR9 are well
documented during MTB infection (27, 28). TLR2, TLR4, TLR7,
TLR8 and TLR9 polymorphisms in human are associated with
greater exposure to pulmonary MTB infection (25, 28).

After recognition, MTB is eliminated by several pathways
including phagocytosis, inflammasome activation, autophagy and
apoptosis (29). After infection, macrophages differentiate into either
classically activated macrophage inflammatory type 1 ‘M1’ or
alternatively activated ‘M2’ macrophages (25). ‘M1’ macrophages
are pro-inflammatory and anti-microbial in nature while ‘M2’
macrophages are anti-inflammatory in nature (30, 31) and poor
antigen presenting cells (25). Recent research highlights the M1/M2
model after MTB infection (30) though the exact mechanism
remains a dilemma (31). MTB DNA is sensed by cGAS-STING
pathway and triggers downstream cytokine production and
autophagy (32, 33). STING pathway is found to be important for
DC activation but unessential for protective immunity (34). DC-
SIGN (CD209) acts as an entry point of MTB to DCs (35). CD14-

HLA-DR+DC-SIGN+ cells are probably responsible for endocytosis
BOX 1 | Key Considerations for the Study of Natural and Unnatural Immunity
to Inform Precision Vaccinology

Improved understanding of tuberculosis, pertussis and influenza antigen
structure, natural immunity and immunopathology may advance the design of
novel vaccine candidates. Natural immunity achieved by environmental
exposure of microorganisms is responsible for immunological imprinting in
humans (14). Yet a number of important caveats need to be addressed,
including: i) whether induction of beneficial unnatural immunity can be
incorporated into the designing of broad spectrum next generation vaccines
[reviewed in (15, 16)], ii) whether these strategies can specifically induce innate
immunity and vaccine efficacy in early and later life [reviewed in (6, 11) and (17)],
and iii) how can a growing body of vaccine adjuvants, in combination with
formulation science of vaccine delivery, such as lipo-nanoparticle based mRNA
technologies (3), be used to open up a new toolbox for vaccinologists [reviewed
in (12) and (13)].
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of MTB in humans (36). Major histocompatibility complex (MHC)
unrestricted innate lymphoid cells (ILCs), which are enriched in
intestinal and alveolar mucosal surface, also play a crucial role in
humanMTB infection (37). In active TB patients circulatory ILCs in
blood were found to be depleted and restored upon treatment. In
general, ILCs can module both innate and adaptive immune
responses by producing interferon (IFN)g (by type 1 ILCs),
interleukin (IL)-4, IL-5, IL-13 (by type 2 ILCs), IL-17 and IL-22
(by type 3 ILCs) (37). There is evidence that CD117+ ILC3
specifically contribute in the immune response to MTB (37, 38).
Neutrophils, granulocytes and mast cells have protective roles
against MTB (35). Little is known about the exact immune
mechanism of neutrophils and mast cells in human MTB
infection (25, 35) which might open avenues for further research.

2.2 Adaptive Immunity Achieved by
Natural MTB Infection
For immunologists to develop a new and more effective vaccine
against TB, relevant immunological outputs must be considered
Frontiers in Immunology | www.frontiersin.org 3
to select the optimum formulation, delivery mechanisms and
adjuvantation. Prioritization of readouts (e.g., antibody titer,
antigen-specific Th1 polarization, T cell polyfunctional activity
etc.) will need to either be instructed by correlating and
implicating functions following novel vaccine development or
by further understanding of the most important immunological
outputs following natural MTB infection. T cells have a central
role in protective and adaptive immunity and they are the prime
candidates to target and trigger effective adaptive immunity.
Predominantly, activated antigen presenting cells (APCs) induce
proliferation of antigen specific naive CD4+ T cells (Figure 1A).
The mechanism of antigen delivery in humans after MTB
infection remains somewhat obscure. Peripheral blood CD1c+

cells have been reported to initiate T helper 1 (Th1) polarization
in active MTB patients (39, 40). Impairing IFNg production by
CD11c+CD1c+ conventional DCs in human has been recently
characterized (41). In the last 10 years, T cell expansion/
contraction kinetics and development of memory signature by
T cells have been well established by the studies of CD8+ T cell
A B C

FIGURE 1 | How precision vaccine design takes cues from natural immunity. Overview of the immune responses, portraying from the perspective of conventional T
cell biology, induced by (A) natural infection, (B) pathogen specific vaccines along with their potential advantages and shortcomings and (C) possible hypothesis to
overcoming the disadvantages by precision vaccine design. APC, antigen presenting cell, Th, T helper, IL, interleukin, TNF, tumor necrosis factor, TFH, follicular helper
T cell, Treg, regulatory T cells, CTL, cytotoxic CD8+ T cell, BCG, Bacille Calmette-Guérin, DTwP, Diphtheria and Tetanus Toxoids along with Whole Cell Pertussis,
DTaP, Diphtheria and Tetanus Toxoids along with Acellular Pertussis, LAIV, live attenuated influenza virus, IM, intramuscular, ID, intradermal, IFN, interferon, PT,
pertussis toxin, ACT, Adenylate Cyclase Toxin, FHA, filamentous hemagglutinin, LOS, lipo-oligosaccharide, PRN, pertactin, HA, haemagglutinin, NA, neuraminidase,
NP, nucleoprotein, TEM, effector memory T cell, TRM, tissue resident memory T cells. Figure is created with BioRender.com.
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responses against acute viral infection (42–44). These cannot,
however, be directly translated to bacterial infection and MTB
disease. Working with slow growing pathogens like MTB and
lack of tetramers to target antigen specific T cells (42, 45) along
with unavailability of transgenic T cell receptor mice are the
intricate barriers for T cell readouts. High sensitivity multi-color
flow cytometric assay and cytometry by time-of-flight (CyTOF)
might shed light on the unexplored phenotype of APCs during
MTB infection and are identified here to be essential areas of
future research.

Comparative studies with MTB infected individuals
demonstrated accumulation of MTB specific TNF+ CD4+ (46)
and polyfunctional (IFNg, IL-2, and TNF producing) T cells (47,
48). Th1 polarization and IFNg or TNF production are essential to
clear MTB infection (29, 49). IFNg heightened antimycobacterial
defense in macrophages, whereas TNF synergizes with IFNg to
combat against MTB infection (30). A balanced immune response
is required, as IFNg production by T cells has also been implicated
to be associated with TB in a potentially age-dependent manner
(50). It remains to be determined whether this was a causative or
associated observation. However, other CD4+ T cell subsets,
especially IL-17 (Th17) and FoxP3+ regulatory CD4+ T cells also
contribute to the host resistance against MTB infection (33, 51, 52)
(Figure 1A). MHC-I-restricted CD8+ T cells contribute to defense
against MTB infection (47, 53). Synergy between CD8+ and CD4+

T cells restricts intracellular MTB growth (54). NK cells (55, 56)
and B cell responses to MTB infection have also been
characterized in the clinical spectrum (38). B cell responses to
tuberculosis have had conflicting and potentially negative results
in response to infection/disease. Animal models have identified
either no effect or delayed pathogenesis fromMTB following B cell
depletion (57), but animal models can have differential responses
compared to human pathology (58), limiting the cross-species
conclusions that can be drawn. B cells and antibodies have been
functionally implicated in anti-TB immunity. B cells have been
observed to accumulate around MTB granulomas in the lungs,
induce various cytokines like IL-10 (57), form germinal center-like
structures in non-secondary lymphoid tissues that support cell
proliferation and restrict TB dissemination and instruct effective T
cell responses (57, 59). Further B cell importance in containing TB
disease can be observed in the importance of humoral immunity.
Individuals repeatedly exposed but uninfected, termed “resisters”
(60), have had a significant induction of TB-specific IgG levels and
antibodies specific to ESAT-6 and CFP-10 in latent TB can
separate from subjects with active TB (59). TB-specific IgA
secretion into the lungs has been implicated following infection
which could contribute to antibody-dependent cellular
phagocytosis and cytotoxicity, activation of complement, direct
TB neutralization, stimulation of cell mediated immunity and
intracellular identification through tripartite motif containing
protein 21 (TRIM21) [as reviewed in (59)]. Donor Unrestricted
T cells (DURT) or unconventional T cells, i.e. mucosal-associated
invariant T (MAIT) cells, CD1-restricted T cells and gd T cells play
a crucial part in early stage of defense (61, 62) by recognizing non-
peptide mycobacterial antigens (33). Tissue resident memory T
cells (TRM) proximally located in non-lymphoid lung tissue can
Frontiers in Immunology | www.frontiersin.org 4
protect from TB in various models, independently from Th1
polarization, representing another immune mechanism of
interest for protection (63, 64). TRM could also contribute to
greater inflammatory damage and additional research is required
to understand the involved mechanisms (63). Activated and
exhausted TRMs were found to be predominant at infection
sites in TB patients (65). A very recent study identified the
protective role of IL-17 producing TRM cell clusters in MTB
infected human lungs (66). Further in vivo observations and
correlates of protection to identify which immunological
response(s) are essential are needed before development of new
vaccines against MTB.

2.3 Protective Immunity After BCG
Immunization
At present, BCG is the only WHO recommended tuberculosis
vaccine indicated for human use in endemic areas. BCG offers
infants protective immunity against disseminated tuberculosis
(67). Unfortunately, BCG is less efficacious against adult
pulmonary MTB infection (68, 69). Some possible hypotheses
for the poor efficacy in older persons could be due to the
improper induction of memory precursor effectors cells
(MPECs) which are capable of generating long-lived memory
cells (53, 69). Reinfection could also be a hindrance to BCG
efficacy (69, 70). Age-dependent innate immunological responses
to BCG have also been identified in a neonatal and adult mouse
model (71). Lastly and importantly, BCG strain variants and the
degree of viability between MTB strains is now recognized to
drive distinct immunological outcomes after BCG vaccination
(72, 73), highlighting the importance of the immune system’s
ability to recognize viability to elicit strong innate immune
responses against vita-PAMPs (74) and should be induced
through adjuvantation. This is particularly evident in the as of
yet most efficacious new development of a subunit TB vaccine,
M72/AS01E with AS01E adjuvantation (75) to induce TLR4
signaling (76) that is otherwise triggered by the vita-PAMPs
(77). The 54% efficacy of M72/AS01E was significant for an
inactive nonreplicating vaccine (75), particularly compared to
the range of 0-80% efficacy for BCG (78), but still highlights an
unmet requirement for further vaccine development. Pursuing
the development of a new vaccine will not necessarily replace the
need for BCG vaccination. Human trials have displayed potential
efficacy of a heterologous prime boost with neonatal BCG
vaccination followed by adolescent immunization with an
alternative protein subunit, H4:IC31, that reduced signatures of
long-term infection (79). Understanding the variable responses
to vaccination already present in humans is crucial to identify
how to design novel and superior vaccines.

As a “self-adjuvanted” vaccine, BCG triggers innate immunity
through TLR2, TLR4, TLR8, C-type lectins and Mincle (73, 80)
after intradermal vaccination. When co-delivered, BCG can
therefore act to enhance the immunogenicity of non-related
protein vaccines (81). After internalization by APCs, BCG
induces DC maturation (82) and migration followed by
antigen 85 mediated production of TNF, IL-1b and IL-6 which
promote immune cell activation (80, 83). BCG develops adaptive
February 2022 | Volume 12 | Article 662218
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immunity when antigens are processed by MHC class II and I
pathways and activated both CD4+ and CD8+ T-cell subsets with
elevated production of IFNg (73, 83) (Figure 1). BCG stimulates
the generation of effector memory T (TEM) cells which has been
phenotyped as CD44high CD62low CCR7low (84, 85). TEM cells
usually engaged in various cytokine production and affected
tissue specific homing (86). Induction of humoral responses
has been documented 4-8 weeks post vaccination period (80,
87). B cell response triggers the induction of IgG (88) and long-
lived memory B cells (89). Induction of TRMs following BCG
immunization depends on the route of immunization (90). MTB
specific TRM responses are shown to be induced by mucosal
BCG immunization (90, 91) rather than intradermal (91) or
subcutaneous BCG administration (90). MTB specific TRMs
were proven to participate in a protective role upon pulmonary
reinfection (92). TLR8 on human monocyte senses live BCG and
promotes T follicular helper (TFH) cell differentiation (74) and
might be a key player in BCG specific humoral responses.
Identification of the PRR-mediated immune activation profiles
by different strains of BCG could reveal important correlations to
various levels of protection and identification of beneficial targets
(i.e., antigens, TLRs) for future vaccine development efforts.

2.4 Lessons From Natural MTB Infection
and Future Vaccine Strategies
Deep understanding of the BCG mediated immune protection,
MTB pathogenesis and human immunogenicity are still unclear.
TB infection can be categorized into different stages with
transmission, development of active disease and continuation
to latent TB infection (LTBI) (93). Interestingly, an estimated 9/
10 individuals who develop TB-specific T cell responses fail to
develop active disease (93), suggesting that there could be
immunological mechanisms triggered by TB that may be
sufficient to protect from active infection in some individuals
(53). This is not sufficient protection, however, as the remaining
1/10 TB-exposed individuals progress to active disease and
afterwards, in survivors, progress to LTBI with a lifelong
danger of TB reactivation (53, 93). The disease stages are often
presented as either active or latent but can be further observed as
a disease spectrum (93). Furthermore, a group of exposed
individuals, termed “resistors”, have remained uninfected (by
tuberculin skin test or IFNg release assay (IGRA) negative)
despite high TB exposure, suggesting some individual’s ability
to trigger effective natural immunity (53, 60). Resistors were
characterized by IgM, class-switched IgG antibody responses,
high accumulation of IL-2 (94, 95) and IFNg independent T cell
responses to the TB specific antigens (60), identifying important
mechanisms to induce post-vaccination. This may not however
be the entire immune profile required to contain infection, as TB
reactivation in HIV individuals has been observed prior to a
depletion of CD4+ T cells (93). Further studies investigating
human TB infection are needed to evaluate which combination
of immune mechanisms allow resistors to avoid active infection
to identify the essential pathways needed to be induced in a wider
population. Meanwhile, adjuvanted multi-antigen TB vaccine
development can target induction of multi-antigen and multi-
Frontiers in Immunology | www.frontiersin.org 5
faceted immune responses, triggering IgM, IgG, lung resident
TRMs and IFNg independent immune responses with the goal of
overcoming TB’s active impairment of host immunity that
otherwise restricts immunity and prevents sterilizing immunity.

A single highly immunogenic antigen that can induce
sterilizing protective immunity against all disease stages of TB
in a varied population has not yet been discovered and may not
be possible. Selection of which vaccine antigen to induce
protection from can be guided by observing natural immune
responses to MTB, through focusing on pathways that can
convey partial immunity. MTB encodes a wide variety of
proteins with 4,019 open reading frames, one fourth of which
are hypothetically expressed proteins that need to be
experimentally verified (96, 97). MTB has evolved to actively
produce factors inhibiting innate immune responses (98),
identifying previous selective pressures that protected from
infection. Identifying natural protection from disease can
highlight effective vaccination targets. This highlights the need
to target multiple antigens, potentially from multiple disease
stages, so that effective immunity is induced prior to infection
that spans the breadth of TB disease. The approach of selecting
immunodominant antigen targets to vaccinate against is not
always effective though (99) and targeted induction of protective
immune responses may be required to maximize protection.

Numerous efforts have been attempted to replace the century-
old BCG vaccine. Various candidates have made it to clinical
trials, with some efficacy observed in completed trials and others
ongoing as of 2021. These vaccines fall into various vaccination
categories, including adjuvanted antigen (M72:AS01E, H56:IC31,
ID93:GLA-SE and GamTBvac), viral vectors with TB antigens
(TB/FLU-04L, MVA85A and Ad5Ag85A), inactivated vaccines
(M. vaccae, M. indicus pranii, DAR-901 and RUTI) and live-
attenuated (VPM1002, BCG revaccination and MTBVAC) (53,
100, 101). M72:AS01E particularly had similar efficacy to BCG’s
50% reduction in IGRA conversion, with a 50% reduction in
disease (75). This level of protection was however insufficient at
overcoming BCG’s protective effect and indicates an unmet need
for TB prevention. Ongoing vaccine development includes
evaluation of various adjuvants and alternative antigen and
adjuvant delivery technologies (102). The recent development
of mRNA encapsulated in lipid nanoparticles to protect from
SARS-CoV-2 has garnered an interest in evaluating the
technologies’ potential in TB prevention (103). Modern
vaccinology solutions are being evaluated to garner greater
protection from TB than the century-old BCG, but significant
efforts are still needed.
3 Bordetella pertussis

Pertussis or whooping cough caused by highly contagious
Bordetella pertussis (BP) is a major health concern in the
infant population. Pertussis was the largest cause of infant
morbidity and mortality during the first few decades of the
20th century (104). Despite the routine immunization with whole
cell pertussis (wP) and acellular pertussis (aP) vaccine, pertussis
February 2022 | Volume 12 | Article 662218
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remains resurgent. Lower efficacy of aP comparative to
reactogenic wP and waning of protective immunity after aP
immunization might be an effect of increasing pertussis
incidence in developed countries. Reviewing and highlighting
natural immunity as well as differences in immunological
stimulation by aP and wP could identify the significant
pathways needed for long term protection.

3.1 Innate/Adaptive Immunity to Pertussis
BP uses wide variety of virulence factors as a PAMPs involving
Pertussis Toxin (PT), Adenylate Cyclase Toxin (ACT),
Filamentous hemagglutinin (FHA), Pertactin (PRN) and Lipo-
oligosaccharide (LOS). FHA helps BP in adherence to respiratory
mucosa and ACT helps in invasion while PT detours the
phagocytosis of BP by APCs (105). After colonization to
respiratory epithelium, BP initiates the arm of innate immune
responses which later helps to shape the adaptive arm. Different
classes of PRRs of macrophages including TLRs, NLRs and CLRs
recognize PAMPs of BP (106), therefore, with biomimicry,
adjuvantation inducing similar pathways may improve efficacy.
Clinical isolates of BP generally enhance TLR2 and TLR4
signaling (107). PT and LOS activate TLR2 and 4 signaling in
human (106, 108), trigger IL-12 production (109) while FHA acts
as a TLR2 ligand (110) and interacts with ACT (111) to play a
crucial role in natural immunity. Destruction of phagocytosed
BP by macrophage activated IFNg and IL-17 is debatable (105).
The specific role of PRN in human BP pathogenesis remains
unclear though it helps to overcome neutrophil-mediated
clearance in mice (112). Targeting any, or multiple, of these
BP-produced proteins could be valid immunological targets.

After BP infection, professional APCs prime the differentiation
and proliferation of naïve T cells into effector and memory T cells.
While the roles of CD4+ T cells in BP infection are well documented
(Figure 1), the specific role of CD8+ T cells is less clear (113).
Generally, naïve T cells differentiate into TNF and IFNg producing
Th1 (114, 115), and IL-17 producing Th17 cells after natural BP
infection (116). Th1 and Th17 cell mediated immune responses in
bacterial clearance and protection are demonstrated in mice and
baboon infection models (116). Animal study revealed that tissue
resident memory (TRM) T cells (phenotypically defined as
CD4+CD69+) confer long term protection against BP (117, 118).
The role of TRM in human BP infection remains unexplored (119).
Macrophage dependent IFNg producing CD56+ NK cells activation
in human is reported very recently (120). IL-17 dependent
neutrophil recruitment (121) and existence of Foxp3+ Treg cells
in lungs of BP infected mice (108) were documented. BP specific
IgG and IgA might have a role in clearance of bacterial load by
neutralizing BP toxin or by opsonization (122). Further studies are
necessary to dissect the protective role of such cells in human BP
infection, so that important correlates of protection can be identified
post-vaccination.

3.2 Whole Cell and Acellular Vaccine-
Induced Immunity
Emergence of BP infection in the US population was
dramatically reduced (99%) by the introduction of alum
containing wP vaccine in 1950s (123, 124). In the USA during
Frontiers in Immunology | www.frontiersin.org 6
mid 1990s, alum-formulated aP replaced wP based formulations.
The main driving factor was the desire to further reduce the rare
incidents of febrile seizures in infants post vaccination, while
nearly always recoverable, were associated with wP induced local
and systemic reactogenicity (124, 125). The formulation of alum
adjuvanted Diphtheria and Tetanus Toxoids along with Acellular
Pertussis (DTaP) vaccine is variable, ranging from a mixture of
virulence factors like PT alone or with FHA, PRN and/or
fimbriae serotypes (FIM 2/3) (112, 126, 127). Despite
successful DTaP vaccination, resurgence of pertussis was
observed in developed countries in the first decade of 21st

century (128). Lower efficacy and waning immunity in
response to DTaP has become a major concern (129).

Formulation of alum adjuvanted Diphtheria and Tetanus
Toxoids along with Whole Cell Pertussis (DTwP) vaccine acts
differently and induces distinct immunity profile in humans than
DTaP. DTwP which is derived from killed BP, is enriched with
several prominent antigens (130) along with exogenous TLRs
agonists. wP primed BP specific CD4+ T cell immunity is Th1/
Th17 biased which mimics cellular immunity profile after natural
infection (128, 131) (Figure 1). The protective role of BP specific
IFNg producing CD4+ T cells (Th1 cells) and IL-17 producing
CD4+ T cells (Th17 cells) have been well demonstrated in animal
models (119). In mice, BP infection usually induces IgG2a/2b
antibodies which triggers cell mediated and IgG induced humoral
responses (132). All IgG subclasses (IgG1/2a/2b and 3) were
induced by wP immunization, which clearly explains why wP
immunization is linked to Th1/Th17 polarization (132). aP evokes
IgG1 induction (132) and induces IL-4, IL-5 and IL-13 producing
CD4+ T cells (Th2 cells) (Figure 1B) which does not confer
protective immunity against nasal infection and transmission
(119). wP induced respiratory TRM cells also participate in
protective immunity in mice which were found to be absent
followed by aP vaccination (118), but some evidence indicates
that there may be a specialized role for Th17-polarzied TRM cell
subsets in the control of nasal infection in aP immunized mice
(133). Benchmarking wP versus aP immunization in human is
challenging as in developed countries only aP vaccine is licensed.
Interestingly, a recent study between wP and aP primed individuals
showed that only wP prime evoked BP specific CD4+ T cells after aP
boost (134). aP prime followed by aP boosted donors exhibited
increased Th2 related cytokines, reduced IFNg and IL-17
production, defective T cell memory expansion and lower T cell
proliferative capacity (134). Data from multiple cohort studies also
proven that DTaP induces Th2 skewed immunity whereas DTwP
primed Th1 biased immunity in human (119, 135, 136). Moreover,
aP vaccines do not inhibit colonization and transmission of the
disease (137). Thereby, aP vaccines do not confer herd immunity in
population (138). These outcomes partially elucidate the
resurrection of pertussis in developed countries though further
study is necessary to dissect the host immune response after BP
pathogenesis and vaccination.

3.3 Overcoming Waning Immunity and
Lessons From Natural BP Infection
Overall, the two main limitations of the current aP vaccine are its
relatively short duration of effectiveness and the lack of local
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immunity in upper respiratory tract. Importantly, a study of
infant olive baboon (Papio anubis) challenge model has revealed
that convalescent animals are fully protective from subsequent
bacterial challenge regarding upper-airway colonization, whereas
aP vaccinated animals showed bacterial shedding (137). Thus, it
is a reasonable approach to find cues to overcome these
limitations in studies from natural infections and from more
immunogenic wP vaccine. As summarized above, aP vaccine-
induced immune responses can be distinguished from wP and
natural infection-induced immune responses with its 1) weak
Th1/Th17 polarizing CD4+ T cell immunity, 2) low induction of
tissue resident memory T cells and possibly 3) low functional
antibody responses. Therefore, to hypothetically overcome the
waning effectiveness of acellular vaccine, development and
evaluation of a next generation DTaP vaccine is required
which should prime Th1/Th17 polarization. Adjuvantation
using TLR agonists or STING (stimulator of interferon genes)
ligands might be a smart choice (13, 139, 140). Alum adsorbed
TLR7 agonist adjuvanted aP formulation primed BP specific
Th1/Th17 polarization and humoral responses in adult mice
than traditional aP formulation (141). Protection against BP
aerosol exposure was achieved in TLR7 agonist adjuvanted aP
formulation immunized mice group, similar to that triggered by
wP (141). Preliminary study with a novel TLR7/8 agonist CRX-
727 (UM-3003) formulated DTaP (142), a collaborative work
between University of Montana/Inimmune and Precision
Vaccines Program/Boston Children’s Hospital, revealed
enhancement in early life immunogenicity and overcomes
neonatal hyporesponsiveness to DTaP (143). Overcoming
neonatal hyporesponsiveness is a major caveat in development
of next generation acellular pertussis vaccine. Neonatal cells are
Th2 biased due to hypomethylation in Th2 locus (122).
Therefore, restoration of Th1 predominance could be achieved
either by TLR7/8 adjuvantation or by live vaccine strain like
BCG. TLR2 ligand from BP itself, is capable of driving innate
immune responses along with protective homologous immunity
upon respiratory challenge (144). Long lasting protection against
nasal exposure in mice was reported by a novel adjuvant
combination including STING and TLR-2 (145). aP
formulated with STING and TLR-2 skewed Th1/Th17
polarization and triggers IL-17+ TRMs (145). TLR9 agonist
adjuvanted DTaP confers enhanced protection than DTaP
alone or TLR4 adjuvanted formulation in mice (146).

A promising live attenuated BP vaccine strain (BPZE1) is in
human phase 2 trial (127, 147), and proven beneficial in mice
and infant baboon models (148). Early protection in mice
induced by BPZE1 is independent of the adaptive immune
system but depends on TLR4 signaling pathway (149).
GamLPV, another live intranasal BP vaccine strain, is also in
phase 1/2 trials (112). Using live BP strain as a vaccine, has
certain advantages- i) a live strain has a variety of BP antigens
compared to aP vaccines which only contain up to 5 antigens, ii)
live attenuated strain mimics natural infection and provides
sterilizing immunity. Improved vaccine efficacy should be
achieved by live BP vaccine strain as TLR8 on innate immune
cells senses live bacteria (74) and triggers TFH differentiation
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which is beneficial for inducing strong humoral immune
responses (74). Lately, a first controlled human study with BP
infection was conducted by a European collaboration to get the
insight of microbiological and immunological features of BP
pathogenesis (150, 151). This novel approach will allow us to
dissect the mechanism of protection in the context of natural BP
infection (151).
4 INFLUENZA

Influenza viruses belong to the Orthomyxoviridae family which
represents enveloped viruses, with genome consisting of
segmented negative-sense single-strand RNA segments
(ssRNA). These ssRNA are tightly surrounded by nucleoprotein
(NP), which along with glycoproteins such Haemagglutinin (HA)
and neuraminidase (NA) are the viral components detected by
antibodies, and also define the subtype of the virus (152).
Although, there are 4 genera of this family namely A, B, C and
D; only influenza A and B are clinically relevant in humans and
responsible for causing seasonal epidemics (known as the flu
season) almost every winter across the world (153). Influenza
infection in humans is initiated in the respiratory tract and in
most cases is limited to this organ. Oral or nasal entry of the virus
is initially countered by the mucus lining the respiratory
epithelium. Upon successfully breaching the mucosal layer, the
virus can attach and invade the respiratory epithelium where it
can spread to both non-immune and immune cells [such as
macrophages and dendritic cells (DCs)] in the respiratory tract
(152, 154).

4.1 Innate Immunity to Influenza
Innate immune system forms a formidable barrier as part of the
defense mechanism against influenza virus (152). Detection of
the virus through the innate immune system occurs via at least
three distinct classes of the PRRs; TLRs (including TLR3, TLR7
and TLR8), retinoic acid-inducible gene I (RIG-I) and the NOD-
like receptor family member NOD-, LRR- and pyrin domain-
containing 3 (NLRP3) (155). TLR3 detects virus-infected cells,
and TLR7 (and TLR8 in humans) detect viral RNA endocytosed
by the sentinel cells (i.e., cell-extrinsic recognition). However,
RIG-I and NLRP3 are responsible for detection of virus present
within the cytosol of infected cells (i.e., cell-intrinsic
recognition). Lack of innate sensors and signaling pathways in
mice challenged with high doses of influenza A virus has been
demonstrated to result in mortality since the host succumbs to
infection. However, with sub-lethal doses or inactive virus the
host is able to survive the infection by mounting a protective
adaptive immune response. Such studies have also expanded our
understanding of the viral sensors that link innate recognition to
adaptive immunity (152), which is an important progression in
being able to model the disease in vivo and to test efficacy of
vaccination and adjuvantation in a way that may mimic the
natural pathways triggered by influenza infection.

Properly modelling influenza infection in vitro can be difficult.
This is partly due to influenza virus-infected cells not generating
February 2022 | Volume 12 | Article 662218

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barman et al. Lessons From Natural Immunity
dsRNA (156) due to the activity of cellular RNA helicase (157).
Therefore, TLR3 likely recognizes unidentified RNA structures
present in dying virus-infected cells that have been phagocytosed
(158), changing the immunological signaling compared to in vivo
observations. Activation of TLR3 in human respiratory epithelial
cells (which constitutively express TLR3) is known to induce
production of pro-inflammatory cytokines upon influenza virus
infection but can also lead to pathology (159–161). Further, Tlr3-/-

mice survive longer than their WT counterparts (despite higher
viral loads in the lungs). However, viral challenge in Tlr3-/- mice
leads to reduced chemokine expression and infiltration of
leukocytes and CD8+ T cells in the lungs (160). Surprisingly,
with sub-lethal doses of influenza virus infection these mice are
able to generate normal antibody responses as well as CD4+ T cell
and CD8+ T cell responses, suggesting TLR3 is dispensable for
generating T cell immunity (162). Thus, although TLR3 is crucial
to curb viral replication, it simultaneously promotes the
recruitment of innate and adaptive responses that result in
damage to the host. Although TLR3 signaling can be damaging
during host-mediated inflammation to disease, it may be
beneficial to induce during vaccination to amplify protective
immune responses.

In plasmacytoid dendritic cells (pDCs), independent of viral
replication, TLR7 recognizes endocytosed ssRNA genomes
within the influenza virion (152). Downstream of TLR7
signaling transcription factors are activated [either nuclear
factor-kB (NF-kB) or IFN-regulatory factor 7(IRF7)] which
promote expression of pro-inflammatory cytokines and type I
IFNs, respectively. The role of TLR7, specifically in inbred mice,
in innate defense remains unclear since contradictory studies
have shown that TLR7 could be dispensable against high-dose
influenza virus challenge. However, studies with sublethal doses
of influenza virus have demonstrated pivotal role of TLR7 in
eliciting robust antibody response, but not T cell responses.
Thus, TLR7 expression is crucial for antiviral responses against
influenza virus via recruitment of B cells to elicit antibody
production. On the contrary, although TLR8 is expressed in
human monocytes and macrophages, and its activation results in
IL-12 but not IFNa, however the exact role of TLR8 in influenza
virus infection remains unclear.

4.2 Adaptive Immunity to Influenza
Although innate immunity is essential for restricting viral
replication, the adaptive immune responses are critical for
eventual viral clearance, recovery and protection from
reinfection. This has been established by studies showing that
influenza virus challenge in immunodeficient mice leads to
significantly higher mortality than healthy controls (163, 164).
Importantly, the HA and NA proteins are key targets of the
adaptive immunity (165).

4.2.1 Humoral Responses
The mechanisms involving the humoral responses towards
influenza virus have been well elucidated in recent decades.
During infection, naïve B cells in the mesenteric lymph nodes
(mLN) encounter the influenza virus antigen and differentiate
into antibody-forming cells (AFCs). Accordingly, B lymphocyte-
Frontiers in Immunology | www.frontiersin.org 8
deficient mMT mice showed high susceptibility to influenza virus
infection compared to WT mice (166, 167). The B-cell response
against influenza virus commences ~3 days post infection,
meanwhile the anti-influenza virus IgG secretion begins by day
7. Systemic AFCs are first detected around 6-7 days post-
infection (168), while the maximum number of B cells in
bronchoalveolar lavage fluid (BALF) is observed around day 10
post-infection in mice (169). In mice, there is tissue-specific
response of AFCs whereby they produce IgG and IgM in the
lungs, and IgA in the upper respiratory tract (170).

The HA and NA proteins of the influenza virus are
responsible for viral entry and release, therefore antibodies
specific to these antigens are crucial for protective immunity.
HA-specific antibodies result in viral neutralization through
binding to the HA globular head and inhibiting the attachment
of the virus to the host cell’s surface (171–173). However, NA-
specific antibodies inhibit the enzymatic activity of NA and
instead block viral replication (174, 175). Further, M2 proteins
have also been shown to be target of specific antibodies and
passive transfer of M2-specific antibodies can provide protection
against viral replication (176). Interestingly, NP-specific
antibodies also facilitate resistance to influenza virus, despite
targeting an internal influenza virus protein (177). In addition,
the influenza virus-specific antibodies also mediate antibody-
dependent cell cytotoxicity and Fc receptor-mediated
phagocytosis, and thus significantly contribute to the clearance
of infected cells (178). These antigen targets have been classically
and effectively targeted with seasonal vaccinations against
influenza, however efficacy per season has at times been
insufficient (179). If there is no change to the antigen targeted,
based on historical strategies, an alternative formulation or
adjuvantation would be required for amplified protection.

4.2.2 Cell-Mediated Immune Responses
Naïve CD4+ T cells recognize the viral antigens presented by the
MHC class II proteins on APCs, and subsequently differentiate
into several types of helper T cells depending upon the cytokine
milieu. This leads to activation and differentiation of antibody-
producing B cells via support from the activated CD4+ T cells,
and induction of CD8+ T cells responses (Figure 1). In mice, the
peak CD4+ T cell response is observed at 10 days post influenza
infection (180). Adaptive transfer of effector CD4+ T cells isolated
from mice infected with influenza demonstrated enhanced
survival of recipient mice challenged with the virus (180).
In particular, the cytokine milieu resulting from influenza virus
infection is polarized towards generation of Th1 cells (181),
which produce IFNg, TNF and IL-2. This promotes activation
of macrophages, production of IgG2a and IgG3 isotypes
antibodies from B cells (182), and induction of cellular immune
responses. Additionally, Th2 responses are also induced post
influenza infection resulting in production of IL-4, IL-5 and
IL-13 and isotype switching of B cells to produce other
antibody isotypes i.e. IgG1 and IgE (181). However, survival
after influenza virus infection is primarily correlated with Th1
compared to Th2 cells (183). Studies using influenza-infected
mice have shown involvement of CD4+ T populations in perforin/
granzyme-mediated cytolytic activity (181, 184, 185). Additionally,
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influenza virus infection leads to robust Tregs that mediate
immunosuppression and tissue repair via amphiregulin and
IL-10 (186, 187), and depletion of Tregs results in a reduction of
the influenza-specific TFH response (188). Thus, highlighting the
important role of Tregs in host protection during and after
influenza virus infection.

CD8+ T cells recognize influenza viral antigens presented by
MHC class I proteins on the surface of APCs and are crucial for
viral clearance and host protection. CD8+ responses peak around
8th day post-infection in the mLN and at 10th day in BALF (169,
189). Mice lacking CD8+ T cells (b2-microglobulin-deficient
mice) upon influenza viral challenge demonstrate delayed viral
clearance and severe mortality (190). Activated cytotoxic CD8+ T
cells (CTLs) eliminate virus-infected cells via cytolysis by
producing perforin to permeabilize their membrane and
secreting granzyme to induce apoptosis (175). In addition,
CTLs can also kill infected host cells via TNF receptor family-
dependent pathways. CTLs express the Fas ligand (FasL) which
binds to Fas on target cells and this interaction induces apoptosis
via caspase-cascade activation. CD8+ T cells also express TNF-
related apoptosis-inducing ligand (TRAIL) responsible for CD8+

T cell-mediated cytotoxicity (191). Effector CD8+ T cells produce
TNF and IFNg in the lungs, which aids the viral defense
mechanisms (192–194). Remarkably, these cells are also major
producers of IL-10 which regulates pulmonary inflammation
during response to the influenza virus infection. Moreover, even
with sublethal influenza virus challenge blockade of IL-10
signaling augments pulmonary inflammation and lethal
injury (195).

4.3 Currently Licensed Influenza Vaccines
4.3.1 Whole Inactivated Virus Vaccines
Although currently not in use due to high reactogenicity, whole
inactivated virus vaccines are the easiest to generate and thus
have been extensively used in humans as well as studied in
animal models. Depending upon the inactivation method
employed, inactivated viruses can represent antigens of live
virus relatively well. Thus, these vaccines may potentially retain
activity of HA and fusion of HA as well as NA activity.
Additionally, whole inactivated virus vaccines also contain viral
RNA which can activate multiple PRRs including TLR3, TLR7,
TLR8 and RIG-I (196), thus resulting in a self-adjuvanting effect.
These vaccines can induce a relatively balanced immune
response, leading to a response to both HA and NA in humans
as well as animal models, and relatively high seroprotection rates
(>85% in humans) (197–200). However, in terms of
seroprotection and geometric mean HA inhibition (HAI) titers,
whole inactivated virus vaccines did not demonstrate any
additional benefit compared to split virus or subunit vaccines
(201) and understanding of cell mediated responses in humans
remain unclear.

4.3.2 Split Virus and Subunit Vaccines
Split virus or subunit vaccines are manufactured from whole
inactivated virus which are treated with detergent and further
purified. These vaccines are classified based upon the viral
components incorporated after downstream purification
Frontiers in Immunology | www.frontiersin.org 9
process, preparation containing parts of the viral membrane
carrying HA and NA, referred to as split virus vaccine, and with
almost pure glycoprotein referred to as subunit vaccine. Notably,
most of the viral RNA is removed during the purification
process, which leads to reduced reactogenicity but might also
leads to weakened immunogenicity. Moreover, the structural
integrity of HA and NA proteins, as well preservation of crucial
antibody-binding epitopes in these vaccines remains unclear.
The immune response after vaccination with a split virus or
subunit vaccines is typically targeted towards HA since the NA
content of these vaccines is neither standardized nor detectable
in certain cases (200).

The breadth of the humoral response to whole inactivated
virus vaccines, split virus and subunit vaccines has been widely
evaluated. In addition, these can induce cross-reactive antibody
responses to historic virus strains in adults with pre-existing
immunity (201, 202). However, they fail to induce significant
titers of cross-reactive stalk-specific antibodies. Importantly,
current split and subunit vaccines are inefficient in inducing
cross-reactive CD8+ T cells, which would otherwise be elicited by
natural influenza virus infection (203). In addition, vaccine
effectiveness is markedly reduced due to antigenic mismatches
between circulating virus and vaccine virus strains. Therefore,
they tend to induce responses which are remarkably narrow and
strain specific.

4.3.3 Recombinant Hemagglutinin Vaccines
Recombinant HA vaccines contain only HA, therefore the
immune response specifically targets HA. These vaccines
typically contain higher doses of HA (up to 45 mg per strain)
compared to split or subunit vaccines, however the antibody
responses generated are at least comparable to that induced by
whole inactivated, subunit or split virus vaccines (204). Although
recombinant HA vaccines were licensed only recently, they have
been extensively studied in human clinical trials. Moreover,
growing literature suggests that recombinant HA vaccines
work particularly well in the elderly by inducing broader
responses and providing better protection (205, 206). In a
recent study, recombinant HA vaccine demonstrated superior
HA-specific both antibody and CD4+ T cell responses in adult
human cohorts when compared with inactivated influenza
vaccine (207). Notably, since the HA is expressed
recombinantly, these vaccines overcome mismatches that occur
in regular vaccine seed strains due to adaptation of the influenza
virus while cultured in eggs (208).

4.3.4 Live-Attenuated Virus Vaccines
The vaccines discussed above are typically either administrated
intramuscularly or intradermally, however it remains unclear
whether these routes of administration optimally induce mucosal
immune response in the upper respiratory tract (209). The
mucosal immunity induced through these vaccination routes in
humans could be the result of priming by natural influenza virus
infection. In contrast, live-attenuated virus vaccines which use a
weakened (or attenuated) form of the virus are administered
intranasally and promote replication of live attenuated influenza
virus (LAIV) in the upper respiratory tract. Thus, the immune
February 2022 | Volume 12 | Article 662218

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Barman et al. Lessons From Natural Immunity
response to LAIVs is multifaceted which does not necessarily
involve a serum antibody response, and LAIVs have been
licensed based upon efficacy trials that measure protection
rather than correlates of protection. Additionally, a study
comparing long-term systemic and secretory antibody
responses in children who were administered live, attenuated
or inactivated influenza vaccine demonstrated LAIVs induce
antibody responses which persist significantly longer (210).
Multiple studies have shown enhanced efficacy of LAIVs in
young children compared to inactivated vaccines (211, 212)
whereby LAIVs have been shown to induce diverse T-cell
responses by inducing CD4+, CD8+ and gd T cells (213). In
addition, in adults with extensive and partially cross-reactive pre-
existing influenza immunity LAIV has been shown to boost
secretory IgA responses to HA and non-HA antigenic targets
expressed by circulating influenza strains (214).

4.3.5 Adjuvanted Influenza Vaccines
Despite current influenza vaccines being immunogenic,
evolution of the virus can reduce efficacy of the vaccines.
Adjuvanted influenza vaccines incorporate adjuvants which
can boost immune response. This is particularly beneficial for
influenza vaccines administered during a pandemic when a rapid
response is required or for use in vulnerable populations, such as
infants and the elderly. Up until the early 21st century, alum
remained the only adjuvant included in licensed vaccine
formulations, until, in 2015 MF59 (squalene emulsion) was
incorporated into a licensed influenza vaccine designed for
enhancing efficacy for the elderly populations in the USA
(215). MF59 triggers effective and safe immunogenicity via
Th2 skewed immune responses (216) and induces chemokines
and cytokines, such as CCL2, CCL3 IL-8, and IL-5 (217), which
enhance vaccine efficacy by triggering memory B cells and
vaccine strain specific CD4+ T cells (218). Adjuvant system
(AS) 03 is an oil-in-water adjuvant which acts similar to MF59
(215). MF59 and AS03 adjuvants also showed heterologous
immune responses against non-vaccine influenza strains in
human subjects (215). Thus, vaccine adjuvants embrace a
numerous potential to achieve a universal flu vaccine by
inducing cross-protective immunity.

4.4 Lessons From Influenza Infection and
Future Vaccine Strategies
Development of a “universal vaccine” for influenza is challenging
because seasonal vaccines lack efficacy against most circulating
influenza strains due to antigenic variability. One of the current
approaches for influenza vaccine development is to mimic the
natural exposure via attenuated viral infection or viral vector
administration which triggers natural immunity. Live attenuated
licensed vaccine FluMist showed 70-90% efficacy over placebo in
1st year and 47-80% efficacy in 2nd year after immunization (219).
FluMist promotes virus specific lung TRM and establishes long-
term protection compared to inactivated attenuated formulation
(220) and was proven safe in a surveillance study (221, 222). CD8+

lung TRMs confer frontline defense and accumulate after viral
reinfection, but response may wane overtime (223). As such, in
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depth understating of targeting and optimizing the effector activity
of TRMs offers significant opportunity to achieve long-lasting
protection (224). Attenuated influenza virus with adjuvant
[MER4101, (cH8/1N1, H5/1N1)] or non-adjuvant (GHB11L1,
GHB16L2, M2SR) and viral vector (Ad4-H5-Vtn, MVA-NP
+M1, ChAdOx1-NP+M1, VXA-A1.1, GamFluVac) candidates
are entered in human clinical trials in the last decade and
currently in progress (225) to achieve an improved influenza
vaccine. The “unnatural immunity” (16), which does not occur
naturally may be achievable by triggering antibodies which do not
elicit during the course of natural infection. Such lack of
preexisting immunity could be restored by the adjuvantation
approaches (226). TLR3 agonist- (dsRNA), TLR4 agonist-
(MPLA, GLA-AF, ND002), TLR5 agonist- (Vax128), TLR7
agonist- (Imiquimod) and TLR9 agonist- (CPG 7909)
adjuvanted vaccine approaches are already in clinical trial (227).
Of note, synthetic TLR7 agonist adjuvant, Imiquimod, induced
improved influenza specific homologous and heterologous
immunogenicity in a phase 3 trial (228). Micro and nano
emulsion formulations like AS25, AS50, SE, Montanide ISA-51
are in phase 2 clinical trial and drove increased influenza specific
immune responses (227). Immune protection could be boosted by
the production of broadly neutralizing antibodies against influenza
viruses by designing DNA vaccines (229). Recently developed
mRNA-based vaccines have demonstrated great promise after
proven efficacious against severe COVID-19 outcomes, including
hospitalization and death. HA based mRNA vaccines are in
clinical trials, as reviewed in (230) and may have some
advantages over conventional inactivated influenza vaccines
(231–233). Another approach is to develop a next generation
influenza vaccine which triggers heterosubtypic or heterologous
immunity (234). Such broad spectrum or non-strain specific
vaccine design is feasible by identifying conserved protein
regions shared among pre-pandemic and circulating strains via
epitope mapping (235, 236). Identification of broadly reactive
antigens can be considered as a reverse vaccinology approach
which is going to be the most powerful tool for next generation
vaccine designing (235). Newborns are particularly at increased
risk of severe disease following influenza infection since they may
be unable to mount an effective immune response to clear
infection. However, a more in-depth understanding of protective
responses generated during natural influenza infection can guide
development of vaccines which illicit broader responses with
limited reactogenicity in these vulnerable populations (237).
5 TOOLKIT FOR PRECISION VACCINES
TO MIMIC THE NATURAL IMMUNITY

Based on current understanding of natural infection of MTB, BP
and influenza, there are a number of strategies to mimic the
immunological manifestation and incorporating it to develop the
next generation vaccines (Figures 1C, 2). One major caveat
relevant to all vaccination strategies targeting MTB, BP and
influenza is waning immunological memory. One approach to
bypass it by triggering polyfunctional T cell responses or by
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inducing long-lived TRMs (Figure 1C). Clonal expansion of
antigen specific memory T cells mainly depends on the
interaction with antigen bearing DCs (238). Unique DC subsets
can orchestrate these signals into appropriately regulated adaptive
immune responses. Therefore, reprogramming the DC
phenotypes (which must mimic the immunophenotype after
natural infection) by precision vaccines would be a smart choice.
Another strategy would be the fine tuning of the antigen specific T
cell proliferation during their developmental phase by using
precision vaccine technology (238, 239), such as TLR agonists-
based adjuvantation, many of which have the promising ability to
drive phenotypic shifts of Th populations (140, 142). Overall,
precision vaccinology can offer the fine tuning or reprogramming
Frontiers in Immunology | www.frontiersin.org 11
of DCs or APCs and antigen specific T cells. Antigen and adjuvant
discovery, immunoengineering, vaccine delivery and more
importantly increased understanding of human immune
responses via dissecting the components of natural infection are
fueling a revolution in vaccinology and guiding the development
of precision vaccines (3, 240), especially for vulnerable infants
(241) and older adults (242).

5.1 Immunogen Design
Conventional vaccine design (live attenuated bacteria/virus-
based or protein-based vaccines) provides durable protection
against several diseases. However, there remain major obstacles
to vaccine development against a variety of pathogens, especially
FIGURE 2 | Precision vaccines design. Overview of strategies to design precision vaccines which can effectively mimic immunity against pathogens as observed
post natural infection. Natural infection often leads to immunological imprinting which provides long-term immunity and disease resistance to future exposure of
pathogens. However, it can also lead to detrimental effects to the host as observed in disease outcomes. On the contrary, vaccination provides disease resistance
but may be associated with waning immunity, insufficient protective immune response either in vulnerable populations or to prevent disease transmission,
contraindications for immunocompromised hosts etc. Precision vaccines can guide the development of next generation vaccines by incorporating a toolkit for
building vaccines to mimic natural immunity, which includes: i) immunogen design (such as antigens, small molecule TLR or other adjuvants, biological adjuvants
such as cytokines); ii) optimizing formulations for targeted delivery to antigen presenting cells which can lead to subsequent long-lasting adaptive immune response
(approaches such as hydrogels, cellular vehicles, nanocarriers and microparticles etc.); iii) optimizing delivery routes for enhancing immune response and mimicking
the natural exposure to the pathogen (such as transdermal patch, injection site, sprayable gels for nasal routes) and iv) pre-clinical evaluation of vaccine formulations
in appropriate animal models can be followed by clinical evaluation in distinct populations. System biology approaches from such clinical trials may be helpful to
dissect age- and population specific vaccine-induced cellular and molecular signatures which correlate with protective immunity. Further, usage of human in vitro
modelling may accelerate and/or expand hypothesis testing and selection of population specific adjuvants. These approaches can lead to precision vaccines tailored
for long-term disease protection while abating disease outcomes associated with natural infection. Figure is created with BioRender.com.
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those better able to evade the adaptive immune response.
Furthermore, for emerging virus vaccines, the primary hurdle
is not the effectiveness of conventional approaches but the
urgency for rapid development and large-scale deployment
(243). Thus, as observed during the recent COVID-19
pandemic, the development of versatile vaccine platforms has
become important (244). Vaccine platforms such as mRNA-
based vaccines only require sequence information to trigger
vaccine development, thereby increasing the flexibility to adapt
vaccines to antigenic changes in circulating as well as new
emerging strains. This aids in pre-emptive and reactive vaccine
design, moreover faster development and manufacturing
options, ultimately enhancing our ability to rapidly respond to
emerging viruses (244). Lessons from natural infection can aid
these novel vaccine platforms by precisely guiding the selection
of immunogen as well as individual specific adjuvant for a more
effective and durable vaccine response (Figure 2).

5.2 Formulation
Recent advances in the field of immunoengineering, which are
evolving alongside vaccinology, have begun to greatly influence
vaccine formulation design (245, 246). Due to the disparities in
mechanisms of action of various non-adjuvanted and adjuvanted
vaccines, vaccine formulation development has become a major
consideration for vaccinologists and pharmaceutical companies
(247). These factors include (1) physicochemical characteristics
of the formulation, (2) adjuvant chemical structure and (3)
short- and long-term formulation stability (246). Specifically,
vaccine delivery systems have now evolved to mimic the
shape, size, and surface chemistry of pathogens (248), which
are often referred to as “pathogen-like particles”. These vaccine
formulations can thus allow control of antigen and adjuvant
biodistribution, regulation of vaccine uptake by APCs, optimized
triggering of antigen-specific B cells, and precisely influence
vaccine kinetics (249).

5.3 Delivery Route
Most current vaccination procedures utilize needles and syringes
which are administered through the intramuscular route of
injection. However, studies in the recent decades have suggested
that skin and mucosal membranes which are not accessible by
conventional needles, are however the ideal targets for vaccine
delivery (250, 251). The shortcomings of injections have led to
active research and development for needle-free methods of
immunization. Additionally, these alternate methods also reduce
the risk of exposure to needle-borne infections, lower toxicity and
economic costs, and ultimately enhance safety and reproducibility
in large demographics. Although, each method offers advantages
and contrarily limitations that may need to be overcome,
understanding natural infection for a particular pathogen can
help guide the optimal delivery route for maximal vaccine
response (252).

5.4 Clinical Evaluation
Children, older adults and immunocompromised individuals are
primary risk groups for MTB, BP and influenza infection. As such,
for vaccines designed to reduce transmission of respiratory infection
Frontiers in Immunology | www.frontiersin.org 12
in general, new vaccination strategies should also strive to take into
consideration the target population, including for human immune
ontogeny and clinical history. For example, demonstrated for
influenza (253), exposure to circulating respiratory viruses may
imprint a subsequent immune response, with unique T cell
responses in early life. Better understanding of the effects of
pathogenesis as intertwined with T cell ontogeny is beginning to
elucidate more effective vaccine approaches for the induction of
early life cell mediated immunity (254–256). Multidisciplinary
approaches including standardized human in vitro models,
systems vaccinology, and innovations of formulation and delivery
systems will enhance identification of mechanisms of action and
biomarkers of safety and efficacy of adjuvants and adjuvanted
vaccines thereby accelerating and de-risking adjuvanted vaccine
development (82, 257) (Figure 2). Successful stimulation of T cell
responses by precision vaccine approaches has certain criteria: i)
considering MHC diversity in human population, ii) targeting
immunodominant epitopes (either by bioinformatics or by
immunophenotyping approaches, iii) assessment method in vitro
(either tetramer-based assay or targeted antigen stimulation) to
evaluate co-relation of protection. There is also a growing interest in
the possibility of trained-immunity based vaccines (TIbV), meant to
enhance innate cross-protection to heterologous pathogens and to
induce more efficient adaptive responses against the specific
pathogens contained in the vaccine (258–264).
6 CONCLUDING REMARKS

Vaccines are one of the most cost-effective and effective
interventions to address the global burden of pediatric infectious
diseases and the implementation of early life immunizations has
reduced deaths in neonates and children across the world (4).
Infants are capable of inducing adaptive immune responses after
pathogen exposure. Though immune responses may be
suboptimal in early age but it could be adequately induced and
effectively maintained after vaccination, under certain conditions
(265). Due to aging, the elder immune system, especially the
innate compartment, gradually wanes via the process of
immunosenescence, also leaving this population vulnerable to
infection (266). Due to such differences in the early life and later
life adult immune systems, it is increasingly appreciated that an in-
depth understanding of early life immunity is crucial for the
development of effective pediatric vaccines and for optimizing
geriatric vaccine schedules. The human specific immunopathology
leading to protective immunity to MTB, BP and influenza are
partially and potentially poorly characterized. Live attenuated
vaccines generally provide more robust protective immunity
than vaccines comprised of killed organisms. Innate detection of
a signatures of microbial viability such as bacterial RNA has been
shown to be acted as vita-PAMPs (74). As compared to non-viable
pathogens, transient bacterial RNA induces TFH differentiation
and enhanced humoral responses (267). Vaccine formulation like
BCG or live attenuated BP vaccine strain (BPZE1) or the LAIV,
which incorporate molecular signatures of microbial viability,
have the potential to establish protective immunity against
reinfection that may outperform protein-based vaccines.
February 2022 | Volume 12 | Article 662218
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Furthermore, as immune responses induced by natural infection
and pathogen specific vaccines often overlap, an important
question remains to be addressed: should natural infection be
used as a benchmark for optimal vaccine design, or should the
ability of novel vaccines to induce a broad unnatural spectrum of
immunity be the goal? Immunological imprinting, after the first
influenza infection/s in early life for example, might influence
vaccine efficiency by altering the immune response in post
vaccination period (268). BCG vaccination imprints a persistent
transcriptomic bias on human stem and progenitor cells toward
the myeloid cell lineage which elicits beneficial trained immunity
(71, 269), an added component of vaccine formulation only
elucidated in the most recent decades. Therefore, it may be
important to study the potential impact of immune imprinting
by natural infections, but to also consider the role of induction of
unnatural response to solve some of the most pressing and
enduring problems of vaccine preventable and non-preventable
diseases. These questions may help guide the vaccine design in
21st century.
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