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Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease
involving the production of a wide range of autoantibodies and complement activation.
The production of these high-affinity autoantibodies requires T cell/B cell collaboration as
well as germinal center (GC) formation. T follicular regulatory cells (TFRs) are functional
specialized T regulatory cells (Tregs) that safeguard against both self-reactive T and B
cells. However, recent evidence suggests that TFRs are not always stable and can lose
Foxp3 expression to become pathogenic “ex-TFRs” that gain potent effector functions. In
this review, we summarize the literature on intrinsic and extrinsic mechanisms of regulation
of TFR stability and discuss the potential role of TFR reprogramming in autoantibody
production and SLE pathogenesis.
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INTRODUCTION

Systemic lupus erythematosus (SLE) is a chronic multi-organ autoimmune disease with wide
clinical heterogeneity. The disease can cause injury to many organs, especially the kidneys, joints,
and skin. The pathogenesis of SLE is not fully understood, but increased high-affinity self-antibody
production and dysregulated immune tolerance have been implicated in the progression of the
disease (1, 2). SLE often starts in late childhood or adolescence and predominantly affects females in
their reproductive years, with a female/male ratio of 9:1; the reasons for this skewed sex ratio remain
unclear (3, 4). In the 1950s, only 50% of SLE patients survived for 5 years; now, due to early
diagnosis and better treatment, most patients survive for more than 10 years. There is no effective
treatment for SLE, and only a few drugs have been approved in the past 60 years, emphasizing the
need for a better understanding of its pathogenesis.

A hallmark of SLE is the production of a wide range of autoantibodies by self-reactive B cells.
Anti-nuclear antibodies (ANAs) are detected in >95% of SLE patients, and subsequent deposition of
immune complexes in endogenous tissue results in severe tissue damage and induction of
inflammation (5, 6). The autoantibodies from lupus patients are high affinity, somatic mutated,
and class switched, and their generation requires the formation of germinal centers (GCs) with
assistance from follicular helper T cells (TFHs) (7). In addition to their involvement in GC
formation, TFHs, a unique CD4+ subset of T cells with high expression of Bcl6, PD-1, and CXCR5,
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play a major role in the selection of high-affinity B cells. TFHs
have thus emerged as a critical immunoregulator of antibody
production as well as the pathogenesis of human SLE (8).

Another small population of CD4+ T cells, regulatory T cells
(Tregs), maintain self-tolerance by suppressing both autoreactive
T and B lymphocytes through the production of inhibitory
cytokines such as IL-10, TGF-b, and IL-35 (9, 10). Similar to
conventional T cells, TCR and MHC and peptide engagement
will lead to the activation of Tregs and which contribute to the
further development of functional specialized T follicular
regulatory cells (TFRs). TFRs also express both Bcl6 and
CXCR5 and are capable of traveling to B cell follicles to serve
as gatekeepers controlling autoantibody production (11–13).
Tregs were initially considered a stable lineage, but emerging
evidence suggests that even fully committed Treg cells can lose
their identity and be reprogrammed to effector T cells (14–17).
Interestingly, reprogramming of Tregs has been observed in the
follicular region. TFRs can lose their Foxp3 expression and
become pathogenic “ex-TFRs” (18). Whether the autoreactive
potential of ex-TFRs contributes to autoimmune disease is not
known. In this review, we summarize recent progress in
understanding the roles of signaling pathways and
transcriptional and epigenetic regulation in modulating Treg
and TFR stability. We also discuss the possibility that pathogenic
ex-TFRs contribute to autoantibody production and the
pathogenesis of SLE.
TFRS

In 1995, Sakaguchi et al. identified a small subset of CD4+ T cells
that express the high-affinity IL-2 receptor IL-2Ra (CD25) and are
capable of suppressing autoimmunity upon transfer (19, 20).
Indeed, mice lacking either IL-2Ra or IL-2 develop severe
systemic autoimmunity (21–23). The cells identified by Sakaguchi
et al. are now known as Tregs, and in 2003, the transcription factor
Forkhead Box P3 (Foxp3) was identified as the lineage-defining
regulator of Tregs (24–26). The importance of Foxp3 has been
illustrated by studies of Foxp3 gene mutations, immune
dysregulation, polyendocrinopathy, enteropathy, and X-linked
(IPEX) syndrome in humans, and Scurfy mutant mice bearing
Foxp3 mutations develop lethal multi-organ autoimmunity (27–
30). In addition, ablation of Foxp3 in mature Tregs or depletion of
Foxp3+ cells completely eliminates the suppressive capacity of
Tregs and programs Tregs into pathogenic T cells (31).

Tregs are not a homogenous population. Depending on their
developmental origin, Tregs can be divided into thymic Tregs
(tTregs) and peripheral Tregs (pTregs) (32, 33). tTregs are
induced in the thymus and are characterized by high-affinity
self-antigen engagement (34). By contrast, pTregs are generated
from conventional CD4+ T cells under conditions of high levels
of transforming growth factor b (TGF-b) and retinoic acid in the
environment or in response to metabolites produced by
microbiota in the gut (35). Although the TCR repertoires of
pTregs and tTregs overlap, tTregs mainly recognize self-antigens,
whereas pTregs also express TCRs specific for non–self-
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infectious antigens or innocuous commensal microbiota
derived antigens; these latter TCRs are important for the
maintenance of mucosal tolerance (36, 37).

Similar to conventional T cells, Treg TCR engagement is the
first step in generating heterogeneous effector Tregs, which are
functionally potent and capable of migrating to local tissue (38).
Effector Tregs can differentiate into specialized subsets by
adapting the same set of transcription factors that control the
differentiation of helper CD4+ T cells. For example, the Th1
transcription factor T-bet drives the expression of CXCR3 in
Tregs, which is important for regulating some Th1-mediated
autoimmune responses (39), and the RORgt-expressing Treg is
involved in the regulation of Th17-mediated experimental
autoimmune encephalomyelitis (EAE) and colitis (40–42).

Bcl6-expressing TFR cells (TFRs) are a particularly important
subset of effector Tregs that express CXCR5 and migrate to B cell
follicles and GCs (11). TFRs are capable of modulating B cell
responses and, given their unique localization, appear to be
major players in controlling autoantibody production (43–48).
Indeed, Treg-specific ablation of Bcl6 results in substantial
increases in multiple autoreactive antibodies, including anti-
dsDNA (49, 50). Sage et al. demonstrated the importance of
TFR in controlling the production of a panel of self-antibodies in
an elegant TFR-DTR model established by crossing Foxp3-Cre
mouse with a CXCR5 floxed stop DTR (diphtheria toxin
receptor) strain (12, 51). In this model, only cells expressing
both Foxp3 and CXCR5 (such as TFRs) express DTR on the cell
surface, making them susceptible to deletion upon
administration of diphtheria toxin (DT).

TFRs differentiate from natural Treg precursors through
interaction with dendritic cells (DCs) and require different
costimulatory activation signals at different stages of
differentiation. Treg cells do not express CXCR5 in the T-cell
zone and only start to upregulate CXCR5 when they migrate to
the border region between the T and B cell zones. These cells are
defined as pre-TFRs (52). The early differentiation of pre-TFRs
requires CD28 and ICOS helper signals from DC cells and is
independent of B cells. Although the initial stage of TFR
differentiation does not rely on B cells, the stable mature TFR
program requires B cell assistance. B cell-deficient mice exhibit a
large decrease in mature TFRs in the lymph nodes (47). In
follicles, CD25 and Blimp-1 expression are downregulated in
CD25+ TFRs, leading to the acquisition of the CXCR5hiBcl6hi

phenotype, which allows these CD25- TFRs to traffic into the GC
(Table 1). Sage and colleagues demonstrated that TFRs prevent
self-reactive B cells from being activated by TFHs, most likely via
attenuated production of cytokines (such as IL-21 and IL-4) and/
or costimulatory signals (53, 54). TFRs also prevent GC formation
caused by foreign antigens (vaccines, microorganisms) by
inhibiting the metabolic flux of B cells and through CTLA-4-
mediated inhibition of B cells. TFRs may physically interrupt
bidirectional costimulation and linked recognition during
immunological synapses between TFHs and B cells (55). A
specific subtype of TFHs, SOSTDC1+ TFHs, promote TFR cell
differentiation by inhibiting the b-catenin pathway through the
secreted protein SOSTDC1 (56).
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Defects in Treg function and/or number, particularly the TFR
subset, are thought to contribute to SLE pathogenesis, but
conflicting results have been reported. Some groups have
found an increase in TFRs in SLE patients compared with
healthy controls (57–59), whereas others have found reduced
numbers or impaired function of circulating TFRs or Tregs in
SLE patients (60, 61). Other groups have observed no
abnormalities (62, 63). These discrepancies are due in part to
the lack of a unique marker or combination of markers for
identifying and isolating bona fide Tregs, the use of different in
vitro stimuli, and the presence or absence of antigen-presenting
cells (APCs) in ex vivo functional assays (64). An important
challenge in the study of the pathogenesis of SLE is the difficulty
of obtaining patient lymphoid tissues to assess TFRs directly; for
this reason, most studies have focused on circulating Tregs in
peripheral blood.
FOXP3 STABILITY OF TFRS

Tregs were initially considered a stable cell lineage committed to
immunosuppressive function, but accumulating evidence
indicates that they can lose Foxp3 expression and undergo
reprogramming to other types of effector T cells. Upon transfer
into CD3e KO mice, Foxp3+CD4+ T cells terminate Foxp3
expression and differentiate into TFHs in Peyer’s patches (14).
CD25-Foxp3+ T cells are likely more unstable than cells
expressing CD25. In a fate-mapping experiment involving
Foxp3 bacterial artificial chromosome (BAC) transgenic mice
expressing GFP-Cre under the control of the Foxp3 promoter,
we demonstrated that a fraction of Tregs are not stable. These
“ex-Tregs”, which no longer express Foxp3, have an activated-
memory T cell phenotype and the ability to produce
inflammatory cytokines such as IFN-g and IL-17. Importantly,
ex-Tregs bearing the BDC2.5 TCR induce autoimmune diabetes
upon adoptive transfer (15). Autoimmune inflammation
exacerbates the instability of Foxp3. By using MOG tetramer
to identify antigen-specific Tregs, we further demonstrated that
Tregs can be converted into pathogenic T helper cells in an EAE
mouse model, suggesting a link between strong TCR signaling
and Treg instability (16).

As a major TGF-b sensor, conserved noncoding sequence 1
(CNS1) in Foxp3 is critical for the generation of induced pTregs
but dispensable for tTreg development. Given the heterogeneity
Frontiers in Immunology | www.frontiersin.org 3
of Tregs, we further generated a delta CNS1 Foxp3 BAC
transgenic mouse strain that only traces committed and stable
tTregs (17). We found that resting or naïve tTregs are stable, but
upon development to TFRs, these cells can lose Foxp3 stability
and be reprogrammed into a T helper lineage (17).

Sage et al. recently confirmed that a population of TFRs can
lose Foxp3 expression in experiments using inducible Foxp3 fate-
mapper mice (FoxP3ERT2-Cre-Rosa26 Lox-Stop-Lox-TdTomato).
In this model, Cre–ERT2 is limited to the cytoplasm in the
absence of tamoxifen. Upon administration of tamoxifen, the
tamoxifen metabolite 4-OHT (an analog of estrogen) binds to
ERT, allowing Cre-ERT2 to enter the nucleus and exert Cre
recombinase activity, thus triggering the expression of the
fluorescent protein TdTomato in Foxp3+Treg cells. In contrast
to continuous labeling, inducible labeling of Foxp3+Tregs with
TdTomato during the immunization period avoids cell labeling
due to transient Foxp3 expression and permits the assessment of
bona fide Treg maintenance. Sage et al. immunized these mice
with NP-OVA and 7 d later assessed the frequency of
CXCR5+CD4+TdTomato+Foxp3low “ex-TFR” populations. In
this model, ∽80% of CD4+CXCR5+TdTomato+ cells retained
Foxp3 (TFRs); the remaining ∽20% lost Foxp3 expression
(ex-TFRs).

In summary, although TFRs are a functionally specialized subset
of Tregs that selectively survey the autoreactive antibody response in
the GC, continuous localization of TFRs in the GC might have a
detrimental effect on Treg stability, leading to loss of Foxp3
expression and reprogramming to TFHs (Figure 1) (18).
WHY DO TFRS PREFERENTIALLY
LOSE FOXP3?

The stability of Foxp3 expression is largely determined by the
methylation status of the CNS2 region of the Foxp3 gene locus,
which is also known as the Treg-specific demethylated region
(TSDR) (65, 66). Foxp3 CNS2 contains 11 CpG sites, which are
all methylated in peripheral conventional T cells as well as
thymic DP and CD4 SP cells. Gradual demethylation of CNS2
occurs during tTreg development (67, 68); this process is not
passively cell cycle dependent but is mediated by Tet-dependent
oxidation, which is primarily mediated by Tet2 and Tet3 (69).
Demethylation of CNS2 leads to the recruitment of transcription
TABLE 1 | The markers for the identification of TFR and TFH.

Subtype Foxp3 CD25 Blimp-1 CXCR5 PD-1 ICOS Bcl6 CD44 CD62L Location Autoreactive

Naive Treg + + − − − − − − + Extrafollicle High
Pre-TFR ++ ++ + + + + +/- + – T-B border High
CD25+TFR ++ ++ ++ ++ ++ ++ ++ + − Follicule High
CD25-TFR ++ − − +++ +++ +++ +++ + − GC High
Ex-TFR − − − +++ +++ +++ +++ + − GC High
Naive T − − − − − − − − + Extrafollicle Low
Pre-TFH − − − + + + +/- + – T-B border Low
TFH − − − ++ ++ ++ ++ + – Follicule Low
GC-TFH − − − +++ +++ +++ +++ + – GC Low
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factors such as Cbfb, Runx1, STAT5, and Foxp3 itself, thereby
reinforcing Foxp3 expression on Tregs (65, 70–72). Indeed,
genetically deleting either the CNS2 enhancer of the Foxp3
locus or Tet family proteins leads to a destabilized Treg lineage
and the development of spontaneous autoimmunity and chronic
inflammation (73).

Treg stability is influenced by many intrinsic and extrinsic
factors, particularly cytokines and their downstream signaling
pathways. IL-2 and STAT5 activation maintain Foxp3 stability
by binding directly to CNS2, and the Hippo kinases Mst1 and
Mst2 promote STAT5 activation to further strengthen the Treg
lineage (74, 75). By contrast, IL-4 and IL-6 can have detrimental
effects on the Treg lineage. IL-4 receptor (IL-4R) knock-in mice
in which IL-4R signaling is specifically upregulated exhibit
reduced Treg stability and promotion of the Th2 response
(76). STAT6 and STAT3, which are downstream of IL-4R,
appear to compete with STAT5 at the CNS2 region of Foxp3.
Depletion of SOSC1 (Socs1fl/fl × Foxp3YFP-Cre mice), a natural
inhibitor of STAT proteins, destabilizes the Treg lineage, and
more interestingly, adoptive transfer of SOSC1-deficient Tregs is
sufficient to induce autoimmune colitis (77).
Frontiers in Immunology | www.frontiersin.org 4
Although ablation of TCR in mature Tregs has little impact
on Treg stability, overstimulation of Tregs via dysregulation of
TCR and/or co-stimulation profoundly destabilizes the Treg
lineage. A number of negative regulators of the TCR signaling
pathway, such as PTEN, ITCH, Vhl, and PTPN, play important
roles in maintaining the stability of the Treg lineage (78–80).
Interestingly, Tregs themselves are partially anergic compared
with conventional T cells. Under conditions of homeostasis,
Tregs remain anergic, but TCR signaling upon weak
stimulation confers strong suppressive potential on Tregs
without reducing the stability of the lineage (81, 82). However,
overstimulation causes Treg destabilization and reprogramming
into pathogenic effector cells (17, 80, 83). The detailed molecular
mechanism of the TCR signaling pathway has not been fully
elucidated, but metabolic mechanisms could be very important;
some metabolic pathways may interact with transcriptional and
epigenetic regulation to modulate the Treg lineage.

Another important regulator of Treg lineage maintenance is
the Foxp3 complex itself; roles of EzH2, RelA, and Runx, among
other components of the complex, have been demonstrated (84,
85). Post-translational modification of the Foxp3 protein is part
FIGURE 1 | Ex-TFRs: a missing piece of the SLE puzzle. Naïve Treg cells can interact with dendritic cells (DCs) to become activated and further migrate into the
germinal center (GC) region through upregulation of CXCR5 and BCL6. In the follicle and GC, TFRs play an important role in regulating antigen (Ag)-specific TFHs
and antibody-secreting cells. Since the GC is not favorable to stable Foxp3 expression, some TFRs will lose Foxp3 and develop into pathogenic TFHs (ex-TFRs).
Ex-TFRs tend to recognize self-antigens, which may promote autoreactive humoral immunity.
April 2021 | Volume 12 | Article 662305
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of a feedback loop that controls Foxp3 stability. CRISPR-Cas9-
based screening is beginning to reveal a more comprehensive
picture of Treg lineage regulation, and new regulators such as
Usp22, Rnf20, and Brd9 have been identified (86, 87).
Interestingly, Zheng et al. found that non-canonical BAF
(ncBAF) can localize at Foxp3 cis-regulatory elements to
promote Foxp3 binding, whereas another SWI/SNF subunit,
PBAF, seems to exert opposing effects (88).

In addition to its critical role in maintaining Foxp3 stability
(89, 90), the IL-2/STAT5 signaling pathway is a potent negative
regulator of TFH differentiation. IL-2 has been reported to
repress TFR differentiation by a STAT5/Blimp-1 dependent
mechanism (91). Thus, downregulation of the high-affinity
IL-2 receptor CD25 is likely a common strategy for avoiding
excessive STAT5 signaling in TFRs and TFHs. Consistent with
this notion, CD25 expression is typically low or absent on TFHs
and TFRs (92). By contrast, TFRs express high levels of inducible
costimulator (ICOS), a co-stimulation molecule belonging to the
CD28 family. ICOS signaling through the PI3K/AKT pathway is
essential for the initiation of TFH and TFR differentiation and is
also an important survival signal for CD25- effector Tregs (93–
95). However, as mentioned above, such positive signals can
dampen Treg stability; for example, loss of Blimp-1, a strong
transcriptional repressor of Bcl6, boosts TFR differentiation but
has a detrimental effect on Treg stability (96). Together, the
CD25 and ICOS signal switch during TFR cell differentiation is
the driving force for programming TFRs to become TFHs
(96).This notion is also consistent with previous adoptive
transfer experiments showing that CD25-Foxp3+ cells
preferentially differentiate into effector TFHs under
lymphopenic conditions (Table 1).
EX-TFRS: A MISSING PIECE OF THE
SLE PUZZLE?

The functional role of ex-TFRs is not fully understood. The large
majority of TFRs express Helios, a transcription factor expressed by
tTregs (97), suggesting that TFRs are thymic in origin and biased
toward self-antigens. This notion is further supported by recent
studies indicating a highly diverse TCR repertoire of TFRs (36, 37).
The loss of Foxp3 expression on TFRs generates a population of T
cells with the potential to attack self-tissue. These cells could have a
similar function as autoreactive TFHs. Sage et al. showed that ex-
TFRs lose their suppressive function and have a transcriptional
signature that is more similar to TFHs than TFRs (18). Moreover,
multiple lines of Treg conditional knockout mice exhibit defects in
maintenance of Treg stability, in association with an increased
autoreactive humoral response and even the development of lupus-
Frontiers in Immunology | www.frontiersin.org 5
like autoimmune disorders (98–100). For example, mice in which
PTEN is conditionally knocked out in Tregs develop a lupus-like
autoimmune lymphoproliferative disease characterized by excessive
levels of TFHs and B cell activation. These mice also exhibit
increased serum levels of multiple auto-antibodies and creatinine,
indicating renal pathology (80, 101). Tet2/3 conditional knockout
mice develop lethal autoimmunity in association with the
production of numerous self-antibodies (73), and a similar
autoimmune disease is observed in Foxp3CreWT/CreTet2/3fl/fl

heterozygous female mice, which harbor half of the wild type of
Tregs in the same mice (73). These results strongly support the
notion that ex-Tregs are self-recognition biased and have
pathogenic potential (Figure 1).

Treg stability has not been directly tested in mouse models of
lupus or human patients. However, Benoist et al. found that
Foxp3+ Treg cells are unstable in NZW mice, which may explain
the reduced sensitivity of this NZW Tregs to limiting doses of
trophic cytokines, IL-2 and -33 (102). In addition, this instability
may provide a genetic explanation for disease pathogenesis, as
NZW × NZB F1 female mice develop a severe autoimmune
disease that shares many features of SLE in human patients (103).
CONCLUSIONS

SLE is an autoimmune disease characterized by the production of
a wide range of autoantibodies, and its exact pathoetiology
remains elusive. Although TFRs play a critical role in
controlling autoantibody production, the migration of TFRs to
the follicular region and GC does not favor stable Foxp3
expression, and some TFRs even lose Foxp3 and develop into
TFHs with pathogenic potential. These ex-TFRs are likely biased
toward self-recognition and might promote autoreactive
humoral immunity. A better understanding of the role of ex-
TFRs could have important therapeutic implications for SLE and
many other autoimmune diseases.
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