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The lymph node (LN) is an essential tissue for achieving effective immune responses but it
is also critical in the pathogenesis of chronic lymphocytic leukemia (CLL). Within the
multitude of signaling pathways aberrantly regulated in CLL the homeostatic axis
composed by the chemokine receptor CCR7 and its ligands is the main driver for
directing immune cells to home into the LN. In this literature review, we address the
roles of CCR7 in the pathophysiology of CLL, and how this chemokine receptor is of
critical importance to develop more rational and effective therapies for this malignancy.
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INTRODUCTION

Lymph nodes (LN) function as a major immunological hub, essential for immune homeostasis and
generation of effective immune responses (1). Yet LNs are also a fundamental tissue in the
development, progression and treatment failure of several mature lymphomas/leukemias,
especially for chronic lymphocytic leukemia (CLL) (2–6). In recent years growing evidence
suggests that cell trafficking orchestrated by the chemokine receptor CCR7 plays a critical role in
the pathophysiology of CLL. LN stromal cells secrete CCR7 ligands generating powerful
chemotactic gradients that attract CLL cells into the microenvironment, where a diversity of
cells, soluble factors, and matrix proteins facilitate survival and proliferative cues, thus promoting
disease progression and preventing spontaneous or drug-induced apoptosis of leukemic cells. In this
literature review we provide in depth insight into how CCR7-mediated functions contribute to CLL
pathogenesis, and how this chemokine receptor may be a critical potential therapeutic target in CLL.
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CLL

With an age-adjusted incidence of 4.3/100000 inhabitants in the
United States, CLL is the most common type of leukemia in
Western countries. More than 20000 newly diagnosed cases and
~4500 deaths per year are currently estimated (7). CLL is
characterized by the clonal proliferation and accumulation of
mature, typically CD5-positive B cells within the peripheral
blood (PB), bone marrow (BM), LNs, and spleen. Despite a
remarkable phenotypic and cytological homogeneity, CLL is
characterized by extremely variable clinical course related to
different prognostic factors including the mutational status of the
immunoglobulin heavy-chain variable region (IGHV) (8–10),
expression of very late antigen 4 (VLA-4), CD38 and zeta-
associated-protein 70 (ZAP-70) markers (11, 12), and specific
cytogenetic alterations including the most common and early
event of deletion of the long arm of chromosome 13 [del(13q14)]
and other alterations that occur later in the course of disease and
predict worse outcome such as del(11q), and del(17p) (13–15). In
recent years, whole-genome sequencing has uncovered novel
recurrent somatic gene mutations that occur in CLL cells in
parallel to the above-mentioned structural genomic aberrations.
Of these, mutations affecting the genes NOTCH1, p53, ataxia-
telangiectasia-mutated (ATM), and splicing factor 3b subunit 1
(SF3B1) seem to be more common, with a long tail of less
common but nonetheless recurrent driver mutations (16–19).

Until very recently, chemoimmunotherapy, the combination
of monoclonal antibodies (mAb) against CD20 with
chemotherapy, was the most effective therapeutic approach in
CLL. In particular, standard therapy with the combination of
FCR (fludarabine, cyclophosphamide, rituximab) was shown to
prolong both progression-free survival and overall survival (OS)
in CLL (20) and to result in long-term remission in patients with
mutated IGHV. Response in patients with TP53 aberrant disease
was poor however, and patients with unmutated IGHV generally
showed continuous relapse even after initial deep response,
including undetectable minimal residual disease (MRD)
responses. The development of Bruton´s tyrosine kinase (BTK)
inhibitors in particular as well as more recently the B cell
lymphoma 2 protein (BCL-2) inhibitor venetoclax has led to
more effective therapy particularly for higher risk disease (21,
22). Phosphatidylinositol 3 kinase (PI3K) inhibitors also have
significant activity but have been hampered by toxicity. Despite
the efficacy of these drugs, continuous therapy is required with
the B cell receptor (BCR) pathway inhibitors leading to toxicity
and cost, as well as increasing relapse over time. The venetoclax
regimens have been developed to be time-limited, and follow-up
is still too short to know the durability in different disease groups.
It is clear that patients who do not achieve undetectable MRD
with a venetoclax regimen have steady relapse and constitute a
group with unmet need. All higher risk patient groups,
particularly those with p53 aberrant disease, complex
karyotype and even unmutated IGHV, all have higher risk of
relapse and still have significant unmet medical need for
additional treatment strategies (21–23).

A hallmark of the pathophysiology of CLL is that blood
circulating leukemia cells are mainly in a G0/G1 cell cycle–
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arrested phase, whereas CLL cells within LN are proliferating
and hence promote disease progression (2, 4). In this scenario,
CLL is seen as a dynamic neoplasm comprising leukemic cells
that multiply and die at measurable rates (24). However, and at
variance with other hematologic malignancies, CLL proliferation
rates are relatively low and cell accumulation is the result of an
abnormally prolonged survival rather than uncontrolled
proliferation (25). Indeed, intrinsic defects in the apoptotic
machinery such as overexpression of BCL-2 and myeloid-cell
leukemia 1 (MCL-1) anti-apoptotic members, or impaired
expression of pro-apoptotic members (Bax and Bak), and
extrinsic factors consisting mainly of stromal cell–derived
cytokines and chemokines (e.g. CXCL12), provide survival cues
during which tumor cells transit through lymphoid tissues and
tilt the balance toward prolonged lifespan of CLL B cells (6, 26).

CCR7 and Its Ligands
The homeostatic chemokine receptor CCR7 was identified in the
1990s as the first lymphocyte specific G-protein coupled receptor
(GPCR) (27–29). Also known as Epstein–Barr virus-induced
gene 1 (EBI1), Burkitt’s lymphoma receptor 2 (BLR2), or CD197,
this 378 amino acid protein is encoded by a gene located on
human chromosome 17q12-21.2 (28). CCR7 is expressed by
various immune cells including double negative (DN) and single
positive (SP) thymocytes, naï ve, central memory and regulatory
T cells (TN, TCM, TREG), naïve B cells, CD56+CD16- regulatory
natural killer (NK) cells, and (semi-)mature dendritic cells (DCs)
(30–32). In addition, CCR7 expression has been found in
different non-immune cells, most notably in various
malignancies (32). Generally, mentioned T cells subsets and
mature B cells constitutively express CCR7 whereas NK cells
and DCs acquire CCR7 expression upon encountering a
pathogen (30). In both homeostasis and cancer, CCR7 but not
other receptors, specifically drives cell homing into LN and other
secondary lymphoid organs (SLO) (33–35). This GPCR
orchestrates: cell trafficking, firm arrest to endothelium,
extravasation, positioning within SLO, activation, and egress
upon binding two cognate ligands, the chemokines CCL19
(aka ELC or MIP-3b) and CCL21 (aka SLC or 6CK),
constitutively expressed by stroma cells in SLOs and present
on lymphatic vessels, high-endothelial venules (HEVs), and T
zones. In addition, CCL21 is produced by lymphatic endothelial
cells (30, 31, 36). Both chemokines share only 32% sequence
homology and are structurally and functionally distinct (37).
Indeed, both molecules differ in length with CCL21 encoding a
37 aa long C-terminal tail extension, that is lacking in CCL19,
and which is rich in positively charged (basic) residues. This tail,
which can be proteolytically cleaved, confers high affinity for
negatively charged molecules of the extracellular matrix (ECM),
including glycosaminoglycans (GAGs), therefore the lack of such
C-terminal basic extension in CCL19, and in CCL21 tail-less
form impairs its ability to form haptotactic gradients (36, 38–40).

The LN in CLL
Upon immune activation, reactive LN acquire a characteristic
structure (1, 41). Three main cellular compartments are easily
distinguishable: the cortex, the paracortex and the medulla. The
March 2021 | Volume 12 | Article 662866
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cortical area contains lymphoid follicles composed mostly of B
cells (B zone). In reactive LN, the primary follicles evolve to
secondary follicles, made up of a germinal center (GC) and
surrounding mantle zone. In paracortical areas (or T zone),
T cells predominate and are mixed with interdigitating DCs,
plasma cells and “tingible body” macrophages (TBM). Finally,
the medulla consists of the medullary cords, which contain
lymphocytes, plasma cells, and macrophages, and the
medullary sinuses, contiguous with the efferent lymphatics, and
contain lymph, macrophages, plasma cells, and mast cells.

In homeostasis, reactive LN is an important site for B cell-Ag
interaction, initiating and supporting multiple processes
including heavy immunoglobulin chain class switching,
somatic hypermutation and proliferation (2). These processes
take place on the GC, where B cells interact with helper follicular
T cells (THF) and follicular dendritic cells (FDC), that serve to
increase the variety of Ag binding sites available for clonal
selection (2). In this normal tissue, CCR7 is expressed in B cell
and T cell zones with a marked positivity on centrocytes and
centroblasts in secondary follicle GCs (42). Additional aspects
related to reactive tissue structure and CCR7 expression are
disclosed in Figure 1.

In CLL, the LN frequently shows a pattern of architectural
effacement by homogeneous diffuse sheets of small CLL
lymphocytes, often obliterating the normal nodal tissue, and
exhibits small, if any, residual GCs. In many cases, neoplastic
cells with increased mitotic activity form scattered foci that
resemble germinal centers called pseudofoll icles or
proliferation centers (PCs) which are enriched with
prolymphocytes and paraimmunoblasts (4, 43–46). In CLL
patients, the PCs are much more evident in LN than in the
spleen and the BM; they occur in 88% of LN biopsies. Moreover,
PCs are hallmark features in the LN of patients with CLL as they
are not observed in other B-cell tumors (4).

Unlike reactive GCs, the leukemic cells of PCs lack a GC B-
cell phenotype, but may contain increased CD40L+CD4+ TH cells
and in some cases a fine network of DCs, suggesting that PCs
likely do not arise secondary to colonization of GCs by tumor
cells (44). In contrast, the PCs tend to have less well-defined
borders without mantle zones, lack polarity, and do not contain
tingible body macrophages, allowing for easy discrimination
from GC (44).

CCR7 Over-Expression in CLL
A large series of studies have reported that the CLL cells of
almost all patients express high surface levels of CCR7, where a
distinct, intense positive peak consisting of > 96% of positive cells
is usually observed by flow cytometry (14, 42, 47–66). This
expression of CCR7 in CLL is abnormally high when
compared to the corresponding normal CD5+ B-cell
population or pan-B cells. The CCR7 expression is consistently
observed in both resting and proliferative compartments; in
different groups of CLL patients regardless of the stage at
diagnosis; unfavorable flow cytometry (CD38, ZAP-70, VLA-4)
or genetic (IGHV mutated/un-mutated status, p53 mutated/
deleted, ATM mutated/deleted, trisomy 12, NOTCH1
mutations) prognostic markers; previous treatments or the
Frontiers in Immunology | www.frontiersin.org 3
presence of relapsed or refractory (r/r) disease to different
standard-of-care (SOC) therapies (Table 1). Similarly, in CLL
nodes, a strong CCR7 positivity is seen in small lymphocytes and
paraimmunoblasts of PCs (42), and this expression did not differ
between matched LN and BM biopsy samples, hence, CCR7
levels remains high on CLL cells following their accumulation in
SLOs and BM.

In several reports, CCR7 expression and/or functionality has
been associated with higher LN involvement and staging but no
report directly associated this receptor, or its migratory response,
with CLL patient survival (14, 42, 48, 49, 51, 53, 63, 78).
Nonetheless, in other blood cancers such as diffuse large B-cell
lymphoma (DLBCL) or T cell prolymphocytic leukemia (T-PLL)
a clear correlation was found between CCR7 expression levels at
diagnosis and OS (79, 80). Moreover, indirect evidence suggests a
role of CCR7 in shortening lifespan in CLL. High levels of IkBa,
a known repressor of NF-kB-mediated transcription of CCR7,
correlated to extended OS in CLL (67). Similarly, NOTCH1
mutations inducing a higher phosphorylation of the signal
transducer and activator of transcription 3 (STAT-3) factor,
and subsequent higher expression of CCR7, showed clinical
characteristics of aggressive disease in a retrospective analysis
on a cohort of 113 NOTCH1-mutated CLL patients (65).
Moreover, serum levels for CCL19 are greater in CLL patients
than in age-matched healthy subjects and those. Related to CCR7
ligands, serum levels for CCL19 were comparable between CLL
patients and age-matched healthy subjects (81). However, within
the CLL cohort, higher CCL19 levels independently associated
with shorter survival. Moreover, when CCL19 was clustered
along with other cytokines such as CCL3, CCL4, CXCL9,
CXCL10, CXCL11, IFNg, IL-5, and IL-12, this group of soluble
factors was also found as an independent prognostic indicator of
aggressive disease (time-to-first-treatment) and OS when
compared to other clusters of cytokines (81). Therefore, it is
likely that this group of cytokines provides a cytokine milieu that
favors survival and growth to CLL cells.

Mechanisms Underlying CCR7
Expression in CLL
In CLL, the key factors involved in the over-expression of CCR7
still remain to be uncovered. Nonetheless, recent evidence
supports the hypothesis that both the inner genetic
background of leukemic cells and/or environment factors
facilitate CCR7 over-expression. To our knowledge, no
potential CCR7 gene mutations affecting transcription have
been reported in CLL but one single-nucleotide polymorphism
(SNP) in this gene was strongly associated with CLL risk (71, 82).
Enjuanes et al. (81) found that the minor allele in the SNP
rs3136687 (intron 1) resulted in a protective effect for the risk of
CLL, although no CCR7 expression differences were observed for
such allelic variants. This lack of association between CCR7
genetic variants and CCR7 over-expression suggests the
presence of alternative genotypes affecting other proteins that
ultimately determine different signaling pathways controlling
CCR7 gene transcription and/or surface protein expression. In
this regard, patient-associated DNA hypomethylation of the
transcription factor NFATC1 (nuclear factor of activated
March 2021 | Volume 12 | Article 662866
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FIGURE 1 | CCR7 and the reactive LN. In homeostasis, normal LN show three main cellular compartments: the cortex (B zone), the paracortex (T zone) and the
medulla. Upon antigen stimulation, the primary follicles evolve to secondary follicles, made up of a germinal center (GC) and surrounding mantle zone. In reactive LN,
CCR7 is necessary for the entry of naïve B cells, naïve T cells (TN), regulatory T cells (TREG, not shown), central memory T cells (TCM, not shown), and dendritic cells
(DCs). CCR7 guides lymphocyte homing through high endothelial venules (HEVs) in the paracortex [1] whereas DCs preferentially use afferent lymphatics [2]. CCR7
also drives interstitial migration of these immune subsets in the T zone facilitating, for instance, the interaction of TN with antigen presenting cells such as B cells and
DCs [3]. Upon activation, T cells are directed to the medulla following CCL19 gradients. CCL19 signaling also induces CCR7 internalization and the up-regulation of
the egressing receptor S1P1. The balance between CCR7 and S1P1 is needed for the movement of activated T cells from the T zone to the medulla [4]. Similarly, a
fine-tuned balance between CCR7 and CXCR5 allows the migration of activated B cells through the T zone and the follicle. In a first step, CCR7 is down-modulated
while a concomitant up-regulation of CXCR5 allows activated B cells to enter into the follicle [5]. In reactive follicles, fully developed GC are polarized into two regions
clearly differentiated: the dark zone (DZ) and the light zone (LZ). Although GC B cells re-express CCR7, migration of GC B cells between both regions relies on the
CXCR5-CXCL13 axis [6]. In the DZ, GC B cells (centroblasts) interact with stromal cells, proliferate (clonal expansion) and undergo somatic hypermutation on the
immunoglobulin genes. In the LZ, hypermutated resting GC B cells (centrocytes) interact with a dense network of CXCL13hi follicular dendritic cells (FDCs) and
CXCR5hi follicular helper T cells (TFH). FDCs display antigen and secrete cytokines and chemokines (CXCL13) that attract B cells and TFH to the GC. TFH are
specialized CD4+ PD-1+ T cells that express BCL-6 and secrete cytokines that promote B cell proliferation and differentiation. TFH deliver survival signals to GC B
cells through a number of different pathways, including CD40-CD40L, PD1-PDL1, and IL-21. The pro-survival signals from TFH counteract pro-apoptotic signals from
the FAS-FASL pathway. Crosstalk of centrocytes with FDCs and THF allows the class-switch recombination and the selection of B cells. Centrocytes with the
appropriate antigen affinity are selected to become memory B cells or antibody secreting plasma cells. The centrocytes that are not selected undergo apoptosis and
are removed by tingible-body macrophages (TBM). Expression of CCR7 allows memory B cells to exit from follicles back to the T zone and, from there, to the
medulla [7]. S1P1-expressing T cells and B cells move towards the efferent vessels following S1P gradients [8]. Notation: this scheme shows the main cell types in a
reactive LN and in the GC, however in these complex tissues participate additional subtypes not listed here that can be further reviewed elsewhere (1, 30, 31, 41).
Frontiers in Immunology | www.frontiersin.org March 2021 | Volume 12 | Article 6628664
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TABLE 1 | Publications reporting CCR7 expression in CLL cells.

Reference Samples Technique Main findings (related to CCR7 expression)

Klein et al.
(47)

CLL (PB; n=10)
HD (tonsils; memory
B cells; n=5)

GEP 3.3 fold-change CCR7 gene expression in CLL (M/UM) vs memory B cells.

Till et al. (48) CLL (PB; n=30) FACS
TEM

CCR7 expression regardless of B/R-stage, CD38, M/UM, UT/T. Expression correlated with nodal involvement.
TEM (CCL21) correlated with clinical lymphadenopathy but not with VH mutations or CD38.

Lopez-Giral
et al. (49)

CLL (PB, BM, LN;
n=79)
CD5- CLL (PB, BM;
n=12)
HD (PB, BM, tonsils;
n=10)

FACS
Chemotaxis

CCR7 is highly expressed in CLL vs HD (4.4 fold change CLL vs CD5+ B cells; 14.3 fold-change CLL vs CD10+ B
cells; 10 fold-change CLL vs pan-B cells). CCR7 expression regardless of the B/R-stage, CD38, M/UM, UT/T.
CLL preferential migration towards CCL19/CCL21 vs CXCL12 or CXCL13.
Migration correlated with nodal involvement but not with CD38 or VH mutations.

Wong et al.
(50)

CLL (PB; n=21)
SLL (LN; n=9)
HD (PB; n=20)

FACS CCR7 is highly expressed in CLL vs HD.
Expression in SLL similar to HD.

Ghobrial et al.
(51)

CLL (PB and
matched LN; n=33
and 5).
SLL (PB and
matched LN; n=12
and 12).
HD (PB and reactive
LN; n=5 and 3)

FACS CLL with a marked increase in CCR7 expression (6.6 fold change PB CLL vs normal B cells; 2.4 fold change in
CLL vs reactive LN).
No significant difference in the expression of CCR7 between LN of patients with and without peripheral
lymphocytosis.
CCR7 expression correlated with Rai stages and lymphadenopathy but not with VH mutations, CD38,
hemoglobin, WBC count, platelet count, and chemotherapy use.

Rodriguez
et al. (67)

CLL (PB and LN;
n=41)
HD (reactive LN;
n=4)

GEP CCR7 up-regulated in CLL LN vs reactive nodes

Alfonso-Pérez
et al. (52)

CLL (PB/BM; n=11)
HD (PB; n=6)

FACS CCR7 expression is higher in CLL than in CD3+ T cells from CLL patients (3.4 fold change); normal CD19+ pan-B
cells (2.6 fold change), normal CD3+ pan-T cells (2.4 fold change), and DCs (3.4 fold change).
Expression is found regardless of the stage, WBC counts, VH mutations, cytogenetic, T/UT, CD38 or ZAP-
70ZAP-70.

Chunsong
et al. (68)

CLL (PB; n=16)
HD (PB; CB; n=8)

FACS CCR7 expression in CLL is higher than in CD19+CD5- cells (6.5 fold change), but lower than CD23+CD5+ cord
blood cells (1.2 fold change).

Richardson
et al. (53)

CLL (PB; n=38)
HD (PB; n=6)

FACS
Chemotaxis

CCR7 expression is higher in clones with ZAP-70ZAP-70 expression than ZAP-70ZAP-70-negative cells (1.5 fold
change).
CLL PB cells expressed significantly higher CCR7 surface levels (5- to 7-fold increase) when compared with
control PB B cells.
ZAP-70ZAP-70+ CLL cells are more responsive to CCL19/CCL21 than ZAP-70ZAP-70- cells but are equally
responsive to CXCL12
CCR7 expression is found regardless of the Rai stages, VH mutations, CD38, hemoglobin, WBC count,
cytogenetic, and UT/T.

Ticchioni
et al. (69)

CLL (PB; n=26) FACS CCR7 is expressed in CLL samples regardless VH mutations, clinical stage, ZAP-70ZAP-70, or CD38.

Redondo-
Muñoz et al.
(70)

CLL (PB; n=6) FACS CCR7 is expressed in CLL samples.

Enjuanes
et al. (71)

CLL (n=692)
HD (n=738)

GEP/
genotyping

One SNPs (rs3136687, intron 1) was associated with CLL development. No differences in the expression levels
were observed for this CCR7 variant.

Trinidad et al.
(72)

CLL (PB/BM; n=13) FACS CCR7 is expressed in CLL samples. Similar high levels were found in patients with and without nodal involvement
(n= 4 and 9).

Calissano
et al. (54)

CLL (PB; n=13) FACS Similar CCR7 levels between resting (CD38-) and proliferating (CD38+Ki67+) clones.

Catusse et al.
(73)

CLL (PB; n=4)
HD (PB; n=4)

FACS CCR7 expression is higher in CLL than normal B cells (12.5 fold change).

Cuesta-
Mateos et al.
(63)

CLL (PB, BM; n=20)
HD (PB; n=15)

FACS CCR7 expression is higher in CLL than normal B cells (3 fold change).

Calissano
et al. (56)

CLL (PB; n=20) GEP
FACS

Among 1299 genes differentially expressed between the proliferating (CXCR4dimCD5bright) and resting
(CXCR4brightCD5dim) CLL compartments, CCR7 was not included.
Immunophenotype of both fractions showed high levels of CCR7 expression although slightly greater levels were
seen in proliferating cells in terms of percent positive cells and/or MFI.

Bryson et al.
(57)

CLL (PB, BM; n=24) FACS CCR7 expression is found in all samples.

(Continued)
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T cells 1), a down-stream effector of the BCR, selectively
facilitates expression of CCR7 (but not of other chemokines
receptors such as CXCR4) and CCR7-induced migratory
responses of CLL cells (76, 83). Other transcription factors
known to regulate expression of CCR7 are NF-kB and
activator protein 1 (AP-1); the latter is known to interact with
NFAT protein (67, 84–86). NF-kB proteins are present in the
cytoplasm bound to IkBa proteins, which are inhibitory
molecules that sequester NF-kB dimers in the cytoplasm. Once
BCR gets activated in CLL, IkBa is phosphorylated,
ubiquitinated, and degraded in the proteasome. This facilitates
NF-kB translocation to the nucleus, making the transcription of
Frontiers in Immunology | www.frontiersin.org 6
its target genes possible, including CCR7 (67). In addition, BCR
signaling in primary CLL cells through ZAP70 up-regulated
CCR7 via an extracellular signal-regulated kinase (ERK)-1/2-
dependent mechanism (59) although similar results were not
seen in ZAP-70-overexpressing OSU-CLL cell line (87) and a
recent study showed no regulation of CCR7 protein levels in CLL
cells after IgM and IgD stimulation while CXCR4 and CXCR5
were down-regulated (64). Whatever the reason underlying those
different outcomes are, these studies clearly show that BCR-
activating environment factors might orchestrate the up-
regulation of CCR7 in CLL as they do in normal B cells where
CCR7 expression, following engagement of the BCR, is
TABLE 1 | Continued

Reference Samples Technique Main findings (related to CCR7 expression)

Zuchetto
et al. (58)

CLL (PB, n=49) FACS CCR7 with a higher expression in the UM CLL group.
CCR7 is proposed to be included as a routine diagnostic/prognostic marker by flow cytometry.

Calpe et al.
(59)

CLL (PB, n=40) FACS,
Chemotaxis

Expression of CCR7 was significantly higher in CLL cells with high ZAP-70ZAP-70 expression within the same
patient.
CLL cells migrating toward CCL21 had a significantly higher percentage of ZAP-70ZAP-70–positive cells.
ZAP-70ZAP-70 signaling induces the expression of CCR7 in B cells through ERK1/2 phosphorylation.

Capitani et al.
(60)

CLL (PB; n=57)
HD (Buffy coat; n=8)

GEP Higher CCR7 mRNA in CLL than HD; higher content in UM than M CLL.
P66Shc controls CCR7 expression in CLL cells.

De Rooij et al.
(61)

CLL (n=5) FACS
Chemotaxis
Adhesion

CCR7 expression is higher in CLL than normal B cells (5.5 fold change).
CCR7 expression, migration and adhesion are impacted by ibrutinib.

Somovilla-
Crespo et al.
(62)

CLL (PB, BM; n=79)
CD5- CLL (PB, BM;
n=5)
HD (PB; n=4)

FACS CCR7 expression is higher in CLL than normal B cells (10 fold change).
CCR7 expression is higher in CD5- CLL than normal B cells (5 fold change).

Girbl et al.
(74)

CLL (n=8) FACS CD40L stimulation of CLL cells induces an activated phenotype with augmented CCR7 expression and reduced
motility on immobilized HA/CCL21 as a consequence of CD44v-HA strong interactions.

Eagle et al.
(75)

CLL (PB; n=18) GEP
Migration

No differential gene expression between M and UM CLL. No significant differences were seen in migration
towards CCL21 in M and UM cells.

Cuesta-
Mateos et al.
(63)

CLL (PB; n=23)
HD (PB; n=6)

FACS CCR7 expression is higher in CLL than normal B cells (5 fold change).
CCR7 is highly expressed on CLL cells regardless clinical stage, adverse cytogenetic prognostic factors or
previous treatments.

Patrussi et al.
(42)

CLL (PB; n=52)
HD (Buffy coat;
n=10)

GEP
FACS

CCR7 mRNA levels are higher in CLL (M and UM) than normal B cells (2.6 and 3.6 fold change).
CCR7surface expression levels are higher in CLL (M and UM) than normal B cells (3 fold change).
Total cell content is 4 and 5 times higher in CLL cells than in normal B cells.
UM CLL cells showed a preferential binding and migration towards CCL21.

Ganghammer
et al. (14)

CLL (PB; n=85) FACS CCR7 surface levels high in CLL cases regardless the presence/absence of CD49d and/or tri12.
CCR7 surface levels (MIFR) correlated with CD49d.

Haerzschel
et al. (64)

CLL (PB; n=19)
HD (PB; n=5)

FACS
Chemotaxis

CCR7 expression is not affected by IgM and IgD stimulation.
CCR7 surface levels higher in CLL cells than in normal B cells.
IgM-stimulated CLL cells retained chemotaxis towards CCL21 whereas Ig-D stimulated CLL cells showed
reduced response towards the same chemokine.

Arruga et al.
(65)

CLL (PB; n=39) GEP
Chemotaxis

CCR7 expression (mRNA) is similar between NOTCH1-M and-UM CLL clones.
CCL19-induced migration is more efficient in NOTCH1-M CLL samples.

Wolf et al. (76) CLL (PB; n=29)
HD (PB; n=18)

GEP Correlation between CCR7 and NFATC1 expression (mRNA)
CCR7 is significantly overexpressed in CLL cells compared to healthy donor samples (3 fold change)

Tooze et al.
(77)

CLL (PB; n=36)
SLL (PB, BM, LN;
n=24)
HD (PB;
CD20+CD5+ B cells;
n=10)

FACS CCR7 surface levels are lower in CLL than in SLL (1.6 fold change).
CCR7 surface levels are lower in CLL than in CD5+CD20+ cells (2 fold change).

Patrussi et al.
(66)

CLL (PB; n=42)
HD (PB; n=18)

FACS
IB/IF

High CCR7 surface levels in M and UM CLL were hypothesized to be a consequence of a high CCR7 recycling
rate. Defects in p66Shc expression promoted this rapid turnover.
BM, bone marrow; B/R, Binet or Rai clinical staging; CLL, chronic lymphocytic leukemia; DCs, dendritic cells; FACS, fluorescence-activated cell sorting by flow cytometry; GEP, gene
expression profiling; HA, hyaluronic acid; HD, healthy donor; IB, immunoblotting; IF, immunofluorescence; immunoglobulin; LN, lymph node; M/UM, IGHV mutated or un-mutated; MIF,
mean intensity of fluorescence; MIFR, mean intensity of fluorescence relative to control; PB, peripheral blood; SLL, small lymphocytic lymphoma; SNP, single nucleotide polymorphism;
TEM, transendothelial migration; tris12, trisomy in chromosome 12; UT/T, untreated or treated; VH, variable region in the Ig heavy chain; WBC, white blood cells.
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augmented through BCR-BTK signaling (88). This up-regulation
facilitates T-B cells interaction by guiding B cells from the follicle
to the border between the B and T cell zones in LN thanks to pre-
established CCR7 ligand chemotactic pathways (89, 90). In this
areas, B-T cell cross-talk is regulated by CD40-CD40L(CD154)
receptors, another environment interaction known to up-
regulate CCR7 expression in CLL, B-cell precursor acute
lymphoblastic leukemia (BCP-ALL), or myeloid leukemia-
derived DCs (74, 91–93). Accordingly, in CLL the activation of
the CCR7 transcription factor NF-kB takes place after induction
by CD40-CD40L ligation (94).

Another receptor implicated in sensing environment factors
which has been shown to regulate CCR7 in T cell malignancies is
the NOTCH1 transmembrane protein (95). In CLL, Arruga et al.
associated NOTCH1 mutations (which are found in ~10% of
patients at diagnosis, ~20% of r/r patients, and ~30% in Richter’s
syndrome) with STAT3-mediated CCR7 over-expression (65).
This transcription factor is activated by mitogen-activated
protein kinases (MAPKs) and directly regulates CCR7 gene
expression (96). In wild-type NOTCH1 CLL cells, NOTCH
intracellular domain (NICD) controls promoter methylation of
the dual specificity protein phosphatase 22 (DUSP22) tumor
suppressor gene that encodes a phosphatase that inactivates
MAPKs, including c-jun N-term kinase (JNK) and p38, and
dephosphorylates STAT3 (65). In a first step, NICD binds to the
recombination signal binding protein RBPJk, which is bound to
histone deacetylase 1 (HDAC1) in a heterodimeric repressor
complex. Then, free HDAC1 binds and stabilize DNA
methyltransferase 3A (DNMT3A), promoting DNMT3A
activity and consequently the methylation of DUSP22
promoter. Therefore, NOTCH1 mutations leading to
constitutive activation of the NICD down-regulate DUSP22
levels, increasing MAPK and STAT3 activation which result in
increased CCR7 levels. This mechanism was confirmed in a
cohort of 113 CLL patients (65). Those patients with a
NOTCH1-mutated clone showed significant hypermethylation
of DUSP22 with lower mRNA and protein levels of DUSP22,
higher phosphorylation of STAT3 and expression of CCR7 and
active chemotaxis to CCL19. Accordingly, patients with
molecular or clinical characteristics of aggressive disease
displayed significantly lower DUSP22 levels. Remarkably,
another STAT family member, STAT-4 which is profoundly
reduced in CLL cells (97) was implicated in in vivo down-
regulation of CCR7 in TH cells (98).

The scavenger receptor CD5 is another receptor implicated in
the over-expression of CCR7 (99). Since this hallmark CLL
phenotype marker is up-regulated in CLL cells, it is thought
that increased CD5 signaling is another cause of differential
CCR7 surface levels between normal and CLL B cells. Other
studies suggest that CCR7 gene is a reactive oxygen species
(ROS)-responsive gene in B cells. Under normal conditions
this gene is negatively controlled by the ROS-elevating activity
of p66Shc, a cytoplasmatic pro-apoptotic protein, member of the
Shc family of protein adaptors, and normally expressed in
healthy B cells (42, 60, 66, 100). In CLL, the abnormal CCR7
surface levels were shown to be a consequence of the presence of
Frontiers in Immunology | www.frontiersin.org 7
ROS and a concomitant defect of p66Shc, which is also the cause
of a rapid recycling of cell membrane CCR7 thus helping to
maintain abnormal elevated membrane levels (42, 60, 66, 101).
Curiously, the implication of a pro-apoptotic p66Shc protein in
controlling CCR7 is not the only event of the apoptotic
machinery involved in the regulation of this receptor. For
example, some anti-apoptotic proteins such as Bcl-2 have been
correlated with increased CCR7 expression in other tumor
diseases and in non-tumor CD8+ T cells (102, 103). In these
cases, a positive loop CCR7-Bcl2 promotes expression of the
anti-apoptotic protein while Bcl2-signalling favors CCR7
production. Whether similar positive loops can be found in
CLL is still unknown. However we do know that in CLL,
activation of NF-kB after CD40-CD154 ligation, or activation
of NFATC1 transcription factor, the downstream effector of
BCR, results in both expression of CCR7 and Bcl2, therefore
both events seem related to one shared former event (67, 76, 104,
105). Finally, it is worth noting that in solid cancers, such as
breast cancer, a differential CCR7 expression between different
histologic subtypes is determined by tumor microenvironment
factors (e.g. hormonal, inflammatory, and growth stimulating)
which may disable migration of CCR7-expressing tumor cells
towards CCL21 and, consequently, the presence of LN
migrations (106). Therefore, we cannot exclude finding similar
requirements within the LN microenvironment for different CLL
clones featured by differential combinations of adverse
prognostic factors.

CCR7-Induced Chemotaxis in CLL
It is known that levels of chemokine receptors do not always
correlate with a higher migrative capacity (107). Instead, in CLL,
the CCR7 surface over-expression does correlate with enhanced
migration in response to CCR7 ligands, with this chemotactic
response being more effective in CLL cells than in normal B cells
(42, 48, 49, 55). Migration in CLL is likely mediated through a
variety of downstream effectors, such as Rho, ERK and PI3K
kinases (55, 59). These are assisted by several clonal factors
that potentiate migratory responses favoring clinical
lymphadenopathy and poor outcome, including the presence
of certain adverse prognostic factors such as CD38, ZAP70,
CD49d, trisomy 12, NOTCH1 mutations, or un-mutated IGHV
(42, 48, 49, 51, 53, 58–61, 64, 65, 75, 87, 108–111).

It is worth noting that CLL cells also express high levels of
CXCR4 and CXCR5 (49, 112, 113). Despite this, leukemic CLL
cells have a preferential in vitromigration towards CCR7 ligands.
This situation contrasts with chemotaxis of normal B cells where
CXCR4 and CXCR5 ligands are more effective than CCL19 or
CCL21 (49). In this regard, a recent study by S. McHeik et al.
demonstrated that expression of CCR7 in B cells selectively
inactivated CXCR4, impairing migration towards its ligand
CXCL12, and facilitating emigration from BM to PB (114).
Mechanistically, up-regulation of CCR7 favors the formation
of CXCR4-CCR7 heterodimers, thus acting as a selective
endogenous allosteric modulator of CXCR4 that impairs its
ability to activate certain G-protein complexes. These results
may explain our observation in CLL migration (49) since up-
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regulation of CCR7 in CLL cells could favor the formation of
CXCR4-CCR7 heterodimers thus reducing migration towards
CXCL12. Nonetheless, we still have no data corroborating the
presence of such regulatory heterodimers in CLL.

Finally, CCR7 not only directs migration of leukemic cells in
CLL but, in addition, it is needed for migration of non-tumor
subsets such as T cells. T cells from CLL patients and healthy
donors have comparable expression of CCR7 and CXCR4
surface levels (52, 115), although CLL-associated T cells are
less responsive to CXCL12, CCL21 and CCL19, except in T
cells from patients with ZAP-70-expressing leukemic clones
where migratory responses where similar to normal T cells (115).

CCR7 and CLL Homing Into the LN
Emigration of normal T and B lymphocytes from the blood to
LN is a well-defined multi-step process in normal lymphocyte
trafficking, termed “homing”. Tethering and rolling of
lymphocytes on HEVs mediated by selectins, chemokine
receptor–induced integrin activation, integrin-dependent firm
arrest on HEVs, and trans-endothelial migration are processes
strongly dependent on CCR7 (31). Similarly, since the seminal
work by Till et al. reported CCR7 as the main receptor involved
in CLL cells entry into the LNs (48), there is much evidence to
support that CCR7 takes over these processes which are
exploited by CLL cells to enter LN (14, 61, 70, 72, 87, 116). In
line, prominent HEVs with high amounts of CCL21 and CCL19
are found in CLL nodes (48, 74, 117).

For effective CLL cell homing, chemokine-mediated
activation of the integrins lymphocyte function–associated
antigen (LFA-1) and VLA-4 are key events needed for the
initiation of shear-resistant arrest of B cells to endothelium
(48, 87, 116, 118). Normally, CLL cells express low levels of
these integrins, and thus few CLL clones enter the LN but some
CLL clones with trisomy 12 or ZAP70 are associated with high
levels of LFA-1 and VLA-4, allowing their entry into lymphoid
organs. Accordingly, patients with trisomy 12 or ZAP-70
expression may show exacerbated lymphadenopathy (14, 58,
87, 111, 119, 120) but the molecular mechanisms underlying
this clinical association have been largely unknown until recent
works by Legler´s laboratory. The group identified a critical role
for ZAP-70 in CCL21/CCR7-mediated, Src-dependent clustering
and inside-out activation of the integrins VLA-4 and LFA-1 that
facilitates CLL cell arrest on endothelial cells. ZAP-70 expression,
however, seemed dispensable for other processes, such as
migration velocity, chemokine-mediated crawling and
diapedesis (87). Since ZAP-70 associates with IGHV
mutational status (11, 12, 121, 122), it is reasonable to link
CCR7/ZAP-70-induced homing to the un-mutated clones which
have enhanced CCR7-triggered migration when compared to
mutated ones (42, 64, 75). Mechanistically, CCR7 activation
autophosphorylates Src kinase which in turn phosphorylates
CCR7 at tyrosine 155 within the cytoplasmatic DRY motif of
CCR7, providing a binding site for the Src homology 2 (SH2)
domain containing signaling molecules (123). Then both SH2
domains of ZAP-70 directly interact with phosphorylated CCR7
and ZAP-70 promotes LFA-1 clustering which is essential for cell
Frontiers in Immunology | www.frontiersin.org 8
adhesion to intracellular adhesion molecule 1 (ICAM-1) on
endothelial cells under physiologic flow conditions. Since the
impact of ZAP70 is quantitative and not qualitative, Legler and
colleagues propose that, because more cells arrest on CCL21-
presenting endothelium, ZAP-70 expression enhances the
chance of individual CLL cells to extravasate and thereby
contributes to the accumulation of CLL cells in lymphoid tissues.

Despite the studies that strongly support the CCR7 axis as a
main player in LN homing of CLL cells, some other chemokine
receptors might also contribute to the characteristic
disseminated lymphadenopathy in CLL, including CXCR3,
CXCR4, or CXCR5 (48–50, 112, 124–126). Accordingly,
normal B cells can exploit signaling mediated by CCR7,
CXCR4, and CXCR5 to induce integrin-mediated arrest on
HEVs and homing (127–130). Even though, only CCR7 seems
relevant for LN homing as demonstrated in several in vivo
models where CCR7 over-expression or genetic and
pharmacology targeting impacted in the entry of CCR7-
expressing cells into the LN (33–35, 62, 131, 132). In addition,
CLL nodes have a disrupted architecture featured by the lack of
follicles, which are the main source of CXCR5 cognate ligand, the
chemokine CXCL13 (133, 134), and the chemokine CXCL12, the
ligand of CXCR4, was not found in HEVs from CLL nodes (48).
Taken together, these data suggest that CXCR4 and CXCR5 are
not as relevant as CCR7 in CLL cell homing to LN. In agreement
herewith, CLL cells transmigration through endothelium is
more effective upon stimulation with CCL19 than with CXCL12
or CXCL13 (72). Under shear flow conditions, immortalized or
primary CLL cells with trisomy 12 (associated to high levels of
LFA-1 and VLA-4) significantly arrested to endothelial cells
or VCAM/ICAM-1 coatings in the presence of CCL21, but not
of CXCL12, since only the CCR7 ligand was capable to induce
inside-out VLA-4 conformational changes as demonstrated in
real-time kinetic assays (14, 87). Notably, similar results were
obtained with CLL cells lacking trisomy 12. In another study, it
was proposed that CCR7might guide preferentially the homing of
antigen-stimulated CLL cells since IgM activation selectively
reduced migration of CLL cells towards CXCL12, but not
CCL21 (64).

These arguments, substantiating the prevailing role of CCR7 in
LN homing, rather than excluding the importance of CXCR5 or
CXCR4 in the pathophysiology of CLL indicate that these
receptors might act as synergistic, accessory molecules for CCR7
which may alter the global outcome in the process of LN homing.
For example, in primary T cells and in one human Burkitt’s
lymphoma cell line the exposure to CXCL12 potentiated in vitro
transendothelial migration towards CCL19/CCL21, and also
increased CCR7-dependent recruitment of T cells into LN in
vivo (135, 136). On the other hand, CXCR4 might promote LN
homing in an indirect manner, for example, favoring relocation of
CLL from BM to the LN. In this respect, up-regulation of CCR7 in
normal B cells selectively inactivates CXCR4 whereas mature B
cells from CCR7-/- mice display higher responsiveness to CXCL12
and improved retention in the BM (114). Accordingly, CXCR4 is
the main receptor driving homing of CLL cells to BM where
stromal cells provide protection from spontaneous or drug-
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induced apoptosis (51, 113, 137). Nevertheless, in certain CLL
clones, such in trisomy-12-positive cells, CXCR4 expression is
decreased and BM homing barely reliant on CXCL12-induced
signals, despite a fully functional CXCR4 receptor in chemotaxis
assays (14). Since these cells retained the ability to activate VLA-4
and to arrest on VCAM-1 in CCL21-stimulated CLL cells, one can
propose a biased extravasation into LN tissues with
pathophysiological consequences.

CCR7 and LN Microenvironments in CLL
The survival of CLL cells is not a cell-autonomous, genetically
determined process (138–141). Instead, CLL cells strictly depend
on a permissive microenvironment that supports their survival
and proliferation and consequently drives disease progression
(2–4). CLL cells not only take advantage of CCR7 to home into
the LN but also use this receptor for a correct positioning within
the LN tissue as a result of the chemotactic routes created by
stromal cells, which secrete CCR7 ligands (48, 74). In this regard,
Höpken et al. demonstrated that genetic deletion of CCR7 in the
syngeneic Eµ-Myc mouse lymphoma model was sufficient to
exclude CCR7-deficient lymphoma cells from the T cell zone
whereas wild-type lymphoma cells lodged to the stroma in close
proximity to CD40L-expressing CD4+ T cells, DCs, and gp38+

fibroblastic reticular cells (FRCs), these latter providers of CCR7
ligands and the anti-apoptotic Indian hedgehog protein (Ihh)
(34, 142). In turn, the lymphoma cells themselves secreted
lymphotoxin through which they stimulated lymphotoxin-b-
receptor–expressing FRCs. This crosstalk was necessary for the
creation and preservation of protective niches in LN and spleen
as demonstrated in vivo in adoptive transfer experiments since
lack of CCR7 delayed disease onset and tumor burden (34, 142).
Therefore , CCR7 enables dis tr ibut ion to di fferent
microenvironments where malignant cells may interact with
supportive stroma (adhesion molecules and cells) and intra-
tumor vasculature, crosstalk with CD40L-expressing cells, DCs,
macrophages, and other tumor cells, recognize cognate antigens
which triggers BCR signaling, and are exposed to soluble trophic
factors: e.g. IL-7, IL-8, indoleamine 2,3-dioxygenase, CXCL12,
CXCL13 (2–6, 34, 113, 140, 143–151). As a result, chemokines
such as CCL3, CCL4, CCL19, CCL21, CCL22, CXCL12,
CXCL13, are produced and a cycle of recruitment and
proliferation begins in both CLL and accessory cells (147, 151–
154). For example, recruited CCR7-expressing DCs in the LN
may help further entry of tumor and other accessory cells directly
through the production of CCL19 (131), or indirectly by
promoting the secretion of vascular endothelial growth factor
(VEGF) and CCL21 by FRCs (131, 155–157). The final outcome
is a DC-induced vascular remodeling and generation of
chemotactic cues for additional leukemic and accessory cells.
Nonetheless, it should be kept in mind that increasing the
presence of CCR7-expressing immune cells does not always
associate with poor prognosis. The expression of CCL21 and
endothelium proteins such as peripheral node addressin in LN-
like vasculature found within solid tumors helps with anti-tumor
T cell infiltration and positive prognosis in murine models (158).
Unfortunately, similar studies showing a correlation between
Frontiers in Immunology | www.frontiersin.org 9
prognosis and the presence of CCR7-expressing infiltrating T-
lymphocytes are still lacking in CLL. Finally, soluble CCL19/
CCL21 also promote CCR7-induced survival of CLL cells
through mechanisms not found in normal B cells. For
example, CCL19 and CXCL13 cooperative signaling
contributes to resistance to TNF-a-mediated apoptosis through
up-regulation of paternally expressed gene 10 (PEG10) which
stabilizes caspase-3 and caspase-8 (68, 78). Additional roles for
CCR7-induced CLL cell survival have been described through
MAP-kinases and PI3K-AKT signaling pathways upon binding
of both cognate ligands (55, 69).

The knowledge about the mechanisms underlying the CCR7-
guided interstitial CLL cell migration supports the idea that stop/
go signals mediated by CCR7 in CLL are unique to this condition
rather than resembling the well-known behavior of normal
CCR7-expressing lymphocytes. In this regard, since CCR7
expression remains high within the LN and PCs (42) it is likely
that CCR7 guides CLL cells to different niches assisted by other
molecules. For example, interaction of wnt5 (A and B) or
cordon-blue protein-like 1 (COBLL1) proteins with the
receptor tyrosine kinase-like orphan receptor 1 (ROR1), a
transmembrane receptor upregulated in CLL, activated
pathways controlling cell polarity and migration. Specifically,
ROR-1 activation increased basal migration and attenuated
motility and chemotaxis toward CCL19 (159, 160) suggesting a
role of these axes in fine-tuning CLL movement along CCL19
gradients and shutting migration off once the right niche is
found. Interestingly, in non-tumor cells, COBLL1 expression was
also found to be higher in GC B cells than naïve and memory
subsets, where a marked reduction in CCR7 expression is needed
to facilitate CXCR5-guided access to the GC (129, 161, 162).

The CC chemokine receptor-like 2 (CCRL2, also known as
CRAM) is also aberrantly over-expressed in CLL B cells and it
was proposed as a bystander molecule regulating CCR7-induced
migration along CCL19 gradients (73), likely towards niches
where the cognate antigen is found as suggested by the fact that
CCRL2 is down-regulated upon IgD- or IgM-induced
stimulation of BCR in CLL cells (64). However, the scavenging
properties of CCRL2 in CLL are a matter of debate. In
endothelial cells, recent evidence discards the binding of
CCRL2 to CCL19 (among many other chemokines), the
subsequent receptor internalization, and the ability to scavenge
CCL19 (163, 164) precluding, therefore, its formerly proposed
role as a shaper of CCL19 gradients. Instead, CCRL2 binds the
non-chemokine chemotactic factor chemerin and presents it to
cells expressing the chemokine-like receptor 1 (CMKLR1), the
functional chemerin receptor (165). Since CMKLR1 is expressed
in plasmacytoid DCs and endothelial cells it is tempting to
speculate that the biological function of the axis CCRL2-
chemerin-CMLKR1 in CLL has to do with facilitating
interactions with these accessory cell types although future
studies addressing this hypothesis are required to fully
elucidate the mechanism by which CCRL2 regulates CLL
cell functions.

Another peculiarity in CCR7-directed interstitial migration of
CLL cells can be found in the important role attributed to the
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Cdc42-interacting protein 4 (CIP4), which is specifically
overexpressed in CLL when compared with normal B cells or
other subtypes of B-cell malignancies (166). For CCL19-driven
directional cell steering and chemotaxis, CLL cells depend on
CIP4 to modulate the Wiskott-Aldrich syndrome protein
(WASP), p21-activated kinase 1 (PAK1), and p38 MAPK
pathways to control the assembly of highly structured actin-
rich protrusions, including lamellipodia. Remarkably all these
factors (wnt-5A, wnt-5B, COBLL1, and CIP-4) are overexpressed
in un-mutated IGHV CLL and are associated with poor outcome
and nodal involvement. Once again, it seems reasonable that un-
mutated or mutated IGHV clones interpret gradients of CCR7
ligands differently with the contribution of BCR downstream
signaling proteins, such as ZAP-70 which has already been
marked as an enhancer of BCR signaling and CCR7-mediated
adhesion (61, 87). This differential behavior between mutated
and un-mutated IGHV clones is not new. It is long known that
un-mutated CLL shows a sustained interaction of competent
BCR with low-affinity self-Ags, resulting in a higher proliferative
rate, and only these clones usually respond to IgM stimulation
(167–169). Similarly, IgM activation reduced migration of CLL
cells towards CXCL12, but not CCL21, whereas IgD activation
predominantly impacted on CCL21 but not CXCL12-mediated
chemotaxis (64). This indicates a preferential role of CCR7 for
migration of antigen-stimulated CLL cells within the
lymphoid microenvironment.

Stromal proteins are also relevant players assisting CCR7 in
the positioning of CLL cells close to CD40L-expressing cells,
mainly CD4+ TH cells. According to the model proposed by
Hartmann et al. (74), unstimulated CLL cells use the nodal
reticular network, simultaneously presenting hyaluronan (HA)
and CCL21, as a guiding structure for their interstitial migration.
The HA triggers a robust, random CCL21-induced motility of
resting CLL cells until they encounter autologous T cells. If CLL
cells get activated via CD40–CD40L signaling, then N-linked
glycosylations of CD44 take place (particularly associated with
the variant isoform CD44v6) and this glycoprotein strongly
binds to HA causing CLL cells to stop migrating and instead
tightly adhere to HA-bearing stromal cells. This strong CD44–
HA–dependent adhesion facilitates cell division by retaining CLL
cells in close proximity to CD4+ T cells in PCs, providing survival
and proliferation cues: for example, T cell–derived interleukins
(e.g. IL-4) (2–4). Interestingly, Hartmann and colleagues have
demonstrated that this restriction to CCL21-induced motility is
only based on physical blocking interactions since activated cells
retain their migratory response towards CCL21 (74). Therefore,
this mechanism to modulate CLL migration seems to override
the continuous high, functional expression of CCR7 in the
leukemic cells. Moreover, since CLL clones with unmutated
IGHV present overexpression of CD44 (75), this proposed
mechanism contributes to the enhanced retention of these
clones within the LN by mediating adhesion to HA following
CD40-CD40L engagement.

CCR7 and Immune Tolerance in the LN
As further reviewed elsewhere (2–6), several studies suggest that
CLL cells are not passive players within the tumor
Frontiers in Immunology | www.frontiersin.org 10
microenvironment (TME). Instead they actively modify it. We
have already addressed their role in producing chemokines and
cytokines that grant the access and/or promote proliferation of
accessory gp38+ FRCs, DCs or CD40L-expressing T cells. In
addition, CLL cells have the capacity to induce specific changes
in myeloid and plasmacytoid DCs (170, 171), and T cells (172,
173) that can alter T cell immunological recognition and
function resulting in an impaired immune response to the
leukemia. Another mechanism that may contribute to creating
a tolerant microenvironment for CLL is the presence of
regulatory cells such as TREG and the myeloid-derived
suppressor cells (MDSCs). Both cell types have elevated
frequencies in patients with CLL which associate with active
disease (174–182) and, remarkably, both subsets express CCR7.
Notably, this receptor is needed to enter the LN and other TME
where CCR7 ligands are produced and where suppressive cells
expand defeating antitumor immunity through heterogeneous
mechanisms that include direct contact or the production of
soluble factors such as IL-10 and TGF-b (183, 184). Indeed, in
CLL the proportion of CCR7+ naïve natural TREG is increased
compared to healthy controls and within the overall TREG

population. Despite this population being characterized by
augmented co-expression CD39, a molecule closely associated
with suppressive activity in TREG, their suppressive activity
(tested in 5 CLL patients) was not superior to other TREG

subsets (178). This result is not something unexpected since
CCR7 expression is not needed for suppressive activity in TREG

(183) but for homing into LN where they respond to antigen and
get armed performing their immunosuppressive activity.
Without this step they still home to the peripheral tissues but
cannot regulate (185–187). Nevertheless, further work on CCR7+

TREG activity in CLL is needed in more samples to shed light on
this aspect since patients could benefit from a therapeutic
intervention consisting in the depletion of these suppressive
cells. In other conditions, this therapeutic venue has been
demonstrated to be effective in pre-clinical models of
aggressive tumors (188, 189) and in clinical trials with
mogamulizumab, an anti-CCR4 therapeutic mAb which
selectively decreased the fraction of CCR4+ TREG and
associated with better clinical outcome in T cell malignancies
and melanoma (190, 191).

CCR7 Prolongs Residency of CLL Cells
in LN Protective Niches
Besides its role in homing into SLOs, interstitial positioning, and
survival, it has long been known that CCR7 is also crucial in the
egress of lymphocytes from LN to PB. As shown in CCR7-
deficient mice, absence of CCR7 forces a rapid egress from the
LN, quicker than wild-type cells, whereas over-expression of this
receptor retarded this process (192). Therefore, CCR7 expression
and induced signaling pathways prolong the stay of lymphocytes
in LN. Once lymphocytes find their cognate antigen, get
activated, and undergo several divisions, CCR7 expression is
progressively shut off (30, 192). CCL19-triggered signaling
promotes down-modulation of CCR7 and a balanced up-
regulation in the transcription of the counteracting
sphingosine-1-phosphate receptor (S1P1) plays a crucial role in
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regulating the egress of T- and B cells from LN toward S1P1 rich
circulatory fluids (blood and lymph), overcoming the retention
signals provided by CCR7 (193).

In CLL, the work of Baldari et al. suggests that over-
expression of CCR7, together with the concomitant low
expression of egress S1P1, results in an altered balance that
contributes to a prolonged residency of CLL cells in protective
niches and subsequent lymphadenopathy (42, 60, 66, 100, 101).
According to these authors, high CCR7 recycling rates in CLL
cells seem to be one of the main contributors to receptor over-
expression, with un-mutated CLL cells showing the highest turn-
over and the more defective S1P1 expression. Mechanistically,
deficiency of p66shc contributes to this process in two different
ways. First, lack of p66Shc protein is the cause of CCR7 up-
regulation and S1P1 down-modulation in CLL cells since the
genes encoding both receptors are controlled in opposite
directions by the ROS-elevating (pro-oxidant) activity of
p66Shc (60, 100). Second, p66Shc inhibits the Ca2+-dependent
activation of the phosphatase type 2B (PP2B, aka calcineurin)
which dephosphorylates serine residues of CCR7, a step needed
to release CCR7 from b-arrestin in early Rab5+ endosomes
allowing transit to Rab11+ recycling endosomes (42, 66). The
cause of p66shc deficiency in CLL remains unknown, however
p66Shc expression is regulated by STAT-4, which is profoundly
reduced in CLL cells (97). Together these findings are highly
relevant as they uncover a novel regulatory mechanism for CCR7
in B cells where the receptor was thought not to be completely
needed to balance stay/egress from lymphoid tissues (192).
p66Shc deficiency does not impact S1P1 expression in T cells
(60). Moreover, p66Shc deficiency seems highly specific to
leukemic CLL B cells and more specifically in un-mutated
IGHV CLL clones. However, it is important to keep in mind
that other factors may contribute to the unbalanced CCR7/S1P1
signaling in CLL cells. For example, un-mutated IGHV cells show
low levels of S1P1 signaling proteins such as dynamin-2 and G-
protein ai (75). In addition, un-mutated clones overexpress
CD44. As already discussed, CD44 contributes to the retention of
CLL cells in LN by mediating adhesion to HA following CD40-
CD40L engagement, thus contributing, in and additional
manner, to prolong residency of CLL cells within the LN (74,
75, 91).
CCR7 AS A NOVEL THERAPEUTIC
TARGET IN CLL

The evidence presented here suggests that novel tools
targeting CCR7 are appealing to displace cells from LN micro
environment, hitting, therefore, the “Achilles’ heel” of CLL. As
such, the present authors and other teams demonstrated that
CCR7 genetic deletion or pharmacological inhibition with anti-
CCR7 monoclonal antibodies (mAb) reduced CCR7-triggered
migration and homing into LN in both in vitro and in vivo pre-
clinical models (34, 62) (52, 55, 63). Similarly, driving leukemic
cells out of LN to induce “death by neglect” or forcing their
apoptosis are the mechanism of action (MOA), respectively, of
Frontiers in Immunology | www.frontiersin.org 11
ibrutinib and venetoclax, the current standards-of-care (SOC) in
CLL (21, 22, 194).

Recently, it was reported that allosteric antagonism by small
molecules under clinical investigation interfered with CCL19-
driven signaling (195). Thus this work confirmed a long-
standing interest in active synthetic drugs to avoid entry of
cancer cells into LN. Our laboratories’ work focused on
antibodies which may provide several advantages over small
molecules: selectivity, affinity, increased serum half-life and
tumoricidal capacities (196, 197). Moreover, small molecules
are unable to trigger host anti-tumor responses whereas
therapeutic antibodies have provided such clinical benefits to
cancer patients during the last decades (198, 199). We
hypothesized that a higher efficacy at reducing LN tumor
burden would be achieved by a neutralizing anti-CCR7
monoclonal antibody (mAb) able to immobilize cancer cells
and to elicit cell killing (52, 62, 63). However, raising blocking
antibodies against CCR7 and other CKR has been considered a
challenging task due to the necessity of targeting specific epitopes
involved in ligand binding, and to a high sequence homology
between human and mouse CCR7 that impairs immunogenicity
(197). In agreement herewith, few anti-CKRs are under study in
pre-cl inical or early cl inical phases , and only one
(mogamulizumab) has been approved for clinical use (197,
200–202). Fortunately, the advent of novel technologies
including sophisticated purification techniques, synthesis of
conformational peptides, genetic immunization techniques,
production of CKR-containing liposomes or lipoparticles, or
over-expression of receptors in viral particles (197, 202) has
overcome cited limitations and the first therapeutic anti-CCR7
antibodies have been developed. Recently, Novartis has
announced the beginning of a phase I trial with JBH492 an
antibody targeting CCR7 (NCT042140704). Despite not being
clear if this molecule blocks the target, the fact that it is linked to
a cytotoxic molecule (antibody-drug-conjugate, ADC) indicates
that killing tumor cells by means of the release of cytotoxic
payloads seems its main MOA. In addition, Catapult
Therapeutics disclosed first pre-clinical results of a novel
humanized IgG1 antagonist (CAP-100) specifically developed
for cancer therapy which will be evaluated in a first-in-human
clinical trial (NCT04704323) in 2021 (203, 204). This antibody is
featured by a unique dual MOA which relies on an effective
combination of strong blocking and killing activities. This
antibody neutralizes receptor-ligand interactions thus
inhibiting CCR7-induced cell functions, such as the access of
cancer cells to niches where CCR7 ligands are produced (e.g. LN
or spleen). This way, tumor cells are forced to accumulate in the
bloodstream where they become more accessible to indirect cell
killing mediated by effector immune cells (ADCC, antibody-
dependent cell-mediated cytotoxicity), to spontaneous apoptosis,
or to other treatments. Targeting CCR7 is a plausible strategy not
only as a monotherapy but may also contribute in a rational
combination to enhance current standard-of-care treatments.
For example, the use of neutralizing anti-CCR7 antibodies along
with ibrutinib would synergistically target CCR7-induced
integrin-mediated adhesion to lymphoid stroma (42, 61, 66),
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thus enhancing drug-promoted CLL cell mobilization from
protective lymphoid niches into circulation. Additionally, the
antibody would block recirculation and loops of LN homing.
Ibrutinib would also interfere with CXCR4- and CXCR5-
mediated signaling and with the production of chemokines
(CXCL12, CXCL13, CCL19) by myeloid stroma cells (61, 151).
Then, spontaneous death in cells deprived of critical
microenvironment growth and survival signals will be
supplemented by antibody-induced cell killing. Similarly, anti-
CCR7 mAbs combined with PI3Kd inhibitors such as Idelalisib
(205), a selective inhibitor of the p110 delta isoform, might
contribute to inhibition of integrin-mediated arrest of CLL cells
on endothelial cells. In other combinations, anti-CCR7
antibodies would mainly interfere with homing into LN and
with the following interstitial migration within this tissue,
whereas adjuvant therapies, such as the Bcl-2 inhibitor
venetoclax, would collaborate in inducing cell death.
Interestingly, venetoclax is markedly less toxic towards CLL
cells when co-cultured with activated T lymphocytes (206)
therefore, anti-CCR7 therapies could reverse this situation by
impairing the support of CLL cells by accessory T cells. Finally, it
is worth mentioning that un-mutated CLL clones are
preferentially retained in LN, where they are exposed to
proliferative stimuli, suggesting that anti-CCR7 strategies may
be particularly effective in un-mutated-CLL. In agreement with
this prediction, clinical studies have shown that the overall
response to ibrutinib or idelalisib is significantly higher in
patients with un-mutated CLL compared with those with
mutated clones (61, 205, 207–209).
SAFETY OF ANTI-CCR7 THERAPIES
IN CLL

Today, the main concerns linked to the potential of CCR7 as a
therapeutic target have to do with the fact that CCR7 is a critical
molecule for inducing adaptative immune responses as well as
for the generation of TREG cells that control the development of
self-reactive cells and subsequent auto-immunity. Although
most of the knowledge on the involvement of CCR7 in these
processes is derived from CCR7-deficient mice (33) and paucity
of lymph-node T cells (plt) mice, a naturally occurring strain that
carries an autosomal recessive deletion that contains the genes
encoding CCL19 and CCL21-Ser (210, 211), the expression
patterns of CCR7 in mice and humans are similar thus
corroborating their use for the in vivo investigations of this
CKR. From these models we learnt that lack of CCR7 signaling
did not compromise life or life-span, and animals were not
immuno-deficient in a strict sense. On the contrary, these
phenotypes associated with retarded but effective T cell and B
cell responses (33, 129, 212), especially in cases where a
replicating antigen (viruses and some bacterial infections) was
present (213–216). We also learnt that lack of CCR7 reduced LN
homing of TREG and their right positioning in the nodal
environment hampering, therefore, central and peripheral
tolerance (183, 217–220). In the long-term, CCR7-defficient
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mice were prone to develop generalized multi-organ
autoimmunity (mainly in mucosa) although had a normal life
span and did not suffer from clinically aggressive diseases.
Finally, it is important to remark that also in CCR7-deficient
mice autoimmunity is a multi-factorial process related to mice
strain (genetic predisposition) and environmental factors (219–
221) and that many phenotypes in CCR7-deficient animals are a
consequence of immunity development within abnormal SLO
microenvironments (222). Therefore, it is coherent to think that
the immune responses of a patient treated with therapies
targeting CCR7 will not fully mirror the outcomes of CCR7-
deficient animals. In this sense, pre-clinical studies have shown
selective effects of anti-CCR7 mAbs for CLL cells while sparing
healthy counterparts, even at saturating concentrations of
antibody (52, 63, 223, 224). In these studies only TN and TCM

cells were impacted (though not entirely removed) while other
CCR7-expressing cells such as DC or B cells were surprisingly
not affected. We and others believe that this effect is likely due to
a lower target density in non-tumor cells or to a lower affinity of
these antibodies for CCR7 expressed in these cell types. These
r e su l t s l e ad to expec t a l ow- to -mi ld a s soc i a t ed
immunosuppression in patients receiving therapeutic doses of
an anti-CCR7 mAb. For example, it is likely that anti-CCR7
therapy could impair new immunization processes dependent on
TN cells, however it should not affect memory effector responses
against infections (224). Similarly, CCR7-negative TEFF and TEM

rather than CCR7-expressing naïve or TCM are necessary to
effective anti-tumor responses (225). Targeting CCR7 could also
affect B cell homing during antigen-dependent and independent
B cell differentiation; however, CCR7-deficient mice show
splenic B cell responses upon bacterial challenge (129). This
regard, normal B cells are less dependent on CCR7 than CLL cells
for arrest on HEVs and homing (127, 133, 192) while B cell BM
precursors and plasma cells lack CCR7 (49), thus suggesting that
CCR7 therapy would not suppress B cell lymphopoiesis nor
immunoglobulin secretory function (33, 129).

As previously indicated, TREG is another cell type that might
be affected by anti-CCR7 therapies. We have already seen how
this subset is significantly increased in CLL patients and
correlates with poorest clinical outcomes (174–178). However,
whether targeting CCR7-expressing TREG would be beneficial or
deleterious for CLL patients is a controversial issue. By one hand,
interfering TREG functions is an undesired side-effect associated
to the development of autoimmunity in CLL patients treated
with the PI3Kd inhibitor idelalisib (226). On the other hand,
these frequent unwanted events linked to idelalisib were not as
prevalent in mAb-based therapies with the discontinued anti-
CD52 antibody alemtuzumab (which depletes pan-T cell
populations, including TREG) (227) or with the anti-CCR4
antibody mogamulizumab (which removes CCR4+ T cell
subsets, including TREG) (228). Finally, it is worth to indicate
that anti-CCR7 therapy in pre-clinical syngeneic mouse models
of cancer, autoimmunity, GVHD, or inflammation did not
uncover un-wanted treatment-associated side effects (184, 223,
229) and CAP-100 toxicology studies in NHP did not reveal
overt toxicities or autoimmune disease indicating tolerability of
March 2021 | Volume 12 | Article 662866
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FIGURE 2 | CCR7 and the lymph node in CLL. The figure shows the different ways in which CCR7 contributes to CLL pathobiology in the LN tissue. This receptor
directs leukemic and accessory cells into the LN following CCL21 gradients that allow cells to across high endothelial venules (HEV) [1]. It is also likely that CCR7
might promote entry through a different gate, the afferent lymphatic vessels [2], although this last situation has not been reported yet in CLL cells. Both entry points
are also used by accessory cells such as T cells and dendritic cells (DCs). When CLL cells get access through HEV, binding of CCL21 and subsequent CCR7
signaling promotes a more invasive phenotype, featured by enhanced production of matrix metalloproteases (MMP-2 and MMP-9) that degrade the extracellular
matrix (ECM) [3]. This process facilitates trans-endothelial migration and the following interstitial migration within the LN tissue following CCL19 and CCL21 gradients
favoring the right positioning of CLL cells within niches where accessory cells, stroma components, or soluble factors (e.g. cytokines and chemokines) are available
[4]. Accessory and stromal cells are the main producers of CCR7 ligands thus facilitating the creation of chemotactic routes towards these niches. Similarly, some
CCR7-expressing accessory cells can be directed by CCR7 ligands to these environments. Once CLL cells are driven to protective niches, such as proliferation
centers (PC), tumor cells have access to CCL19 and CCL21 (which are produced by stromal cells and DCs) which rescue CLL cells from spontaneous or drug-
induced apoptosis [5]. CLL cells also have access to BCR signaling and CD40-CD40L signaling [6] which regulate both CCR7 expression and chemotaxis in CLL
cells further contributing to interstitial movement within the LN tissue. In the protective niches, CCR7 signaling in CLL cells is also involved in the secretion of trophic
factors needed by accessory cells thus creating a positive feedback loop to preserve these tumor niches. For example, CLL cells themselves might preserve PC by
means of secretion of lymphotoxin b (Lb) which binds to Lb-receptor in stromal cells and induces their differentiation into pro-tumor cells [7] which secrete Indian
hedgehog protein (Ihh) triggering survival in malignant cells. Similarly, CLL cells can modulate activity of anti-tumor immunity through the recruitment of pro-tumor
regulatory cells such as TREG and myeloid-derived suppressor cells (MDSC); both subtypes characterized by expression of CCR7 which orchestrates their homing
into the LN [8]. These suppressor cells inhibit anti-tumor effector cells (CTLs, NK cells, B cells, etc) through cell-cell interactions or well by creating a tolerant milieu
enriched in IL-10 and TGFb. As a result of all these described activities [5–8], CCR7 directly or indirectly promotes tumor growth in the T cell zone of the LN [9],
contributing to the typical obliterated enlarged structure in CLL nodes. Moreover, CCR7 up-regulation in CLL cells (as a consequence of an aberrantly rapid recycling
rate of the receptor) leads to an impaired up-regulation of S1P1, the receptor guiding the egress of immune cells trough S1P gradients towards the efferent
lymphatic vessels. Therefore, CCR7 signaling retains CLL cell within the LN, increasing the residence time in protective niches thus contributing in an additional way
to bulky disease in the LN [10].
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this novel therapy. In the coming months, first data in patients
receiving a chronic administration of an anti-CCR7 mAb will
shed light on these safety issues.
CONCLUSIONS

The LN is the main hub for CLL where leukemic cells find
proliferation and survival cues. Among the multiple altered
signaling pathways found in CLL, the axis CCR7-CCL19/
CCL21 is especially relevant (Figure 2). As revised here, CCR7
over-expression is a feature of CLL that has historically been
reported but, until recently, we did not begin to understand the
exact mechanisms underlying this process. Interesting novel
findings suggest that altered receptor recycling pathways are
involved in this up-regulation. Nonetheless, these abnormal
processes at the protein levels could be just the tip of the ice-
berg and additional studies addressing another mechanisms,
such as genetic or epigenetic dysregulation, would be of great
interest. The canonical view of CCR7 as a LN homing receptor of
CLL cells has been up-dated thanks to studies revealing CCR7 as
a key mediator of interstitial migration towards PCs and other
locations where CLL cells cross-talk with accessory cells and have
access to trophic factors which promote tumor growth and
progression, including CCR7’s own ligands. The extensive
knowledge arisen on the pathogenic roles of CCR7 in CLL cells
contrasts with the scant studies focused on receptor-mediated
functions in accessory cells during the different phases of niche
colonization, preservation and progression. Fortunately, the
advent of novel BCR inhibitors has indirectly provided first
clues for a better understanding of the mechanisms through
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which CCR7 creates and preserves protective and tolerogenic
milieus, prolongs CLL cell residency in these niches
(contributing, therefore, to lymphadenopathy), and provides
escape from therapeutic agents. Gathered together, this current
extensive collection of evidence confirms CCR7 as key molecule
in CLL and suggests, therefore, that tools targeting CCR7 are
appealing as novel therapies in CLL. Today, two novel anti-
CCR7 mAbs are facing clinical evaluation. Although both
compounds have shown high activity in pre-clinical models,
first-in-human studies need to solve several questions, beyond
efficacy, that are linked to this kind of therapy such as the
associated risk for impairing adaptative immunity and/or
developing auto-immunity. If positive results are obtained in
this clinical trials, we will likely witness to an exciting new age
not only in CLL therapy but also in other diseases where CCR7
mediates deleterious roles.
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