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Idiopathic pulmonary fibrosis (IPF) is the most devastating progressive interstitial lung
disease that remains refractory to treatment. Pathogenesis of IPF relies on the aberrant
cross-talk between injured alveolar cells and myofibroblasts, which ultimately leads to an
aberrant fibrous reaction. The contribution of the immune system to IPF remains not fully
explored. Recent evidence suggests that both innate and adaptive immune responses
may participate in the fibrotic process. Dendritic cells (DCs) are the most potent
professional antigen-presenting cells that bridge innate and adaptive immunity. Also,
they exert a crucial role in the immune surveillance of the lung, where they are strategically
placed in the airway epithelium and interstitium. Immature DCs accumulate in the IPF lung
close to areas of epithelial hyperplasia and fibrosis. Conversely, mature DCs are
concentrated in well-organized lymphoid follicles along with T and B cells and
bronchoalveolar lavage of IPF patients. We have recently shown that all sub-types of
peripheral blood DCs (including conventional and plasmacytoid DCs) are severely
depleted in therapy naïve IPF patients. Also, the low frequency of conventional CD1c+

DCs is predictive of a worse prognosis. The purpose of this mini-review is to focus on the
main evidence on DC involvement in IPF pathogenesis. Unanswered questions and
opportunities for future research ranging from a better understanding of their contribution
to diagnosis and prognosis to personalized DC-based therapies will be explored.
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INTRODUCTION

Idiopathic pulmonary fibrosis (IPF) is a progressive and devastating fatal lung disease that usually
remains refractory to treatment (1–3), with an estimated median survival of 2 to 5 years from the
first diagnosis. In the last two decades, disease incidence has steadily increased, varying from 2.8 to
19 cases per 100 .000 people per year in Europe and North America, respectively (1). Disease
behavior is also highly variable, with associated comorbidities potentially exerting a detrimental
impact on prognosis (4, 5). The current availability of anti-fibrotic drugs (i.e., nintedanib and
pirfenidone) has improved patients’ short-term life expectancy through the slowdown of the lung
function decline and the reduction of hospitalization rate and episodes of acute exacerbation (6).
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Despite many efforts, the pathogenesis of IPF has not yet been
elucidated. No longer considered just an inflammatory disorder
(7), IPF pathogenesis likely relies on the aberrant cross-talk
between injured alveolar cells and myofibroblasts. This
interaction ultimately promotes a pro-fibrotic microenvironment
through the engagement of a vicious circle supported, among
others, by oxidative stress (8–10). The immune system’s
contribution to IPF remains poorly understood, with several
pieces of emerging evidence suggesting that both innate and
adaptive responses can orchestrate the fibrotic process (11–13).
In this scenario, dendritic cells (DCs) may play a significant role
because of their involvement in the lungs’ immune surveillance,
where they are strategically placed within the airway epithelium
and interstitium (14).

Notably, DCs encompass a heterogeneous family of bone
marrow-derived cells recognized as the most specialized and
potent antigen-presenting cells (APCs) of the immune system
(15, 16). DCs are located in almost all tissues, where they detect
and process Ags for presentation to T lymphocytes, thus
establishing a tailored link between innate and adaptive
immune responses. Besides, DCs are pivotal in regulating the
delicate interplay between immunity and tolerance (17–19) as
they promote the deletion of clonal autoreactive immature T cells
in the thymus. Conversely, DCs interact in the periphery with T
cells to achieve immune tolerance by inducing T-cell anergy,
T cell deletion, and amplification and stimulation of regulatory T
cell (Treg) subsets (18, 19). Due to their pleiotropic functions and
properties within the immune system, DCs have been broadly
studied in different experimental and internal medicine areas,
including transplantation, allergy, autoimmunity, infectious
diseases, cancer (20), and, more recently, fibrosis. Significant
efforts have explored the fibrogenesis of different organs,
including the liver, the kidney, and the heart (21–24).

The present review aims to offer an overview including the
most relevant contributions in the field of IPF to focus on the
emerging evidence addressing the role of DCs in disease
pathogenesis and clinical behavior and potentially in immune-
targeted therapy development.
DEVELOPMENT OF DENDRITIC CELLS

DCs originate from bone marrow progenitors through
hematopoiesis, a finely regulated development process that
involves several cellular and molecular events. Recent studies have
identified a common DC precursor, the human granulocyte-
monocyte-DC progenitor (GMDP), which supports the
development of all the three major human DC subtypes (25). The
GMDPs, through an intermediate maturation state into monocyte-
dendritic progenitors (MDPs), differentiate into the common DC
progenitors (CDPs). CDPs are restricted to the bone marrow, where
they give rise to plasmacytoid DCs (pDCs) and conventional DC
precursors (pre-cDCs). Frequencies of pre-cDCs increase in
response to circulating FMS-like tyrosine kinase-3 Ligand (Flt3L)
and then terminally differentiate into conventional DC (cDC)
subsets in the periphery (25, 26). Accordingly, colony-stimulating
Frontiers in Immunology | www.frontiersin.org 2
factor-1 (CSF-1) and granulocyte-macrophage colony-stimulating
factor (GM-CSF) are major cytokines required for human DC
differentiation. In particular, Flt3L is a crucial regulator of DC
commitment to both cDCs and pDCs (27–29). Additional
transcription factors such as Ikaros, PU.1, growth factor
independent 1 transcriptional repressor (GFi1), interferon
regulatory factor 8 (IRF8), basic leucine zipper ATF-like
transcription factor 3 (BATF3), and inhibitor of DNA binding 2
(ID2) synergistically regulate DC development and subset
specification through the engagement of different signaling
pathways (30–35), as illustrated in Figure 1.
CLASSIFICATION AND FUNCTION OF
DENDRITIC CELL SUBTYPES

In humans, blood DC subtypes include CD11c+cDCs, that
are CD1c+ or CD141+ cells, and CD11c- pDCs, including
CD123+ or CD303+ cells. Conventional DCs, previously termed
type-1 (CD1c+) and type-2 (CD141+) myeloid DCs (mDCs), have
recently reclassified as cDC2 and cDC1, respectively (36–38)
(Figure 1). Conventional DCs exert a key function ranging
from pathogen detection to cancer immunity as they are
critical, through antigen presentation, to initiate specific T-cell
responses. On the other, pDCs display high anti-viral activities
due to their ability to produce type I interferon and are thought to
be involved in immune tolerance (39, 40).

Finally, a new DC subtype is represented by the so-called
monocyte-derived DCs (mo-DCs). Evidence shows that mo-DCs
arise from monocytes recruited to the inflammatory site and
express CD11c, CD1c, CD1a, FcϵR1, IRF4, and ZBTB46. It is
thought that mo-DCs promote CD4+ T cell polarization within
inflammatory contexts (41). A synoptical view of the previous
and actual classification of DCs is reported in Table 1.
DENDRITIC CELL ACTIVATION AND
FUNCTIONAL MATURATION

Mature DCs display phenotypic and functional profiles distinct
from their naïve (immature) counterparts. Immature DCs express
low levels of major histocompatibility complex (MHC) and co-
stimulatory molecules and are usually found in peripheral tissues
where they play as sentinels for immune monitoring. These cells
can endocytose and process antigens but are poorly effective in
generating peptide-MHC complexes to ensure optimal antigen
presentation and efficient T-cell activation (42–45). Tissue
damage, inflammatory processes, microorganisms, and tumor-
derived products may promote the maturation of DCs. After that,
these cells lose endocytic activity, increase MHC-peptide
complexes, up-regulate co-stimulatory molecules, and secrete
inflammatory cytokines essential for the activation of T-cell
responses (46, 47). Lastly, following maturation, DCs acquire an
increased migratory potential that allows them to move into
different compartments, such as non-lymphoid and lymphoid
tissues and blood (48, 49).
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DENDRITIC CELL SUBSETS IN THE
HUMAN LUNG MICROENVIRONMENT

Due to their anatomy and function, the lungs are vital organs
constantly exposed to the external environment. Consequently,
inhaled particles of different nature and origin and potential
pathogens need to be efficiently counteracted by a finely adjusted
immune response to preserve lung health (50). The activity of
lung DCs mainly depends on their organ distribution. For
instance, DCs located in the alveolar septa have many
dendritic projections able to continuously sample, while those
located in the conducting airways seem to do so most rarely (51).
Usually, DCs exist in an immature state in the lung periphery,
skilled to take up inhaled particulate and soluble antigens. Upon
activation, lung DCs, as previously described, become qualified
to (52) induce a tailor-made immune response by T-cells (T-
helper cell (Th) type 1, Th2, or Th17, depending on the type of
pathogen) and B-cells (53, 54).
Frontiers in Immunology | www.frontiersin.org 3
The lack of validated markers and technical difficulties in
obtaining human lung tissues for investigation has significantly
limited human lung DC subsets’ characterization and functional
studies. Since the first observations by Demetds et al., who initially
identified human lung DC subsets through the BDCA markers
previously applied to characterize blood DCs (55), understanding
pulmonary DC subtypes has improved chiefly only in the last few
years. In particular, both genomic and functional studies have
shown that human epithelial-associated DCs can be divided into
four major subpopulations: pDCs, cDC2 CD1c+, cDC1 CD141+,

and mo-DCs (36–38, 41). More recently, lung DCs have been
reclassified into five subtypes based on the differential expression
of Langerin, CD1c, and CD14 (56). Interestingly, transcriptome
analysis performed in bronchoalveolar lavage (BAL) samples has
revealed in the human lower respiratory tract the existence of
Langerin+, CD14+, and CD14− subsets of CD1c DCs functionally
related with alveolar macrophages. Noteworthy, the higher mRNA
expression levels of several dendritic cell-associated genes,
FIGURE 1 | Dendritic cells (DCs) derive from hematopoietic stem cells in the bone marrow. Progenitor cells give rise in the final step to Common Derived
Progenitors (CDPs) that differentiate in the blood circulating DC subtypes and in lung tissue DC subsets.
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including CD1, FLT3, CX3CR1, and CCR6, have disclosed a
specific gene signature of DCs distinct from that of monocytes/
macrophages (56). Figure 1 synthetically depicts the DC subtype
differentiation in the lung.
THE ROLE OF DCs IN IPF PATHOGENESIS

The involvement of DCs in the pathogenesis of IPF is a
challenging field of relatively recent interest, with only a few
reports available in humans.

In 2006 it was first reported that fully mature DCs expressing
CD40, CD83, CD86, and DC-lysosome-associated membrane
protein, along with non-proliferating B and T lymphocytes,
contribute to the creation of ectopic organized lymphoid
structures in the lung of IPF patients (57). Conversely,
immature DC subsets seem to heavily infiltrate the IPF lungs,
specifically in areas of epithelial hyperplasia and fibrosis, and to be
present in the BAL fluid (58–60). It is thought that fibroblastic foci
of IPF patients can orchestrate blood immature DC recruitment
through chemokines’ expression (CCL19, CXCL12, and CCL21)
(58, 61). This effect may maintain a condition of chronic
inflammation by maturing DCs in situ within ectopic lymphoid
follicles. Two physiologically relevant models showed that both
human and mouse lung fibroblasts are critically involved in DC
trafficking by secreting chemokines that play a crucial role in
fibrosis and inflammation (62). Accordingly, co-cultures of DCs
with lung fibroblasts from control subjects and IPF patients
further confirmed the in vitro ability of lung fibroblasts to
modulate the activation and maturation of DCs. These findings
suggest that IPF fibroblasts might sustain chronic inflammation
and immune responses by locally maintaining a pool of immature
DCs (63). In a clinical trial published in 2015, the DC-specific
growth factor Flt3L was found to increase cDC1 and cDC2 cell
populations’ precursors in bone marrow biopsies and peripheral
blood samples from healthy volunteers (64). Following this
finding, Flt3L has further been shown to be up-regulated in the
serum and lung tissue of IPF patients, likely contributing to the
accumulation of lung DCs during pulmonary fibrogenesis (65).

We previously showed that quantitative reduction of blood
DCs was a feature shared by other respiratory diseases, including
chronic obstructive pulmonary disease (COPD) and obstructive
sleep apnea (66–68). We have recently also investigated the
distribution of peripheral DCs subtypes in a prospective cohort
Frontiers in Immunology | www.frontiersin.org 4
of therapy naïve IPF patients. All blood DC subsets were severely
depleted in the context of a pro-inflammatory milieu characterized
by high expression levels of reactive oxygen species (ROS) and
interleukin (IL)-6. In agreement with data previously reported, we
likely attributed such a depletion, at least in part, to an increased
cell turnover and recruitment at the lung level. Noteworthy, IL-6
levels and perturbations of the cDC2 subset were not influenced by
anti-fibrotic therapies but were associated with reduced survival.
Of note, low frequencies of cDC2 were an independent predictive
biomarker of worse prognosis (69). Figure 2 shows the role of DC
subtypes undergoing the maturation process in the fibrotic lung
tissue. Certainly, as mentioned, DCs involvement is not exclusive
to IPF as it may also affect other respiratory diseases. In this
context, it is worthy of note the report by Naessens T et al. The
Authors have shown that cDC2 are potent inducers of T follicular
helper cells and contribute to tertiary lymphoid tissue formation in
the lung of COPD patients (70).
THE WAY FORWARD: SIMILARITIES WITH
CANCER BIOLOGY AND RATIONALE FOR
IMMUNE-TARGETED THERAPIES

In the light of the above evidence, DCs appear to play a role in the
fibrotic process and, more specifically, in IPF pathogenesis. IPF
notably shares many similarities with lung cancer, ranging from
genetics to clinical behavior (71). It is also estimated that the
overall cancer incidence in IPF patients is 29 cases per 1000
persons-years, with lung neoplasms being the most frequent ones
(72). DC alterations have been widely studied and characterized
in solid and blood malignancies (73). Like the liver fibrosis model
leading to tumorigenesis (22), DC imbalance and functional
impairment may represent a pathogenic bridge between IPF
and cancer. This aspect merits further investigation for its
prevention and therapeutic repercussions (13, 69). In this
regard, DC-based treatments represent emerging alternatives to
conventional chemotherapy in cancer patients (74), while such an
approach is conceptually missing in fibrosis-related diseases. The
lack of animal models that faithfully reproduce IPF pathogenesis
is undoubtedly a significant limit in this setting. Despite this, the
bleomycin model of inflammation-driven pulmonary fibrosis has
still helped explore different purposes over time. In this regard, it
has been shown that the immune-mediator VAG539 was able to
attenuate the hallmarks of bleomycin-induced lung injury
TABLE 1 | Synoptical classification of dendritic cell subsets.

Dendritic cell (DC) subtypes based on CD11c expression Specific DC markers Old classification New classification

Myeloid / Conventional CD11c+ DC CD1c / BDCA-1 Type-1 Myeloid DC (mDC1) Conventional DC2 (cDC2)
Myeloid / Conventional CD11c+ DC CD141 / BDCA-3 Type-2 Myeloid DC (mDC2) Conventional DC1 (cDC1)
Plasmacytoid CD11c- DC CD123 Plasmacytoid DC (pDC) Plasmacytoid DC (pDC)

CD303 / BDCA-2
Monocyte-derived DC CD11c+ DC CD1c – Monocyte-derived DC (mo-DC)

CD1a
FceR1
CD206
April 2
DC, dendritic cell; mDC, myeloid DC; cDC, conventional DC; Mo-DC, monocyte-derived DC; pDC, plasmacytoid DC; BDCA, Blood Dendritic Cell Antigen; FceR1, Fc Fragment of IgE
Receptor 1.
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through the inactivation of DCs, suggesting a crucial role of these
cells across the modulation of both inflammation and fibrosis
(75). Likewise, infusion of CD11c-diphtheria toxin (DT) receptor
(DTR) in bleomycin-treated mice prompted DCs depletion, thus
mitigating lung fibrosis (76). Indeed, both studies have some
limitations. First, the expression of aryl hydrocarbon receptor as
the key molecular target of VAG539 is not restricted to DCs (77),
and, second, the infusion of DT to CD11c-DTR mice depletes not
only DCs but also pulmonary macrophages as CD11c is highly
expressed on both cell types (78). Even with the awareness of
these limitations, we believe that this area of interest deserves
wider attention. Accordingly, recent clinical trials have explored
the safety and efficacy of recombinant human Flt3L in healthy
volunteers and cancer therapy to trigger DC expansion in humans
(79–81). Interestingly, recombinant Flt3L increased the numbers
of CD11b+ DCs, reducing lung fibrosis in wild-type (WT) mice
exposed to AdTGF-beta1 (65).

IPF remains, for the most part, an unexplored field due to the
non-recognition of the trigger cause. Perturbations of the lung
microbiome and viral infections have been hypothesized to have
a potential link with the development of IPF (82–86). Therefore,
it is not negligible that any dysregulation of DCs, as major APCs
and anti-viral effectors, may actively contribute to the puzzle of
IPF pathogenesis through a wider involvement at different levels.
Frontiers in Immunology | www.frontiersin.org 5
Overall, accumulated evidence and related considerations further
strengthen the concept that participation of DCs in the fibrotic
process could be a driving force for future deepening.
CONCLUSION

Interpreting the involvement of the immune response in the
pathogenesis of IPF has become a prosperous field of
investigation only in recent years. New reports reveal expanding
potential pathogenic roles for DCs in lung fibrosis. These findings
promise to open new scenarios to understand better the cause and
the biological mechanisms underlying the disease. Further efforts
and challenges will be to evaluate their potential in terms of easy to
perform biomarkers predictive of clinical behavior and targets of
immune-based treatments. In analogy with cancer, combination
therapy strategies with anti-fibrotic drugs could optimistically
represent a milestone shortly.
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FIGURE 2 | Dendritic cells (DC) are located in the lung interstitium and alveoli, where they act as sentinel cells. Any imbalance of their frequency distribution and functional
status may have significant consequences in disease pathogenesis. Emerging evidence suggests that plenty of local factors along with different arrays of chemo-cytokines
can modulate DCs maturation in the lung of patients affected by idiopathic pulmonary fibrosis, thus affecting their tolerogenic or immunogenic properties.
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