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Rationale: Systemic activation of procoagulant and inflammatory mechanisms has been
implicated in the pathogenesis of COVID-19. Knowledge of activation of these host
response pathways in the lung compartment of COVID-19 patients is limited.

Objectives: To evaluate local and systemic activation of coagulation and interconnected
inflammatory responses in critically ill COVID-19 patients with persistent acute respiratory
distress syndrome.

Methods: Paired bronchoalveolar lavage fluid and plasma samples were obtained from
17 patients with COVID-19 related persistent acute respiratory distress syndrome
(mechanical ventilation > 7 days) 1 and 2 weeks after start mechanical ventilation and
compared with 8 healthy controls. Thirty-four host response biomarkers stratified into five
functional domains (coagulation, complement system, cytokines, chemokines and growth
factors) were measured.

Measurements and Main Results: In all patients, all functional domains were activated,
especially in the bronchoalveolar compartment, with significantly increased levels of D-
dimers, thrombin-antithrombin complexes, soluble tissue factor, C1-inhibitor antigen and
activity levels, tissue type plasminogen activator, plasminogen activator inhibitor type I,
soluble CD40 ligand and soluble P-selectin (coagulation), next to activation of C3bc and
C4bc (complement) and multiple interrelated cytokines, chemokines and growth factors.
In 10 patients in whom follow-up samples were obtained between 3 and 4 weeks after
org May 2021 | Volume 12 | Article 6642091
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start mechanical ventilation many bronchoalveolar and plasma host response biomarkers
had declined.

Conclusions: Critically ill, ventilated patients with COVID-19 show strong responses relating
to coagulation, the complement system, cytokines, chemokines and growth factors in the
bronchoalveolar compartment. These results suggest a local pulmonary rather than a
systemic procoagulant and inflammatory “storm” in severe COVID-19.
Keywords: COVID-19, persistent ARDS, coagulation, innate immune response, bronchoalveolar space
INTRODUCTION

The severe acute respiratory syndrome corona virus (SARS-
CoV)-2 pandemic has had a tremendous global impact. While
most SARS-CoV-2 infections are mild, up to 20% of cases result
in severe Coronavirus Disease (COVID)-19, particularly in the
elderly and in patients with cardiopulmonary comorbidities (1).
Severe COVID-19 is associated with respiratory failure, which
has been considered a form of acute respiratory distress
syndrome (ARDS), although its characteristics may differ from
ARDS caused by other diseases (2, 3). Another distinctive feature
of COVID-19 is the frequent occurrence of venous thrombo-
embolic (VTE) events, which may be related to hypercoagulability
(4, 5). These particularities of COVID-19 have raised considerable
interest in the interactions between coagulation and the immune
response triggered by this new disease.

The innate immune system is the first to respond to infection
of the airways by SARS-CoV-2 (6). The respiratory epithelium
and resident leukocytes release cytokines and chemokines that
trigger recruitment of other immune cells to the primary site of
infection. While this response is initiated to inhibit viral
replication, unrestrained activation of inflammation can result
in collateral tissue damage, which has been documented in ARDS
associated with other types of lung infection (7). In addition,
ARDS and pneumonia can result in aberrant activation of
coagulation in the lung microenvironment. While this
pulmonary coagulopathy is largely inflammation-driven,
coagulation proteases in turn can amplify inflammation,
resulting in an injurious vicious cycle (8–10).

Previous investigations have reported exuberant activation of
the innate immune and coagulation systems in the systemic
circulation of patients with COVID-19 (4, 11–14). Knowledge on
local activation of these host response pathways in ventilated
COVID-19 is limited. Autopsy studies have shown extensive
alveolar damage accompanied by widespread inflammation and
pulmonary in situ thrombosis in patients who succumbed to
COVID-19 (2, 15). Recently, it was proposed that SARS-CoV-2
infection induces a process termed immunothrombosis, in which
activated leukocytes interact with platelets and coagulation
factors, leading to intravascular clot formation and
microthrombotic complications in lungs and other organs (16).
Here we set out to evaluate local and systemic activation of
coagulation and interconnected inflammatory responses in
critically ill patients with COVID-19 by measuring a large set of
biomarkers in bronchoalveolar lavage fluid (BALF) and
iersin.org 2
concurrently collected plasma. We hypothesized that severe
COVID-19 would be associated with strong activation of
coagulation especially locally in the lungs and that this would be
associated with concurrent activation of host response pathways
implicated in coagulation and lung injury. To test this we
composed a set of 34 host response biomarkers reflection
alterations in five pathophysiological domains, i.e., coagulation,
the complement system, cytokines, chemokines and growth factors.
METHODS

Study Design
This study was part of the Amsterdam Study for Deep
Phenotyping of COVID-19 disease (ArtDECO) 1 study, a
cohort study of all patients with PCR confirmed COVID-19
related persistent ARDS (mechanical ventilation > 7 days)
admitted to the intensive care unit (ICU) of the Amsterdam
University Medical Centers (Amsterdam UMC), location VUmc.
ARDS was defined according to the Berlin criteria (17). Per
clinical protocol all patients requiring more than 7 days of
mechanical ventilation underwent video-assisted bronchoscopy
BALF sampling. Left-over biological samples and clinical data
were stored in the anonymized research Amsterdam UMC
COVID-19 biobank (#2020-182) and database (Castor;
castoredc.com). Informed consent for the use of samples and
data was deferred until discharge from the ICU. In case of death,
informed consent was requested from the patient’s relatives. The
study procedure was approved by the Review Committee of
the Amsterdam UMC Biobank (protocol number 2020-065). The
study was performed in accordance with the declaration of
Helsinki and adheres to Dutch regulations. The current
investigation included patients from whom data and samples
were available between March 27th and May 31st 2020. All
available paired BALF-plasma samples harvested between 1 and
2 weeks after start invasive mechanical ventilation were used for
this analysis; from a subset of patients obtained paired follow up
samples were also analyzed. Techniques concerning blood and
BALF sampling, and used assays, are described in the detail in the
online data supplement. Biological samples were compared with
samples of 8 healthy subjects (5/8 male, mean age 38.75 years, 1/8
ex-smoker) from whom BALF (8 x 20 ml 0,9% NaCl) and plasma
was obtained as part of study protocols NL48912.018.14 (RILCA
trial) and NL53354.018.15 (RILCO trial) approved by the
May 2021 | Volume 12 | Article 664209
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institutional ethics committee after having given written
informed consent.

Clinical Protocol
Per clinical protocol, all patients with PCR confirmed COVID-19
related persistent ARDS requiring more than 7 days of
mechanical ventilation, admitted to the intensive care unit
(ICU) of the Amsterdam University Medical Centers
(Amsterdam UMC), location VUmc, underwent chest
computed tomography (CT) without and with (when clinically
indicated) intravenous contrast (CT pulmonary angiography
(CTPA)) at fixed time-points. At the same time, respiratory
mechanics were measured and video-assisted bronchoscopy
BALF sampling was performed. These procedures were
repeated on a weekly basis for as long as patients were
intubated and did not show clinical improvement. Intravenous
steroid treatment with 1mg/kg prednisone, with a maximum
dose of 80 mg once a day, was started after fourteen days of
mechanical ventilation, in absence of clinical improvement and
after exclusion of pulmonary infectious complications. Steroids
were tapered after 10 days. When clinically indicated, chest CT
and bronchoscopy with BALF sampling were also performed in
addition to these fixed time points.
Blood and BALF Sampling
Prior to diagnostic BALF sampling, venous blood was drawn in
EDTA anticoagulated tubes. Blood was centrifuged 10 min at
1800g and supernatant plasma was collected and stored at -80°C.
During bronchoscopy lungs were instilled with 2 x 20 ml 0,9%
NaCl at a (sub)segmental level, each aspirated immediately with
low suction for microbiological diagnostic purposes. Leftover
BALF (3-20 ml) was centrifuged (300g, 10min, 4°C) and BALF
supernatant was stored at -80°C until further analysis.

Assays
BALF was treated with 1% Triton-X100 for 2 hours before
samples were used for the specific assays to eliminate all viable
virus. D-dimer, soluble tissue factor, tissue type plasminogen
activator (tPA), plasminogen activator inhibitor type I (PAI-1),
soluble CD40 ligand (sCD40L) and soluble P-selectin (sP-
selectin) were measured using Human Thrombosis
LEGENDplex™ (#740892, BioLegend, Amsterdam, the
Netherlands). Thrombin-antithrombin complexes (TATc) were
measured by ELISA (TAT-EIA, Affinity Biologicals, Leiden, the
Netherlands). Kallikrein-C1-inhibitor complexes (18) C3bc (19)
C4bc (20) mannose binding lectin (MBL) (21) and C1-inhibitor
(C1-INH) antigen (22) and activity (22) were measured by assays
as described previously. All other mediators and growth factors
were measured by Human XL Cytokine Magnetic Luminex
Performance Assay (#LKTM014, R&D systems, Abingdon,
United Kingdom) and were read on a Bioplex 200.

Statistical Analysis
All results are presented as numbers (percentages) for categorical
variables, median and interquartile ranges (IQR, 25th and 75th
percentiles) for non-parametric quantitative variables (boxplots)
Frontiers in Immunology | www.frontiersin.org 3
and mean ± standard deviation (SD) for parametric quantitative
variables. Differences between groups were tested by Wilcoxon
signed-rank test for paired data and Wilcoxon rank sum test for
unpaired data. A p value ≤ 0.05 was considered statistically
significant. All statistical analyses were performed in R (version
4.0.2; R Foundation for Statistical Computing, Vienna, Austria).
RESULTS

Patients and Analysis of the Local and
Systemic Host Response
Seventeen patients from whom paired BALF and plasma samples
were harvested in parallel between 1 and 2 weeks after initiation
of invasive mechanical ventilation were studied. Clinical
characteristics are shown in Table 1. Patient demographics
were comparable to previous reports on COVID-19 disease
with a higher incidence in elderly, male subjects with an
elevated BMI (1, 11, 12, 23). In eleven patients (64.7%)
treatment with steroids was initiated. Ten patients started after
baseline BALF and plasma sampling and 1 patient just prior to
baseline sampling. Seven patients (41.2%) were treated with
hydroxychloroquine, 2 patients (11.8%) with the tyrosine
kinase inhibitor imatinib. All patients underwent CTPA within
7 days of ICU admission; ten patients (58.8%) were diagnosed
with pulmonary embol i sm, for which therapeut ic
anticoagulation was initiated. Thirteen patients (76.5%) were
treated for a possible secondary infectious complication during
their stay in the ICU (Table 2). Four patients died during ICU
stay (23.5%).

Activation of procoagulant and immune responses in the
bronchoalveolar compartment of critically ill COVID-19
patients were measured using a comprehensive set of
biomarkers, stratified into five functional “domains”, i.e.,
coagulation, the complement system, cytokines, chemokines
and growth factors. To obtain insight into the extent of
compartmentalization of these responses, the same biomarkers
were measured in plasma.
TABLE 1 | Demographics and clinical characteristics of patients with COVID-19
related persistent acute respiratory distress syndrome at ICU admission.

Number of patients (n) 17
Demographics
Male/Female 17/0
Age (years), mean (standard deviation) 63.4 (10.6)
Body mass index (m2/kg), mean (standard deviation) (n=16) 29.7 (4.8)
Medical history
No significant comorbidities 6 (35.3%)
Diabetes 5 (29.4%)
Chronic obstructive pulmonary disease/asthma 2 (11.8%)
Cardiovascular disease 6 (35.3%)
Active malignancy 1 (5.9%)
Human immunodeficiency virus infection 1 (5.9%)
Severity of disease
Sequential organ failure assessment score total, median
(interquartile range) (n=11)

9 (3)
May 2021 | Volume 12 | Artic
le 664209

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nossent et al. Immune Responses Bronchoalveolar Space COVID-19
Coagulation Activation
Markers of coagulation activation (D-dimer, thrombin-
antithrombin complexes (TATc) and soluble tissue factor) (9,
10) were strongly elevated in BALF of COVID-19 patients
relative to levels measured in BALF from control subjects
(Figure 1). Of interest, in plasma only D-dimer concentrations
were elevated in patients, whereas the plasma levels of TATc
and soluble tissue factor were not different from those in
healthy controls. Kallikrein-C1-inhibitor complexes, reflecting
activation of the contact system (24), was not detectable in
BALF from either patients or controls, while plasma levels
were not different between groups. C1-inhibitor (C1-INH)
antigen and activity levels were elevated in both BALF and
plasma from patients. The fibrinolysis markers tissue type
plasminogen activator (tPA) and plasminogen activator
inhibitor type I (PAI-1 (9) were markedly elevated in BALF
and modestly in plasma of patients, when compared to heathy
controls. tPA/PAI-1 ratio’s in BALF were not different between
patients and controls, whilst in plasma these ratio’s were slightly
higher in patients. Soluble CD40 ligand (sCD40L) and soluble
P-selectin (sP-selectin), indicative of platelet activation (25),
were increased in both BALF and plasma from patients when
compared with controls.

Complement Activation
Tight interactions exist between coagulation and the complement
system (26). BALF and plasma levels of C3bc (indicative of
activation of the common pathway of complement) (27) and
C4bc (indicative of activation of the classical and lectin pathways
of complement) (27) were strongly increased in COVID-19
patients relative to controls (Figure 2). In contrast, mannose
binding lectin (MBL) levels remained undetectable in BALF,
while plasma MBL was higher in patients than in controls.

Cytokine and Chemokine Release
Local cytokine release has been implicated in the pathogenesis of
lung injury and pulmonary coagulopathy in patients with ARDS
(7, 9) and several investigations reported a “cytokine storm” in
patients with COVID-19, referring to elevated plasma concentrations
of cytokines and chemokines (28, 29). Concentrations of
cytokines were particularly elevated in BALF of patients with
COVID-19 (Figure 3). This was true for proinflammatory
cytokines (tumor necrosis factor (TNF)-a, interleukin (IL)-1a,
IL-1b), anti-inflammatory cytokines (IL-1 receptor antagonist)
as well as cytokines with a mixed functional profile (IL-6,
Frontiers in Immunology | www.frontiersin.org 4
IL-10, IL-33). The plasma levels of these cytokines were also
higher in patients than controls. Likewise, all 10 chemokines
measured, were elevated in BALF of patients when compared
with that from controls; in plasma chemokine levels were more
modestly (CXCL8, CX3CL, CCL3, CCL4, CCL18, CCL19,
CCL20) or not elevated (CXCL1, CXCL2, CCL5) in patients
(Figure 4).

Growth Factor Release
Several growth factors have been studied in the context of lung
inflammation, including vascular endothelial growth factor
(VEGF) (30), platelet derived growth factor (PDGF)-AA (31),
PDGF-BB (31), fms like tyrosine kinase 3 ligand (FLT3L) (32)
and granulocyte-macrophage colony stimulating factor (GM-
CSF) (33). Of these, PDGF-AA and PDGF-BB were only elevated
in BALF of patients with COVID-19, while FLTL3 and GM-CSF
were elevated in BALF more so than in plasma (Figure 5). VEGF
was only increased in plasma of patients.

Temporal Changes in Local and Systemic
Procoagulant and Immune Responses
During ICU Stay
From ten patients follow up BALF and plasma samples were
obtained 3 or 4 weeks after start invasive mechanical ventilation.
Across all five functional domains many host response
biomarker levels in BALF showed decreasing trends between
week 1-2 and week 3-4, reaching statistical significance for
soluble tissue factor, tPA, sCD40L, sP-selectin (coagulation,
Supplementary Figure 1), TNF- a, IL-1a, IL-1b (cytokine
release, Supplementary Figure 3), CXCL2, CXCL8, CCL3,
CCL4 (chemokine release, Supplementary Figure 4), VEGF,
PDGF-AA and FTL3L (growth factor release, Supplementary
Figure 5). Complement activation products did not change over
time in BALF (Supplementary Figure 2). In plasma, significant
decreases were detected between week 1-2 and week 3-4 for
TATc, PAI-1, IL-1 receptor antagonist, IL-6, IL-10, CXCL8,
CCL19, CCL20, VEGF and GM-CSF (Supplementary Figures
6–10). There was no clear relationship between treatment with
corticosteroids and changes in biomarker levels between 1-2 and
3-4 weeks (see color codes for absence or presence of
corticosteroid treatment in individual patients in Supplementary
Figures 1–10).

Differences Between Patients With and
Without Pulmonary Embolism
Comparison of host response biomarkers between patients with
pulmonary embolism (n = 10) and those without pulmonary
embolism (n =7) revealed higher IL-6 plasma levels and in BALF
lower C1-inhibitor activity, lower IL-10 and lower GM-CSF in
patients with pulmonary embolism; Supplementary Table 1).
DISCUSSION

Here we report an in depth biomarker analysis, both of the
bronchoalveolar and systemic compartment, in consecutive
TABLE 2 | Secondary pulmonary infections during ICU stay.

Patients

Bacterial superinfection 3
Probable invasive pulmonary aspergillosis 1
Herpes simplex virus reactivation 4
Bacterial superinfection and probable invasive pulmonary
aspergillosis

1

Bacterial superinfection and Herpes simplex virus reactivation 1
Cytomegalovirus reactivation 3
Table lists infections for which the clinical team started specific therapy.
May 2021 | Volume 12 | Article 664209
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ventilated critically ill COVID-19 patients admitted to the ICU
who had needed mechanical ventilation for at least 7 days. Since
the first description of COVID-19, many studies have
documented activation of procoagulant and inflammatory
Frontiers in Immunology | www.frontiersin.org 5
pathways in the systemic circulation (4, 11, 14). We studied
local activation of the coagulation system and interconnected
inflammatory networks in the bronchoalveolar compartment
during ICU stay. By measuring thirty-four host response
FIGURE 1 | Coagulation activation. Bronchoalveolar lavage fluid and plasma were obtained from 17 critically ill COVID-19 patients who had been on mechanical ventilation for
at least 7 days and 8 healthy control subjects. Data are expressed as box and whisker diagrams depicting the median and lower quartile, upper quartile, and their respective
1.5 interquartile range as whiskers (as specified by Tukey). Comparisons between groups were performed using the Wilcoxon rank sum test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001,
****p = ≤ 0.0001. BALF, bronchoalveolar lavage fluid; C1-INH, C1-inhibitor; Kallikrein-C1-INH, Kallikrein-C1-inhibitor complexes; PAI-1, plasminogen activator inhibitor
type I; sCD40L, soluble CD40 Ligand; sP-selectin, soluble P-selectin; TATc, thrombin-antithrombin complexes; tPA, tissue type plasminogen activator.
May 2021 | Volume 12 | Article 664209
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biomarkers in paired BALF and plasma samples we demonstrate
an especially strong response in the bronchoalveolar compartment
of COVID-19 patients across five functional domains, i.e.,
coagulation, complement system, cytokines, chemokines and
growth factors.

We show strong activation of coagulation in the respiratory
system of COVID-19 patients, as reflected by elevated BALF
levels of D-dimer and TATc, and in addition provide indirect
evidence for a role for tissue factor herein, as suggested by highly
elevated soluble tissue factor concentrations in BALF. Differences
in these coagulation markers between patients and controls were
much greater in BALF than in plasma, suggesting local activation
of coagulation. SARS-CoV-2 may in part promote pulmonary
coagulopathy by a direct effect on bronchial epithelial cells via
activation of tissue factor signaling and impairment of epithelial
anticoagulant mechanism (34). Notably, stronger activation of
coagulation locally versus systemically in our ICU/ARDS cohort
does not preclude a role for systemic coagulation activation in
various thromboembolic and vascular events in COVID-19 in
general (35). tPA/PAI-1 ratio’s were not different between groups
in BALF and only modestly elevated in plasma of patients,
arguing against a strongly disturbed fibrinolyic balance in
COVID-19 patients and suggesting that elevated D-dimer
levels reflect enhanced coagulation rather than hyperfibrinolysis.
Besides via tissue factor-Factor VIIa, the coagulation system can
be activated via the intrinsic pathway, which is tightly connected
with the kallikrein-kinin system. Dysregulation of the kinin
pathway has been suggested to contribute to pulmonary edema
in COVID-19 and interventions inhibiting bradykinin activity or
formation have been proposed as a potential therapy for COVID-
19 (36). Activation of the kallikrein-kinin system in vivo is difficult
to measure due to fast clearance of its proteases and protease-C1-
inhibitor complexes (22). Thus, our results do not exclude
activation of the kallikrein-kinin system, although one might
Frontiers in Immunology | www.frontiersin.org 6
argue that sufficient inhibitory capacity remained available in
BALF and plasma, as indicated by elevated C1-inhibitor activity
levels in COVID-19 patients.

Aberrant activation of the complement system has been
implicated in COVID-19 coagulopathy and associated lung
injury (37–41). We here provide evidence for not only
activation of the complement system in the circulation, but
also in the bronchoalveolar lumen of patients with COVID-19,
as reflected by elevated C3bc and C4bc levels in BALF. In
agreement, a recent study reported elevated C5a-desarg levels
in BALF of four patients with ARDS due to COVID-19 (37).
COVID-19 patients had elevated plasma MBL concentrations,
suggesting involvement of the lectin pathway; in BALF MBL
remained undetectable in both patients and controls. Of note,
undetectable MBL levels in BALF of COVID-19 patients in the
presence of high plasma MBL concentrations could reflect local
activation of MBL, considering that this takes place at cell
surfaces. Monocyte-derived macrophages from BALF of
COVID-19 patients showed increased ficolin-1 mRNA
expression, which may support local activation of the MBL
pathway (42). Thus, the main route of complement activation
in the lungs of COVID-19 patients remains to be determined.
Besides complement products, proinflammatory cytokines such
as TNF-a, IL-1a, IL-1b and IL-6 can activate coagulation,
primarily via enhancing tissue factor expression (9, 10). We
here report elevated concentrations of many proinflammatory
cytokines, particularly in BALF, in COVID-19 patients

VEGF is a pluripotent glycoprotein that is constitutively
expressed at high levels in the lung, where it may facilitate
repair mechanisms following injury by epithelial regeneration
(30). We found strongly elevated VEGF plasma levels in
COVID-19 patients, while VEGF concentrations in BALF were
highly variable and statistically not different from control values.
VEGF may reduce vascular barrier function in the lungs and it
FIGURE 2 | Complement activation. Bronchoalveolar lavage fluid and plasma were obtained from 17 critically ill COVID-19 patients who had been on mechanical
ventilation for at least 7 days and 8 healthy control subjects. Data are expressed as box and whisker diagrams depicting the median and lower quartile, upper
quartile, and their respective 1.5 interquartile range as whiskers (as specified by Tukey). Comparisons between groups were performed using the Wilcoxon rank sum
test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. BALF, bronchoalveolar lavage fluid; C3bc, complement 3bc; C4bc, complement 4bc; MBL, mannose
binding lectin.
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has been postulated that angiotensin-converting enzyme (ACE)2
can antagonize this VEGF effect (43). Since SARS-CoV-2 cell
invasion lowers expression of ACE2 (44), a possible detrimental
role of VEGF vascular permeability could be enhanced during
COVID-19; clearly, this hypothesis needs conformation in
experimental settings. Elevated PDGF levels in BALF of
COVID-19 patients may reflect activation of multiple cell
types, including platelets, mast cells and the epithelium (31).
Of interest, thrombin can induce PDGF release by human lung
epithelial cells (45), pointing at a possible interaction between
coagulation and PDGF production in the airways. Thus far,
PDGF expression in ARDS or pneumonia has not been studied
and its role in acute lung inflammatory conditions is speculative.
Experimental studies have indicated that FLT3L may exert
strong effects in the lung compartment. Pretreatment of mice
Frontiers in Immunology | www.frontiersin.org 7
with FLT3L increased lung injury during pneumococcal
pneumonia, likely through inducing accumulation of
proinflammatory dendritic cells (32), and pharmacological
inhibition of FLT3 signaling attenuated LPS-induced lung
injury and edema in mice (46). These studies suggest that the
strongly elevated FLT3 levels in BALF of COVID-19 patients
may contribute to lung injury.

Current knowledge of local activation of inflammatory
mechanisms in the airways of patients with COVID-19 is
limited. In severe COVID-19 lung macrophages displayed high
expression of IL-1b, IL-6, TNF-a and various chemokines
(CCL2, CCL3, CCL4, CCL7, CXCL9, CXCL10 and CXCL11).
These patients had high IL-1b, IL-6 and IL-8 protein levels in
BALF (42), a finding that was reproduced in a study entailing
four patients with COVID-19 associated ARDS (37). We here
FIGURE 3 | Cytokine release. Bronchoalveolar lavage fluid and plasma were obtained from 17 critically ill COVID-19 patients who had been on mechanical
ventilation for at least 7 days and 8 healthy control subjects. Data are expressed as box and whisker diagrams depicting the median and lower quartile, upper
quartile, and their respective 1.5 interquartile range as whiskers (as specified by Tukey). Comparisons between groups were performed using the Wilcoxon rank sum
test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. BALF, bronchoalveolar lavage fluid; IL, interleukin; IL-1RA, interleukin-1 receptor antagonist; TNF-a, tumor
necrosis factor-a.
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FIGURE 4 | Chemokine release. Bronchoalveolar lavage fluid and plasma were obtained from 17 critically ill COVID-19 patients who had been on mechanical
ventilation for at least 7 days and 8 healthy control subjects. Data are expressed as box and whisker diagrams depicting the median and lower quartile, upper
quartile, and their respective 1.5 interquartile range as whiskers (as specified by Tukey). Comparisons between groups were performed using the Wilcoxon rank sum
test. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. BALF, bronchoalveolar lavage fluid; IL, interleukin; MIP, macrophage inflammatory protein; PARC, pulmonary
and activation-regulated chemokine; RANTES, Regulated upon Activation, Normal T Cell Expressed and Presumably Secreted.
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expand these earlier reports to protein level and to procoagulant
and inflammatory systems implicated in lung injury. We did not
find evidence for a systemic “cytokine storm” in COVID-19 as
plasma cytokine levels did not exceed 100 pg/mL. In line with
previous reports (47, 48) our results show higher cytokine levels
in the bronchoalveolar compartment suggesting an ongoing local
hyperinflammatory state in severe COVID-19 patients rather
than a systemic response. Our investigation adds information
about a large set of biomarkers across five functional domains to
these earlier studies (47, 48).

Our study has limitations. The first samples were obtained after
at least 7 days on the ICU; admission samples would have provided
insight into early activation of proinflammatory and procoagulant
pathways during severe COVID-19. The sample size was relatively
small although still considerably larger than previous studies
Frontiers in Immunology | www.frontiersin.org 9
evaluating host responses in the bronchoalveolar space of
COVID-19 patients (37, 42, 47, 48). In accordance with previous
studies (1, 49) we documented pulmonary emboli in 58.8% of the
patients included in our investigation. It has been suggested that
procoagulant and inflammatory responses (“thrombo-
inflammation”) are involved herein (16, 50). Whilst we found
limited differences in plasma and BALF biomarkers between
patients with and without pulmonary embolism, our investigation
was not designed or powered to detect such differences. Despite the
selection of a specific population of COVID-19 patients there was
still unavoidable heterogeneity within this observational cohort that
may have affected biomarker levels, including steroid treatment in
64.7% of patients which per clinical protocol was started after two
weeks of ICU stay and thus could have modified host response
parameters in follow up samples obtained after 3-4 weeks. Finally,
FIGURE 5 | Growth factor release. Bronchoalveolar lavage fluid and plasma were obtained from 17 critically ill COVID-19 patients who had been on mechanical
ventilation for at least 7 days and 8 healthy control subjects. Data are expressed as box and whisker diagrams depicting the median and lower quartile, upper
quartile, and their respective 1.5 interquartile range as whiskers (as specified by Tukey). Comparisons between groups were performed using the Wilcoxon rank sum
test. **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001. BALF, bronchoalveolar lavage fluid; FTL3L, fms like tyrosine kinase 3 ligand; GM-CSF, granulocyte-macrophage
colony-stimulating factor; PDGF, platelet derived growth factor; VEGF, vascular endothelial growth factor.
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we used samples from healthy subjects who were not matched with
regard to demographics, smoking or comorbidities as reference; our
investigation did not entail critically ill patients without COVID-19,
thereby precluding conclusions on the disease-specificity of the host
response aberrations reported.

In conclusion, we report a strong local response in the lung
compartment across multiple functional domains related to
coagulation and inflammation in patients with persistent ARDS
due to COVID-19. Early in the pandemic many studies suggested an
important role for a systemic “cytokine storm” in the
pathophysiology of severe COVID-19 (14, 28, 29). The current
results suggest a local rather than a systemic procoagulant and
inflammatory “storm” in these patients.
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